[image: image1.jpg]NVIDIA.

Invention Submission Form

I.
The assigned Docket number is _SC-08-0382-ISF
(The Docket Number will be assigned once this form is received by the NVIDIA Patent Department. All subsequent correspondence regarding this invention must have this Docket number included in the subject line).

Please return the electronic version as well as the signed hardcopy to Brenda Gray. Alternatively, you can send them to T. Rao Coca or Rich Domingo in the Patent Department.

II.
 Indicate the class that best describes the Invention ____________________

(Please look up the class from the NVDIA Patent Classification System, available on NVIDIA Legal website, and select the most appropriate class number to which the invention belongs)

8.Software –

8.5 General Purpose Computing

8.6 Development Tools
III.
 Please answer the following questions:

1. Summary title of the invention (50 characters): Algorithm for dead barrier synchronization identification and removal
2. List the names of all the inventors, and indicate the lead inventor:

Lead Inventor Vinod Grover
John Stratton
Indicate to which group the Lead Inventor or the majority of inventors report by checking below:

() MCP () GPU (X) Software () Operations () Handheld () Research () VLSI () Other

3. Describe the invention, in detail, by including the advantages of the invention over the prior art. Alternatively, attach any supplementary documentation (e.g., white papers) that describes the invention:

Background:

In Single Program Multiple Data programs, such as CUDA programs, programmers use barrier synchronization constructs (for example __syncthreads()) for writing efficient parallel programs. For various reasons, a programmer may specify a program in which there are more barrier synchronization constructs then are necessary to ensure correct dataflow between synchronized threads. This provides an opportunity to automatically remove redundant synchronization statements from a program. If successful, this analysis would remove the overhead associated with the addition synchronization points and potentially provide additional opportunities for other optimizations.
This invention discloses an algorithm for identifying and removing redundant synchronization points in a SPMD program, and the specific implementation which applies this algorithm to the CUDA programming model.
Algorithm Overview:

The input to this algorithm is a high-level intermediate representation (IR) for a function or procedure and a worklist initially containing all of the synchronization statements in the function represented by the input IR. The high-level IR should reflect the Control Flow Graph (CFG) of the function, and represent barrier synchronizations as statements within the representation.

Intuitively, we know that synchronization is redundant when there is no potential data communication between threads in program since a previous synchronization. Communication may take the form of accesses to a memory space with shared visibility, or any other operations the programming model wishes to define as “communication”.

For each barrier synchronization in the worklist we define a list of statements as all statements preceding the synchronization statement within a basic block, and apply sub-algorithm 1. If it returns a value TRUE, the synchronization statement is marked as “live” and retained. If it returns a value FALSE, the synchronization statement is marked “dead”.
After all synchronizations in the worklist are processed, all synchronization statements marked as “dead” are removed.

Sub-algorithm 1: sync liveness evaluation of a list of statements

Input: A list of statements within a single basic block

Output: Boolean value signifying whether or not a synchronization would be “live” after the list of statements.
Beginning with the last statement in the list, iterate backward through the statements of the list until reaching a “communication” statement, another synchronization statement, or the beginning of the list. If a communication statement is first encountered, this algorithm returns TRUE. If another synchronization statement is first encountered, this algorithm returns FALSE. Otherwise, apply sub-algorithm 2 to each predecessor of the current basic block. If the algorithm for any predecessor returns a TRUE value, this algorithm also returns TRUE. If all predecessors return a value FALSE, this algorithm also returns a value FALSE.
Sub algorithm 2: sync liveness evaluation of a basic block

Input: a basic block in a control flow graph

Output: Boolean value signifying whether or not a synchronization would be “live” after the basic block.

If this basic block has already been marked as “traversed”, then this algorithm returns a value FALSE. Otherwise, this algorithm marks the current basic block as “traversed” and applies sub-algorithm 1 for the list of all statements making up the basic block. The current basic block is then marked as “untraversed”, and the algorithm returns the result from sub-algorithm 1.
Algorithmic extension/improvement:

The result of sub-algorithm 2 is persistent. This means that if Sub-algorithm 2 is invoked for a basic block more than once, it will always return the same value for each invocation. A performance improvement for eliminating redundant processing saves the results of sub-algorithm 2 for a given basic block, and then checks if a saved result is available as a first step, returning the saved result first if it exists. Sub-algorithm 2 modified becomes…

If this basic block has a saved return value associated with it, look up that value and return it. Otherwise, if this basic block has already been marked as “traversed”, then this algorithm returns a value FALSE. Otherwise, this algorithm marks the current basic block as “traversed” and applies sub-algorithm 1 for the list of all statements making up the basic block. The current basic block is then marked as “untraversed”, the result from sub-algorithm 1 is saved as the return value associated with this basic block, and returned as the result of this algorithm.

Specific application to the CUDA programming language:

Barrier synchronizations are specified by the __syncthreads() intrinsic, and “communication” restricted by these synchronization intrinsics can only happen through the __shared__ memory space. Therefore any statement potentially accessing data in the __shared__ memory space is defined as a communication statement.

4. Identify any related prior art, listing all related NVIDIA Inventions by Docket number:

5. Is the invention related to a technology that is in compliance to the specification of any standard(s) body (e.g., OpenGL)? If yes, identify the Standard and the Standard Body: No.
6. Identify the approximate date the invention was conceived and documented with engineering drawings or descriptions:

Middle of June, 2008
7. Identify the approximate date the invention was reduced to practice (e.g., working prototype or final product fabricated/constructed):

First implementation checked in June 23rd, 2008
8. List all NVIDIA product(s) in which the invention is, or will be, incorporated:

CUDA Toolkit Version 2.1
9. Identify all planned public disclosures (without NDAs) or offers for sale of this invention or of any product(s) that incorporate this invention:

Release of aforementioned products will include a public release of source code implementing this invention.
	INVENTOR SIGNATURES
	DATE

	INVENTOR SIGNATURES
	DATE

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

NVIDIA Confidential / Privileged
- 1 -
6/26/2008
Attorney-Client Communication

