
 

User Guide 
 

DU-01057-001_v03 
February 2004 



 

 

DA-01057-001_v03  i 
02/18/04  

Table of Contents 

Chapter 1  
About FX Composer ...........................................................................................1 

1.1. System Requirements ............................................................................................ 3 
1.2. References and Recommended Reading .................................................................. 3 

Chapter 2  
Using FX Composer ............................................................................................4 

2.1. Panels .................................................................................................................. 4 
2.2. Materials Panel ...................................................................................................... 7 
2.3. Textures Panel ...................................................................................................... 8 
2.4. Text Edit Panel ...................................................................................................... 8 
2.5. Properties Panel .................................................................................................... 9 
2.6. Scene Panel ........................................................................................................ 11 
2.7. Scene Graph Panel............................................................................................... 14 

Chapter 3  
FX Composer Scene Commands.......................................................................15 

3.1. Current Scene Commands .................................................................................... 15 
3.2. Default Commands .............................................................................................. 18 
3.3. Scene Command Examples................................................................................... 18 

3.3.1. Blur Persistence of Vision .............................................................................. 18 
3.3.2. TV Effect ..................................................................................................... 20 

Chapter 4  
Miscellaneous Hints and Tidbits… ...................................................................21 

4.1. FX Composer Project Files .................................................................................... 21 
4.2. Configuration Files ............................................................................................... 22 
4.3. Mesh Sections ..................................................................................................... 23 



 

DA-01057-001_v03  ii 
03/01/04  

Tutorial #1  
Measuring and Managing  Shader Performance with FX Composer ...............24 

Sources of Performance Information ................................................................................ 24 
Try It Yourself:  The PerfTutor.fx Shader .......................................................................... 25 

Looking at the Shader Perf Panel.................................................................................. 26 
GPU Efficiency ............................................................................................................ 27 
Shader Passes ............................................................................................................ 28 
Tweaking the Code ..................................................................................................... 28 
Frames per Second ..................................................................................................... 29 

Moving Forward ............................................................................................................. 29 
Tutorial #2  
Optimizing a Bump Mapping Shader ...............................................................30 

Shader Optimization ....................................................................................................... 30 
FX Composer Shader Performance Tools....................................................................... 32 

Optimizing Your Shader  One Step at a Time .................................................................... 32 
Index..................................................................................................................1 

 

 



 

DA-01057-001_v03  iii 
03/01/04  

List of Figures 

Figure 1-1. FX Composer Main Window ............................................................................. 2 
Figure 2-1. Application Toolbar......................................................................................... 6 
Figure 2-2. Interconnection of Panels................................................................................ 9 
Figure 2-3. Color Selection Tear-off Panel........................................................................ 10 
Figure 3-1. Applying a Material to a Scene....................................................................... 16 
Figure 3-2. Blur Persistance of Vision .............................................................................. 19 
Figure 3-3. Setviewpoint TV Effect .................................................................................. 20 

 

List of Tables 

Table 2-1. Window Panel Tool Icons ................................................................................ 5 
Table 2-2. Description of Application Toolbar Icons ........................................................... 6 
Table 3-1. Current Scene Commands ............................................................................. 17 

 

List of Examples 

Example 1. perftutor.fx .................................................................................................. 26 
 

 



 

 

DA-01057-001_v03  1 
03/01/04  

Chapter 1.  
About FX Composer 

FX Composer empowers developers to create high performance shaders in an 
integrated development environment with real-time preview and optimization 
features available only from NVIDIA. FX Composer was designed with the goal of 
making shader development and optimization easier for programmers while 
providing an intuitive user interface for artists customizing shaders in a particular 
scene 

FX Composer supports all the standard features you would expect in an integrated 
development environment for high performance shaders: 

 Sophisticated text editing with Intellisense and syntax highlighting 
 Work directly with HLSL .FX files, creating multiple techniques & passes.  Use 

the .FX files you create with FX Composer directly in your application 
 Convenient, artist-friendly graphical editing of shader properties and some 

attributes 
 Supports Microsoft DirectX 9.0 standard HLSL semantics & annotations 
 Provides a plug-in architecture supporting import of custom scene data so you 

can view your shaders on your own models with lighting, animation, etc. 

