[image: image1.jpg]
Invention Submission Form

I.
The assigned Docket number is __SC-08-0341-ISF
(The Docket Number will be assigned once this form is received by the NVIDIA Patent Department. All subsequent correspondence regarding this invention must have this Docket number included in the subject line).

Please return the electronic version as well as the signed hardcopy to Brenda Gray. Alternatively, you can send them to T. Rao Coca or Rich Domingo in the Patent Department.

II.
 Indicate the class that best describes the Invention ____________________

(Please look up the class from the NVDIA Patent Classification System, available on NVIDIA Legal website, and select the most appropriate class number to which the invention belongs)

8.Software –

8.6 Development Tools
III.
 Please answer the following questions:

1. Summary title of the invention (50 characters):

An optimizing algorithm for vectorizing CUDA programs for execution on CPUs
2. List the names of all the inventors, and indicate the lead inventor:

Lead Inventor: Vinod Grover

John Stratton
Indicate to which group the Lead Inventor or the majority of inventors report by checking below:

() MCP () GPU (X) Software () Operations () Handheld () Research () VLSI () Other

3. Describe the invention, in detail, by including the advantages of the invention over the prior art. Alternatively, attach any supplementary documentation (e.g., white papers) that describes the invention:

Compiling a data parallel programming language such as CUDA for execution on multi-core CPU requires several transformations for correct and efficient execution. One key transformation is partitioning the representation of the program around the barrier synchronization instructions. The programming model requires that the statements in a partition be executed before statements in another partition. This requirement is implemented on a CPU by performing 2 additional transformations. One is to execute the statements in a partition as a vector loop with appropriate dimensionality. The other transformation is to perform scalar expansion of thread data along the indices of the required thread or vector loops. This disclosure describes an analysis technique for identifying the occurrences of local variables that require scalar expansion, as well as the dimensionality of the scalar expansion. This algorithm is simpler and produces better results than a naïve algorithm that scalar expands every occurrence of scalar/local variables. This yields savings in access times for the local variables in the transformed program as well reduces the number of variables which in turn should reduce the data footprint.
The basic model assumes either a high level structured representation such as an abstract syntax tree (AST)or an explicit control flow representation for the program execution. We also don’t require any particular partitioning technique, since the algorithm is independent of this technique. We simply require that the partitioning has been done already. For the sake of concreteness we minimally assume the following constructs in an AST representation of control flow.

 1) a simple primitive statement, such as an assignment “dst = OP src1, …, srcn”

 2) a sequence or block statement for sequential control flow, represented as “BLOCK {S1, …, Sn}

 3) an if/then/else statement, e.g. “IF C THEN S1 ELSE S2”

 4) an WHILE-DO construct, e.g. WHILE (C) DO S

 5) a DO-WHILE construct, e.g. DO S WHILE (C)

 6) a DO-LOOP construct, e.g. DO(INIT, COND, INCR) S
Without any loss of generality it can be assumed that each partition is composed as a sequence of the above mentioned constructs.

We also assume any method for computing data flow information is available and the results of this analysis are represented in either def-use chains or in SSA form.

The basic algorithm analyses each partition to compute up-exposed (UU) set for local variables of the entire partition, and similarly down exposed def (DD) set for the local variables for the entire partition. This information for computation of UU and DD sets is described below. Once this information is available we compute the intersections of these sets called candidate list set. This set contains information about the variables that cannot be kept as scalars if a thread loop is put around the entire partition. Therefore we need to scalar expand these variables. The CL set also enumerates the occurrences of the variables that need to be expanded.

Once the identification of the variables requiring scalar expansion is done, we need to identify the dimensionality of the required thread loops and the expanded variables. This is done as follows. We use a thread variance analysis which starts with operations that load threadId components and propagates this information through the data flow and transfers this information to the CL set for each partition.
The rules for composition of DD and UU information are listed below.

3 sets: MD, D, UU

May Define, Defines, Upward exposed Use

Simple statement: var-expr = expr

D = var-expr

UU = all variable uses in expr

MD = (
Sequence: S1 -> S2

D = D(S1) (D(S2)

UU = UU(S1) ((UU(S2) – D(S1))

MD = (MD(S1) – D(S2)) (MD(S2)

If/then/else: IF (Expr) THEN S1; ELSE S2;

D = D(S1) (D(S2)

UU = UU(S1) (UU(S2) (Uses(Expr)

MD = MD(S1) (MD(S2) (((D(S1) (D(S2)) – (D(S1) (D(S2)))

While: While(Expr) S

 If we can prove S will execute at least once:

D = D(S)

UU = UU(S) (Uses(Expr)

MD = MD(S)

 If we can’t prove S will execute at least once:

D = (
(Same)
UU = UU(S) (Uses(Expr)

MD = MD(S) (D(S)

Do-While: DO S WHILE(Expr)

D = D(S)

UU = UU(S) ((Uses(Expr) – DD(S))

MD = MD(S)

Do: DO(S1, Expr, S2) S3

 If we can prove S3 executes at least once:

D = D (S1) (D(S2) (D(S3)

MD = MD(S1) (MD(S2) (MD(S3)

UU = UU(S1) (((UU(Expr) (UU(S3)) – D(S1))

((UU(S2) – (D(S1) (D(S3)))

 Otherwise:

D = D(S1)

MD = MD(S1) (MD(S2) (MD(S3) (D(S2) (D(S3)

(Same)
UU = UU(S1) (((UU(Expr) (UU(S3)) – D(S1))

((UU(S2) – (D(S1) (D(S3)))

At the end of a partition DD(P) = MD(P) (D(P)
4. Identify any related prior art, listing all related NVIDIA Inventions by Docket number:

1. SC-08-0007-ISF An optimizing compilation system for CUDA, for a shared memory multi-core system.

2. SC-08-0009-ISF A framework for executing GPU accelerated code on multi-core architectures.

3. SC-08-0216-ISF A method of program partitioning for eliminating synchronization in CUDA programs
4. SC-08-0217-ISF A method for classifying vector and scalar statements in a CUDA program
5. Is the invention related to a technology that is in compliance to the specification of any standard(s) body (e.g., OpenGL)? If yes, identify the Standard and the Standard Body:

No.
6. Identify the approximate date the invention was conceived and documented with engineering drawings or descriptions:

Jul 1, 2008.
7. Identify the approximate date the invention was reduced to practice (e.g., working prototype or final product fabricated/constructed):

8. List all NVIDIA product(s) in which the invention is, or will be, incorporated:

CUDA 2.1
9. Identify all planned public disclosures (without NDAs) or offers for sale of this invention or of any product(s) that incorporate this invention:

CUDA 2.1, including public release of source code
	INVENTOR SIGNATURES
	DATE

	INVENTOR SIGNATURES
	DATE

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

NVIDIA Confidential / Privileged
- 1 -
7/2/2008
Attorney-Client Communication

