[image: image1.jpg]NVIDIA.

Invention Submission Form

I.
The assigned Docket number is ___ SC-08-0218-ISF
(The Docket Number will be assigned once this form is received by the NVIDIA Patent Department. All subsequent correspondence regarding this invention must have this Docket number included in the subject line).

Please return the electronic version as well as the signed hardcopy to Brenda Gray. Alternatively, you can send them to T. Rao Coca or Rich Domingo in the Patent Department.

II.
 Indicate the class that best describes the Invention ____________________

(Please look up the class from the NVDIA Patent Classification System, available on NVIDIA Legal website, and select the most appropriate class number to which the invention belongs)

8.Software –

8.6 Development Tools
III.
 Please answer the following questions:

1. Summary title of the invention (50 characters):

A method for optimized vector code generation of CUDA programs for multi-core execution.
2. List the names of all the inventors, and indicate the lead inventor:

Lead Inventor: Vinod Grover

Bastiaan Aarts
Mike Murphy

Indicate to which group the Lead Inventor or the majority of inventors report by checking below:

() MCP () GPU (X) Software () Operations () Handheld () Research () VLSI () Other

3. Describe the invention, in detail, by including the advantages of the invention over the prior art. Alternatively, attach any supplementary documentation (e.g., white papers) that describes the invention:

1. Background
When compiling CUDA programs to run on stock multi-processors, we need to transform code so that the local program state live across barriers is scalar expanded. A naïve method would scalar expand (or vectorize) every local datum and transform every reference to use the vector reference. In this invention we describe a method to optimize the program to use vector form where essential and use scalar form where appropriate while respecting the original program semantics. This yields code that executes more efficiently.

2. Detailed Overview

The method is detailed below. The current method assumes that

 - Partitioning of the program into one or more barrier free regions has been performed, and furthermore,

- Each program statement has already been classified as a vector or scalar statements, and

- Data flow information describing dependency information between program statements for the function is available. This information could be in any of the forms described in literature, e.g. SSA form or def-use chains, etc.
The algorithm operates in 3 phases.
Phase 1: identify any scalar variables that contribute to a vector statement’s results and promote such scalar variables to vector form.

 A vector statement depends on at least one other vector statement. However there may be a scalar statement, (i.e. that does not require vector execution.) that may affect the result of a vector statement.

We traverse each vector statement in each partition that affects local state and determine if there is a scalar statement that it depends on based on data flow. We promote such statements to a vector form.

Phase 2: Identify stores and loads that need vector references.

If a vector statement updates a local variable we traverse and analyze all its uses to determine which partition they reside in. This phase traverses candidate vector statements (i.e. those that modify local state), in each partition and then classify the stores and loads of such target local variables as follows.

Given a candidate store S (in a partition P) modifying a local variable X –

1) If all uses of X are in the same partition as P then we demote the store S to write to a scalar store, and all loads or uses of X remain as scalar loads.
2) If there some loads or uses of X in a different partition P’ and some other uses are in the same partition P then we change the store S to write to a vector store, and the loads that are in partition P remain a scalar loads. The loads in all other partitions are promoted to vector loads.

Phase 3: Generate code for scalar expansions and allocation of vector data.

· For all local data identified in phase 2 as requiring vector stores, we generate code to allocate appropriately dimensioned vectors at the beginning of the program.

· For all loads requiring access to the vector data, i.e. of the generic form LOAD X we generate the following code sequence before the load:

X = LOAD Vector(X)[threadId];

Load X

· For all store requiring vector data, i.e. of the generic form STORE X, VALUE, we generate the following code sequence

STORE X, VALUE

STORE Vector(X)[threadId], X

This method ensures that scalar loads in the same partition read from the original location, while vector loads read from the vector locations.

4. Identify any related prior art, listing all related NVIDIA Inventions by Docket number:

SC-08-0007-ISF : An optimizing compilation system for CUDA, for a shared memory multi-core system

5. Is the invention related to a technology that is in compliance to the specification of any standard(s) body (e.g., OpenGL)? If yes, identify the Standard and the Standard Body:

No.
6. Identify the approximate date the invention was conceived and documented with engineering drawings or descriptions:

January 2008.
7. Identify the approximate date the invention was reduced to practice (e.g., working prototype or final product fabricated/constructed):

March 27, 2008. This was the date when the implementation was first checked into the source tree.
8. List all NVIDIA product(s) in which the invention is, or will be, incorporated:

CUDA 2.0, CUDA 2.1
9. Identify all planned public disclosures (without NDAs) or offers for sale of this invention or of any product(s) that incorporate this invention:

Hot Chips Conference, August 2008

Analyst Conference, April 10, 2008

	INVENTOR SIGNATURES
	DATE

	INVENTOR SIGNATURES
	DATE

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

NVIDIA Confidential / Privileged
- 2 -
4/8/2008
Attorney-Client Communication