FX Composer also provides developers with visual debugging and advanced 
performance tuning features previously unavailable: 

 Visible preview of intermediate (generated) textures 
 Capture of pre-calculated functions to texture look-up table 
 Interactive compiler shows where the problems are – jump directly to problems 

in your HLSL source code 
 Simulated performance results for the entire family of NVIDIA GeForce FX 

GPUs 
 Empirical performance metrics such as GPU instruction count, 

efficiency/utilization and frames per second (FPS) 

 

 



 Getting Started with FX Composer  

    

 

 

DA-01057-001_v03  2 
03/01/04  

FX Composer consists of several panels that can be docked in the main window, as 
shown in Figure 1-1, or arranged outside of the main window to a more convenient 
place. 

 

 

Figure 1-1. FX Composer Main Window 



 Getting Started with FX Composer  

    

 

 

DA-01057-001_v03  3 
03/01/04  

1.1. System Requirements 
 NVIDIA GeForce 3 or later 

An NVIDIA GeForce FX or more recent GPU is recommended 
 Microsoft DirectX 9.0 SDK Summer 2003 Update or later 
 Windows 2000 or XP  

 

1.2. References and 
Recommended Reading 

 Microsoft DirectX web site 
http://www.microsoft.com/windows/directx/default.aspx 

 NVIDIA Developer Relations web site 
http://www.developer.nvidia.com/page/home 

 GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics  
http://developer.nvidia.com/object/gpu_gems_home.html 

 

 

 

 

 

 

 

 

 



 

 

DA-01057-001_v03  4 
03/01/04  

Chapter 2. 
Using FX Composer 

FX Composer allows the user to configure their development environment in 
several ways. The Text Editor panel is always displayed in the main window.  Each 
optional element of the UI is displayed in a separate panel that can be moved, 
hidden, resized, docked to the main window, or free floating any where on the 
desktop. FX Composer supports systems with multiple displays, allowing free 
floating panels to be used on a second monitor and can be configured to display any 
combination of the following panels:  

 Log panel 
 Error panel 
 Properties panel 
 Materials panel 
 Textures panel 
 Shader Perf panel 
 Scene panel  
 Scene Graph panel 

2.1. Panels 
To display the various panels, use the View  Panels and select the panels to be 
displayed in your work area. 

Each panel is adjustable and can be dragged 
away from its docked position to float freely 
above the main window. Double-clicking the 
title bar of a dockable panel will also dock or 
undock it.   

Several panels have buttons at the top 
associated with their major functions.  

Table 1 lists these buttons and provides a 
description of each. These buttons are only 
displayed in panels where they can be used. 

The main window of FX Composer is shown 
in Figure 1-1.  



 Using FX Composer  

    

 

 

DA-01057-001_v03  5 
03/01/04  

Table 2-1. Window Panel Tool Icons 

 

Where applicable, a toolbar is located at the top of each 
window panel. The toolbar contains only those icons that 
are relevant to the panel operation. 

Tool Icon Description 

 

Select Object:   
Selects an object in the window. 

 
Rotate Scene: 
Rotates a scene in the window. 

 

Pan Scene: 
Pans over the scene in the window. 

 
Dolly Scene: 
Resizes an object from the center. 

 

Zoom Extents: 
Zooms in on an object/scene. 

 
Apply Material: 
Applies the selected material to the currently mesh selection.  

 
Delete Material: 
Removes this material and close the corresponding .fx file. 

 

New Material: 
Creates new materials and corresponding .fx file. 

