[image: image1.jpg]
INVENTION SUBMISSION FORM

I. The assigned “P number” is SC-08-0007-ISF
(The “P” Number will be assigned once this form is received by the NVIDIA Patent Department. All subsequent correspondence regarding this invention must have this “P” number included in the subject line).

Please return the electronic version as well as the signed hardcopy to Brenda Gray. Alternatively, you can send them to T. Rao Coca or Rich Domingo in the Patent Department.
II.
 Indicate the class that best describes the Invention:
(Please look up the class from the NVDIA Patent Classification System, available on NVIDIA Legal website, and select the most appropriate class number to which the invention belongs)

8.Software –

8.6 Development Tools
III.
 Please answer the following questions:

1. Summary title of the invention (50 characters):

An optimizing compilation system for CUDA, for a shared memory multi-core system.
2. List the names of all the inventors, and indicate the lead inventor:

Lead Inventor : Vinod Grover
Bastiaan Aarts
Mike Murphy

Boris Beylin

Jayant Kolhe

Douglas Saylor

Indicate to which group the Lead Inventor or the majority of inventors report by checking below:
() MCP () GPU (X) Software () Operations () Handheld () Research () VLSI () Other
3. Describe the invention in detail, including the advantages of the invention over the prior art. Alternatively, attach any supplementary documentation (e.g., white papers) that describes the invention:

1. Background

This invention, for translation and execution of CUDA on multi-core, consists of several components, which are listed below for providing proper context and then the compiler component (the subject of the invention) is described in more detail. The various components of the system include:

1. A front-end for translating the data parallel language, such as CUDA, to an intermediate form.

2. The translation and optimization of the intermediate form to target a multi-processor system.

3. A code generator for translating the optimized intermediate data parallel program to C. The translated C program can be further compiled and executed on any multi-processor environment.

4. A runtime system for managing the parallel execution of thread blocks (CTAs) in parallel on multiple processors.

This invention covers item # 2 listed above. The details follow.

2. Translation and Optimization of CUDA to shared memory multiprocessors.

2.1 Introduction

A CUDA program is typically organized as a set of synchronous or asynchronous executions of sets of thread blocks. These thread blocks are also referred to as CTAs. Furthermore, the thread blocks are organized as collections of 1, 2, or 3 dimensions. The underlying strategy for parallel execution on a shared memory multiprocessor (SMP) is to run each thread block or CTA on its own processor. Many thread blocks may be running in parallel by the help of a runtime system implemented on a host operating system. This runtime system is responsible for managing the execution of a CUDA program synchronously or asynchronously as required. Threads within a thread block communicate and synchronize with each other by the use of shared memory and a simple barrier synchronization primitive called __synchthreads().

The body of each thread, referred to as a kernel, is specified using CUDA which is standard C using memory model annotations and the use of any desired barrier synchronization. This is represented in a compiler using any traditional representation. The synchronization primitive may be represented as either a special operator or simply an intrinsic call.

The semantics of a CUDA program is that each kernel is executed by all the threads in the thread block in an order that respects the memory ordering implied by the __synchthreads() primitive. In particular, all shared memory references within a thread block that occur before __synchthreads() primitive must dynamically happen before all shared memory references that occur after the __synchthreads() primitive.
2.2 Compilation Strategy
The underlying strategy in our compilation system is to perform analysis and program transformation to eliminate the use of __synchthreads(). These transforms have the following additional effects:
1. Minimize or reduce the use of shared state and

2. Improve the locality of references on traditional memory hierarchies and

3. To exploit (or enable the host compiler to exploit) the vector instructions present in traditional CPUs (e.g SSE, SSE2, etc).
We illustrate this by several examples.

2.3 Explicit Thread Loop Generation

Example 1: A simple example not containing any __synchthreads()

The following program

 __global__ void function() {

 Shared1 = …

 = Shared1

 }

will be transformed, in general, to the following threadblock program.

void function() {

 for (int tid_x = 0; tid_x < dimblock.X; tid_x++) {

 for (int tid_y = 0; tid_y < dimblock.Y; tid_y++) {

 for (int tid_z = 0; tid_z < dimBlock.Z; tid_z++) {

 Shared1 = …;

 … = Shared1;

 }

 }

 }

Thread loop generation strategy surrounds the region of code that does not do any synchronization with an explicit nest of needed thread loops, one for every thread block dimension supported.

This is a correct but conservative code generation strategy. If the above example did not contain any use of any threadId in the program then the following would be a correct transformation, i.e. no thread loop is needed.
 void function() {

 Shared1 = …

 = Shared1

 }

2.4 Synchronization Partitioning

If the program kernel contains one or more uses of __synchthreads() primitive then the above transformations would not be legal. A correct transformation would need to partition the program into regions of synchronization independent instructions before performing any explicit thread loop generation. The following example illustrates this transformation in a simple case.
Example 2: Synchronization partitioning and thread loop generation.

The following program

__global__ void function() {

 SharedMem[threadIdX.x] = …; // store value into shared memory

 __synchthreads();

 = …(SharedMem[threadIdX.x] + SharedMem[threadIdX.x – 1])/2.0;

}

uses explicit synchronization to ensure correct sharing of memory between various threads in a block. One can view this as 2 stages in the execution of the data parallel programs. The compiler should translate this into the following explicit thread loop fragment:

void function() {

 for (int tid_x = 0; tid_x < dimblock.X; tid_x++) {

 SharedMem[tid_x] = …; // store value into shared memory

 }

 for (int tid_x = 0; tid_x < dimblock.X; tid_x++) {

 = …(SharedMem[tid_x] + SharedMem[tid_x – 1])/2.0;

 }

It should be clear that the transformed program performs the needed operations in the correct order.

