[image: image1.jpg]NVIDIA.

Invention Submission Form

I.
The assigned Docket number is _SC-08-0216-ISF
(The Docket Number will be assigned once this form is received by the NVIDIA Patent Department. All subsequent correspondence regarding this invention must have this Docket number included in the subject line).

Please return the electronic version as well as the signed hardcopy to Brenda Gray. Alternatively, you can send them to T. Rao Coca or Rich Domingo in the Patent Department.

II.
 Indicate the class that best describes the Invention ____________________

(Please look up the class from the NVDIA Patent Classification System, available on NVIDIA Legal website, and select the most appropriate class number to which the invention belongs)
8.Software –

8.6 Development Tools
III.
 Please answer the following questions:

1. Summary title of the invention (50 characters):

A method of program partitioning for eliminating synchronization in CUDA programs.
2. List the names of all the inventors, and indicate the lead inventor:

Lead Inventor: Vinod Grover

Bastiaan Aarts
Mike Murphy

Indicate to which group the Lead Inventor or the majority of inventors report by checking below:

() MCP () GPU (x) Software () Operations () Handheld () Research () VLSI () Other

3. Describe the invention, in detail, by including the advantages of the invention over the prior art. Alternatively, attach any supplementary documentation (e.g., white papers) that describes the invention:

1. Background
CUDA is a parallel programming model that supports barrier synchronization constructs (aka __syncthreads()) for writing efficient parallel programs. These barrier synchronization constructs are not directly supported, however, on all target processors. In particular many popular CPUs such as x86 do not provide any hardware support for such constructs. Therefore to compile a CUDA program for execution on such targets we use a program transformation strategy that eliminates barrier synchronization by partitioning a CUDA program in to regions that are ordered to respect the original execution semantics.
This invention discloses an algorithm for partitioning a CUDA program into barrier free regions. Partitioning is a prerequisite for compiling a CUDA program to target processors that lack support for barrier synchronization.

2. Algorithm Overview.

The input to the algorithm is a high level intermediate representation (IR) for a function or procedure. The high level IR consists of a tree form reflecting the syntactic structure of the input program. The typical high level constructs are a sequence of statements, various control flow constructs such as switch statements, if-then-else constructs, while-loops, do-while-loops, for-loops and various base level program statements and expressions, e.g. assignments, calls, arithmetic evaluation and so on. The barrier synchronization construct is represented as a base level statement.

The algorithm operates recursively, starting at the root of the function. At this level we can view the program to consist of a sequence of statements with one or more high level or base level statements. We call this the analysis routine. When the algorithm terminates it returns a list of barrier-free partitions. The analysis routines are structured according to the various high level statements handled. Each analysis routine returns takes as input the list of partitions found so far along with the high level statement to be analyzed. It returns the list of partitions found inside the statement currently handled.
At the top level the algorithm assumes an empty list of partitions and walks each statement in the sequence while maintaining the current list of statements traversed so far. If a barrier synchronization construct is encountered than the current list of statements is collected into a partition and appended to the list of input partitions, and the list of statements is reinitialized to an empty list. If a recursive invocation of an analysis routine returns an empty list then the current statement is appended to the list of statements. If the end of a sequence of statements is reached without a collection then the analysis routine returns an empty list and discard the statement list traversed so far. If a recursive invocation of an analysis returns a non empty list of partitions then a collection of the currently traversed statements is initiated and the returned partition list is appended to the current partition list.
4. Identify any related prior art, listing all related NVIDIA Inventions by Docket number:

SC-08-0007-ISF : An optimizing compilation system for CUDA, for a shared memory multi-core system
5. Is the invention related to a technology that is in compliance to the specification of any standard(s) body (e.g., OpenGL)? If yes, identify the Standard and the Standard Body:

No.
6. Identify the approximate date the invention was conceived and documented with engineering drawings or descriptions:

December 2007.
7. Identify the approximate date the invention was reduced to practice (e.g., working prototype or final product fabricated/constructed):

February 22, 2008. The first implementation was checked in on this date
8. List all NVIDIA product(s) in which the invention is, or will be, incorporated:

CUDA 2.0
9. Identify all planned public disclosures (without NDAs) or offers for sale of this invention or of any product(s) that incorporate this invention:

Hot Chips Conference, August 2008

Analyst Conference, April 10, 2008

	INVENTOR SIGNATURES
	DATE

	INVENTOR SIGNATURES
	DATE

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

NVIDIA Confidential / Privileged
- 3 -
4/8/2008
Attorney-Client Communication