 
Object size display  
Small:  
Changes object size to a small representation. 
Medium: 
Changes object size to a medium representation (selected). 
Large: 
Changes object size to a large representation. 

 

Actual Size: 
Changes object representation to reflect its actual size. 

 

Save: 
Saves current selection  

 

Rotate Scene: 
Rotates all objects in the window in the direction you drag.  (CTRL + L-mouse) 

 
Pan Scene: 
Moves the camera up/down or left/right.  (SHIFT + L-mouse) 

 
Zoom Scene: 
Moves the camera closer or further away.  (CTRL + SHIFT + L-mouse) 

 

Categorize: 
Shows panel contents organized by category. 

 

Alphabetize: 
Shows panel contents organized alphabetically. 

 

Stop/Start Animation: 
Controls playback of scene animation.  (CTRL+G=Start, CTRL+H=Stop) 

 



 Using FX Composer  

    

 

 

DA-01057-001_v03  6 
03/01/04  

Table 2 lists the icons and their function and 2-1 shows the toolbar.  
 

 

Figure 2-1. Application Toolbar 
    

Table 2-2. Description of Application Toolbar Icons 

Tool Icon Description 

 
Open File: 
Opens the browser to find a file.   (CTRL+O) 

 
Save: 
Saves a file.   (CTRL+S) 

 
Cut: 
Deleted or cut code from the .fx file.   (Shift+Delete) 

 
Copy: 
Copies highlighted text.  (CTRL+C) 

 

Paste: 
Pastes the last copied text.  (CTRL+V) 

 
Undo: 
Undoes the last action.  (ALT+Backspace) 

 
Redo 
Redoes the last action.  (CTRL+Y) 

 
Bookmarks: 
Flags lines of code and skip quickly between them. 

  Toggle (apply/delete) Bookmark.  (CTRL+F2) 

  Go to Next Bookmark.  (F2) 

  Go to Previous Bookmark.  (Shift+F2) 

  Clear ALL Bookmarks 

 

Find:  
Finds specific words in a file.  (CTRL+F) 

 

Indent/Un-indent: 
Indents and un-indents lines of code. 

 

Compile .fx: 
Compiles the code displayed in the Text Editor panel. Note that the 
compiler stops at each instance of an error in the code and does not 
continue until the error is corrected. Click the Compile key again to 
continue compiling.  (CTRL+F7) 



 Using FX Composer  

    

 

 

DA-01057-001_v03  7 
03/01/04  

2.2. Materials Panel 
The Materials panel is a collection of 3D 
viewports displaying a real-time preview 
of each material currently loaded, applied 
to a simple shape. This allows you to 
visualize a material and see it applied in 
3D. 

To open materials, use the File  Load 
Material… and select the material to load. 
See Table 1-1 on page 5 for a description 
of the toolbar icons. 

Use the Apply button  to apply the 
selected material to an object in a scene. 
Select the desired material, select an 
object in the scene and click the Apply 
icon. You can also Right-click on a material 
to access a list of actions and select Apply 
To Selection.  

Use the Rotate button  to spin the 
materials around and see the different 
effects.  

You can also Right-click within the panel to access Materials panel display options in 
a context menu. The menu allows you to 
apply a material to the current selection in 
the Scene panel, create new materials, 
open or close existing materials, select the 
geometric primitive to which the materials 
should be applied, and set the display 
dimensions and rendermode.  

Note that the Materials panel renders all 
the previews it displays in real-time, and 
therefore incurs a performance cost.  You 
can reduce the performance impact by 
closing the Materials panel. 



 Using FX Composer  

    

 

 

DA-01057-001_v03  8 
03/01/04  

2.3. Textures Panel 
The Textures panel displays the current textures 
for the selected material as well as any 
procedurally-generated textures and render 
targets. The Texture panel also enables 
visualization of cubemaps and normal maps, 
since it's really just the same window as the 
materials panel, and it is displaying the textures 
in an FX file.   