2.5 Scalar Expansion

In general, the thread loop generation after synchronization partitioning is not straightforward. The following program illustrates some of the difficulties.

Example 3: scalar expansion

__global__ void function() {

 int leftIndex, rightIndex;

 SharedMem[threadIdX.x] = …; // store value into shared memory

 leftIndex = …threadId.x…;

 rightIndex = …threadId.x;

 __synchthreads();

 = …(SharedMem[leftIndex] + SharedMem[rightIndex])/2.0;

}

In this example the partition after __synchthreads() uses values in scalar variables (leftIndex and rightIndex) computed in an earlier partition. After thread loop generation, if the values are left in the original scalar variables then the computation of the second partition would incorrectly use the values computed by the last iteration of the first partition. To avoid this problem the corresponding scalars must be promoted as shown below:
void function() {

 …

 for (int tid_x = 0; tid_x < dimblock.X; tid_x++) {

 SharedMem[tid_x] = …; // store value into shared memory

 leftIndexArray[tid_x] = …threadId.x…;
 rightIndexArray[tid_x] = …threadId.x…;

 }

 for (int tid_x = 0; tid_x < dimblock.X; tid_x++) {

 = …(SharedMem[leftIndexArray[tid_x]] + SharedMem[rightIndexArray[tid_x]])/2.0;

 }

Scalar expansion has the tendency to increase the data size of the translated program and thus increase the pressure on memory hierarchies present in many core systems. Our system pays particular attention on reducing or avoiding scalar expansion while maintaining reasonable performance.
2.6 Optimized thread loop generation and other optimizations.

The compiler we propose consists of the following structure and implements various optimizations. The input to the compiler is a control flow graph (CFG), which consists of basic block nodes and edges between them. Each basic block specifies the operations performed on the target environment. The compiler is able identify the __synchthreads() primitives as special. The various phases are as follows:
1. Identify the synchronization partitions in the CFG. A synchronization partition is a region within which the ordering of operations is determined entirely by the control flow and data flow properties of the basic blocks within it. The synchthread primitive determines the ordering between partitions. The nice property of a partition is that a thread loop can be put around a partition during final code generation. The partition discovery process will also handle control flow around __synchthreads() by either a process known as if-conversion or by code region duplication. (The details of the partitioning algorithm will be in a separate submission).
2. Build a synchronization partition ordering graph (POG). This is built simply by putting an edge between 2 partitions where originally in the CFG there was a __synchthreads() primitive separating the 2.

3. Summary data flow across partitions for all auto variables. These are variables that potentially need to be scalar expanded to provide correct semantics for the original CUDA program on a multi-core.

4. The first optimization phase is to classify the operations within a partition according to how they access data. Any operation that does not depend on threadId is classified as scalar operations and need not be surrounded by a thread loop. This analysis is performed on the CFG and is a simple variation of the convergence analysis already present in the GPU compiler. In general, the CUDA program allows access to threadeId.x, threadeId.y, threadeId.z. We classify non scalar operations by which of the threadId members they depend on based on data flow. This determines which of the thread loops it is necessary to generate for a given operation. If an operation does not depend on threadId.X then it is not necessary to generate a tid_x loop for it. Note that as a result of this many optimizations fall out naturally: e.g. loop invariant code hoisting, elimination of redundant loops etc.
5. Next we reorder the instructions within a partition so as to fuse operations so that operations with the same classification are together and can share the same kind of threadId loop collectively.

6. Next we generate the corresponding thread loop for the various partitions, and expanding the references that were marked earlier.

7. At this stage we have correct code for multi-core.

8. Next stage of the compilation can focus on traditional loop optimizations, such as loop unrolling of thread loops, and vectorization for SSE instructions or leave that up to the host compiler as necessary.
4. Identify any related prior art, listing all related NVIDIA Inventions by “P” number:

P002662: C/C++ Language Extensions for General-Purpose Graphics Processing Unit.

No further prior art is known

P???????: A framework for executing GPU accelerated code on multi-core architectures.

5. Is the invention related to a technology that is in compliance to the specification of any standard(s) body (e.g., OpenGL)? If yes, identify the Standard and the Standard Body:

No

6. Identify the approximate date the invention was conceived and documented with engineering drawings or descriptions:

Dec 6, 2007

Further information available at

https://nvcompute/index.php/Device_Emulation_Benchmarking#Appendix:_Alternate_Code_Transforms
https://engwiki/index.php/Compiler_and_OCG/Compute_Compiler/Cuda_CPU
7. Identify the approximate date the invention was reduced to practice (e.g., working prototype or final product fabricated/constructed):

In progress

8. List all NVIDIA product(s) in which the invention is, or will be, incorporated:

The idea is currently not incorporated in any product. It is to be incorporated in future releases of the CUDA software stack.

9. Identify all planned public disclosures (without NDAs) or offers for sale of this invention or of any product(s) that incorporate this invention:

INVENTOR SIGNATURES
 DATE

INVENTOR SIGNATURES
 DATE

NVIDIA CONFIDENTIAL / PRIVILEGED

ATTORNEY-CLIENT COMMUNICATION

Rev. 5, 18 Aug 07

[image: image1.jpg]