[image: image1.jpg]
Invention Submission Form

I.
The assigned Docket number is___SC-08-0217-ISF
(The Docket Number will be assigned once this form is received by the NVIDIA Patent Department. All subsequent correspondence regarding this invention must have this Docket number included in the subject line).

Please return the electronic version as well as the signed hardcopy to Brenda Gray. Alternatively, you can send them to T. Rao Coca or Rich Domingo in the Patent Department.

II.
 Indicate the class that best describes the Invention ____________________

(Please look up the class from the NVDIA Patent Classification System, available on NVIDIA Legal website, and select the most appropriate class number to which the invention belongs)

8.Software –

8.6 Development Tools
III.
 Please answer the following questions:

1. Summary title of the invention (50 characters):

A method for classifying vector and scalar statements in a CUDA program.
2. List the names of all the inventors, and indicate the lead inventor:

Lead Inventor: Vinod Grover

Bastiaan Aarts
Mike Murphy

Indicate to which group the Lead Inventor or the majority of inventors report by checking below:

() MCP () GPU (X) Software () Operations () Handheld () Research () VLSI () Other

3. Describe the invention, in detail, by including the advantages of the invention over the prior art. Alternatively, attach any supplementary documentation (e.g., white papers) that describes the invention:

1. Background.
In order to compile a CUDA program for execution on a machine that does not support direct parallel execution of threads in a thread block we need to generate a thread loop or a vector loop around various program statements. This is essential for generating code that respects the original CUDA program semantics. This invention describes a method for determining, the minimal set of statements that must be considered for vector execution.

2. Detailed Description.

 In the following we also refer to the vector analysis as “variance analysis”. The variance analysis produces a map of which statements depend on which thread-id in CUDA programs. This information is used later to decide which statements need vector code generation for multi-cores.

 Say we have a simple statement S in a CUDA program. When translating it for multi-core we would, in general, have to translate it to the "vector" form:

 for(tx = 0; tx < blockDim.x; tx++)

 for (ty = 0; tx < blockDim.y; ty++)

 for (tz = 0; tz < blockDim.z; tz++)

 S

 If we knew that the statement S depends only threadidX.x then we generate the simpler form:

 for(tx = 0; tx < blockDim.x; tx++)

 S

 and if S does not depend on any threadId then we don’t need to generate any vector loop around it.

 The analysis algorithm implemented in this module is quite simple. We start off by making a worklist of all loads, in the program unit, that read from threadId. We also associate each statement node with the set of thread ids that the statement node depends on. So the first phase, at a high level, is as follows:

 work-list = empty list;

 for each statement node do {

 if statement node loads from thread i then

 state(node) += {i};

 work-list += {node};

 else

 state(node) = {};

 }

 Each statement node has a state, which is 3 bits, one for each of the different thread ids: threadId.x, threadId.y, and threadId.z.

 Once the work-list is seeded then we propagate this state information to other nodes using def use chains and control dependence until there is nothing new left to propagate! Here is what it looks like, at a high level:

 while (work-list is not empty) do {

 pick a node n from the work-list;

 work-list -= {n};

 if n is an expression in a statement s then

 if merge(state(n), state(s)) != state(s) then

 state(s) = merge(state(n), state(s));

 work-list += {s};

 endif

 endif

 if n is statement then

 for each s reached by n in the def-use chains do

 if merge(state(n), state(s)) != state(s) then

 state(s) = merge(state(n), state(s));

 work-list += {s};

 endif

 endfor

 endif

 if n is an expression in the condition of a if statement then

 for each s in the then and the else part of the if statement do

 if merge(state(n), state(s)) != state(s) then

 state(s) = merge(state(n), state(s));

 work-list += {s};

 endif

 endfor

 endif

 if n is an expression in the condition of a while loop then

 for each s in the body of the while loop do

 if merge(state(n), state(s)) != state(s) then

 state(s) = merge(state(n), state(s));

 work-list += {s};

 endif

 endfor

 endif

 if n is an expression in the condition of a do loop then

 for each s in the incr, and the body of the do loop do

 if merge(state(n), state(s)) != state(s) then

 state(s) = merge(state(n), state(s));

 work-list += {s};

 endif

 endfor

 endif

 endwhile

 This algorithm will propagate the thread dependency on to every statement nodes that needs it.

 Notes:

 A couple of interesting points to note in this algorithm:

 - A node will be visited or added to the worklist at most 3 times

 once for each of the threadId (.x, .y or .z) being tracked.

 Common CUDA programs tend to use only one threadId so this

 should not be a problem.

 - A reader might wonder why we use control dependence to propagate

 the threadId dependency. The following program, not uncommon,

 should shed some light on that.

 k = threadId.X - 1;

 i = 0;

 j = 1;

 while (i < threadId.X) {

 j = j + 1;

 S;

 i = i + 1;

 }

 in this program the variable i is a function of threadID, after

 the loop terminates. So clearly i depends on threadId, but since

 j is always 1 more than i, it also depends on threadId, and this

 is discovered by marking everything in the body of the loop as

 threadId dependent as well.
4. Identify any related prior art, listing all related NVIDIA Inventions by Docket number:

SC-08-0007-ISF : An optimizing compilation system for CUDA, for a shared memory multi-core system

5. Is the invention related to a technology that is in compliance to the specification of any standard(s) body (e.g., OpenGL)? If yes, identify the Standard and the Standard Body:

No.
6. Identify the approximate date the invention was conceived and documented with engineering drawings or descriptions:

January 2008.
7. Identify the approximate date the invention was reduced to practice (e.g., working prototype or final product fabricated/constructed):

March 3, 2008. This was the date when the implementation was first checked into the source tree.
8. List all NVIDIA product(s) in which the invention is, or will be, incorporated:

CUDA 2.0, CUDA 2.1
9. Identify all planned public disclosures (without NDAs) or offers for sale of this invention or of any product(s) that incorporate this invention:

Hot Chips Conference, August 2008

Analyst Conference, April 10, 2008

	INVENTOR SIGNATURES
	DATE

	INVENTOR SIGNATURES
	DATE

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

NVIDIA Confidential / Privileged
- 5 -
4/8/2008
Attorney-Client Communication