The icons in the toolbar are described in Table 
1-1 on page 5. You can also Right-click 
anywhere in the Texture panel to access a 
context menu with options to set the display 
dimensions and save the currently selected 
texture.  

 

2.4. Text Edit Panel 
The Text Edit panel contains the FX file code and is enabled with syntax 
highlighting (keywords in colors). It acts like the editor in Microsoft Visual Studio. 
All Material files opened are listed as tabs across the top of the panel to allow you to 
switch between files easily. Use the scrollbars and bookmarks  to move 
through the file. 

 
The Text Editor panel uses syntax highlighting to automatically color HLSL 
keywords and comments.  It also provides convenient 
intellisense completion, allowing you to select from a list 
of supported keywords appropriate in the current context.  
For example, you can type fillmode= and select from a list 
of options that are displayed. 



 Using FX Composer  

    

 

 

DA-01057-001_v03  9 
03/01/04  

Every time you open a project or a material, a tab is placed along the top of the Text 
Editor panel. Clicking on the tab displays the source code in the Text Editor panel 
and the objects properties in the Properties panel. To close a project or material, 
click on the tab and then click the X box (Close) located at the far right. 

 

2.5. Properties Panel 
The Properties panel is used to view and change object properties.  It is primarily 
used for material properties; however it can be used to view/change shapes, 
textures, and other items in the scene graph such as light. Table 1-1 on page 5 lists 
the functions of the toolbar icons. 

The options displayed in the Properties panel are created by parsing through the 
current FX file and evaluating the HLSL semantics and annotations used to describe 
each variable. For example, a specular exponent might be declared as shown in 
Figure 2-2, defining how the variable should be displayed in the Properties panel. 
 

  

 

  

 

 

Figure 2-2. Interconnection of Panels 

Important:  Changing the values in the Parameter box or the 
properties panel does not change the default values specified in the 
source code. It does change the current values being used to render 
the scene.  

If you click on the content of Light Direction 1, 
the following pop-up window displays allowing 
you to change the values without having to scroll 
through the code.  



 Using FX Composer  

    

 

 

DA-01057-001_v03  10 
03/01/04  

Vectors and matrices also get special treatment in the Properties panel.  When 
defined with the proper semantics and annotations as shown in Figure 2-2, a matrix 
editor tear-off panel provides users with a convenient way to experiment with 
different values. Note that clicking on the scene graph icon next to Light Direction 1 
causes FX Composer to display the assembly language calculations performed for 
this light in a pop-up window.  

 

FX Composer supports special color selection tear-off panels for editing color 
information (Figure 2-3).  Semantics and annotations can be used to tell FX 
Composer that a variable is used to store color information and provide a 
descriptive name for the Properties panel.  

 

 
 

 

 

 
 

 

Figure 2-3. Color Selection Tear-off Panel 
 

Click on the attribute to change the color. 
Click Other to display the Standard and 
Custom color palettes. 



 Using FX Composer  

    

 

 

DA-01057-001_v03  11 
03/01/04  

2.6. Scene Panel 
The Scene panel displays the current scene and has the usual controls for 
manipulating scenes. FX Composer includes GeoPipe plug-ins that support 
importing scenes stored in .nvb and .x files, both of which can contain skinning 
information.  Use the File  Import Scene… command to load a scene.  

Select an object in the scene and apply a different material to it to change its 
appearance. Note that the light source remains the same; only the material of the 
surface changes.   

 

                   

                           

Select a material 
and click Apply. 
The material is 
applied to the 
selected object in 
the Scene panel. 



 Using FX Composer  

    

 

 

DA-01057-001_v03  12 
03/01/04  

Use the tool icons in the Scene panel to manipulate objects and scenes.  

 
Zoom Extents 
Dolly Scene 
Pan Scene 
Rotate Scene 
Scale Object 
Move Object 
Rotate Object 
Select Object 

Use the animation controls in the toolbar   to run the frames and see the 
animation associated with your scene. Note that the frame displayed is shown in the 
upper left corner of the window.    

  
Rotated Scene    

     

To move frame-by-
frame, use Animation 
in the application 
toolbar or F10 fpr 
Next frame and F9 
for Previous Frame.



 Using FX Composer  

    

 

 

DA-01057-001_v03  13 
03/01/04  

Dolly Scene Pan Scene 

      

Move an Object Scale an Object 

         
 

Note that turning on Tools  Options  Draw will always cause FPS to be 
displayed in the upper left. 



 Using FX Composer  

    

 

 

DA-01057-001_v03  14 
03/01/04  

2.7. Scene Graph Panel 
The Scene Graph panel is used to browse through 
the current scene transform hierarchy and select 
objects. You can use it to select items that wouldn't 
easily be available in the UI, such as individual 
bone transforms, etc. It is also useful to see how a 
scene is built.   

To use this window, you can, for example, select 
GeoPipe : Spot01 and then Right-Click to display the 
GeoPipe properties in the Properties panel (if not 
already displayed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

DA-01057-001_v03  15 
03/01/04  

Chapter 3. 
FX Composer Scene Commands 

Scene commands are a way to extend the behavior of FX Composer to cover 
interactions between objects, and events that happen before/during/after the scene 
is rendered. A simple example might be clearing the background to a color before 
drawing the scene. A more complex example might render the screen to a render 
target texture, and then run an edge detection algorithm on it before displaying the 
final result.  

3.1. Current Scene Commands 
Scene commands are a new 
feature, designed to enable control 
over the whole scene, and not just 
the current effect. With scene 
commands it’s possible to control 
selection of render targets, and 
apply full screen effects. 

To create a scene command 
material, declare a regular .fx file 
and add the XML commands to 
the file, either in a comment field 
or in an #if 0 field (so that the 
parser doesn't complain when it 
sees them). Following is an 
example for the simple case of 
filling the backbuffer with a texture 
image before rendering the scene: 
/* 
<scene_commands> 
<clear color=".23,.23,.23" depth="1.0"/> 
<settechnique name="TextureClear"/> 
<draw type="buffer"/> 
<draw type="objects"/> 
</scene_commands> 
*/ 
.... rest of .fx file.... 



 FX Composer Scene Commands  

    

 

 

DA-01057-001_v03  16 
03/01/04  

To enable a scene command material, right-click the material in the 
 panel and select Apply to scene. The blue outline  
shows that it is the active scene command (you can only have one per scene). 
Another right-click menu lets you look at the commands in a dialog (Show scene command): 

 

Figure 3-1 shows how the material looks in the Materials panel and on the scene: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. Applying a Material to a Scene    
 

Notice that the material has a blue square at the 
top left, indicating that it is a scene command 
material.  The scene shows the toothadil model, 
being rendered following the scene commands 
above.   



 FX Composer Scene Commands  

    

 

 

DA-01057-001_v03  17 
03/01/04  

Note that scene commands are only applied with the parameters specified. For 
example, if you do not supply a stencil value, then the clear command will not clear 
the stencil buffer.. 

Scene command XML is delimited by: 
<scene_commands> 
... commands... 
</scene_commands> 
 

Any XML between these two elements is treated as a scene command.  Table 3-1 
lists the current scene commands. 

Table 3-1. Current Scene Commands 

Command Description 

clear <clear rect="x1,y1,x2,y2" color="r,g,b,a" depth = "fdepth" 
stencil = "iStencil"/> 

The clear command causes the current rendertarget to be cleared.  You can specify the depth, color, stencil 
and the rectangle to clear. By default none of the above are cleared.  

draw <draw type="buffer,objects,objects_override"/> 

The draw command is used to start a drawing operation.  The types of draw available are: 
• buffer - a draw of a full-screen quad using the currently set technique/pass. 
• objects - a draw of all objects in the scene, using their assigned materials 
• objects_override - a draw of all objects in the scene, with the currently set technique/pass applied.  

The draw command is used to draw either the scene or a screen sized quad on the viewport.  The .fx 
technique/pass is determined by the currently set pass/technique in the "objects_override" and "buffer" 
cases, but not in the "objects" case, which renders the scene as normal into the current rendertarget.  

settechnique <settechnique name=”mytechnique”/> 

Applies the named technique to the scene.  This will stay current until the next technique change, and 
will apply to certain types of draw call (see above).  

setcolortarget <setcolortarget texture="mytexture"/> 

The setcolortarget# permanently changes the rendertarget that is being drawn to.  If the 
texture parameter is an empty string, then the rendertarget is reset to the main backbuffer for the 
scene as allocated when the window was created.  If the parameter contains a string, then the current .fx 
file is searched for that texture name, and if the texture was allocated as a rendertarget it will be set 
as the new target.  All future scene commands will then refer to this rendertarget.  Note that 
rendertarget can also contain an index for setting up Multiple Rendering Targets (MRT).  
To support rendertarget texture parameters, additional annotations are available to declare the 
texture.  The following example shows a typical usage of these annotations:  
texture mytexture : RENDERCOLORTARGET 
<  
float2 ViewportDimensions = { 1.0, 1.0 }; // Make same size as viewport 
int width = 256; // Alternative to above ViewportDimensions value. 
int height = 256; 
int miplevels = 1; 
string format = "X8R8G8B8"; 
>; 

Note that the ViewportDimensions member which scales the target to a proportion of the viewport. 



 FX Composer Scene Commands  

    

 

 

DA-01057-001_v03  18 
03/01/04  

Command Description 

setdepthstenciltarget <setdepthstenciltarget texture="mytexture"/> 

The setdepthstenciltarget permanently changes the depth buffer that is being drawn to.  If the 
texture parameter is an empty string, then the depth is reset to the main z buffer for the scene as 
allocated when the window was created.  If the parameter contains a string, then the current .fx file is 
searched for that texture name, and if the texture was allocated as a renderdepthstencil target it will be set 
as the new target.  All future scene commands will then refer to this z buffer.  
To support z buffer texture parameters, additional annotations are available to declare the texture.  The 
following example shows a typical usage of these annotations: 
texture mytexture : RENDERDEPTHSTENCILTARGET 
<  
float2 ViewportDimensions = { 1.0, 1.0 }; // Make same size as viewport 
int width = 256; // Alternative to above ViewportDimensions value. 
int height = 256; 
string format = "D24S8"; 
>; 
Note that the ViewportDimensions member which scales the target to a proportion of the viewport 

 

3.2. Default Commands 
FX Composer actually uses a scene command .fx for the default rendering window. 
This can be found in data\defaultscene.fx, underneath the main FX Composer .exe. 
The effect simply clears the backbuffer to a dark grey, and the z buffer to 1, then 
draws all the objects in the scene. Because this .fx can be changed, it is possible to 
permanently change FX composer's rendering loop at startup. However, it should 
be changed with care! 

3.3. Scene Command Examples 

3.3.1. Blur Persistence of Vision 
<scene_commands> 
<setcolortarget texture="SceneMap"/> 
<setdepthstenciltarget texture="DepthMap"/> 
<clear color="0,0,0" depth="1.0"/> 
<draw type="objects"/> 
<setcolortarget texture="HBlurMap"/> 
<settechnique name="GlowH"/> 
<draw type="buffer"/> 
<setcolortarget texture="FinalBlurMap"/> 
<settechnique name="GlowV"/> 
<draw type="buffer"/> 
<setcolortarget texture="CompositeMap"/> 
<settechnique name="FinalComp"/> 



 FX Composer Scene Commands  

    

 

 

DA-01057-001_v03  19 
03/01/04  

<draw type="buffer"/> 
<setcolortarget texture="BlendMap"/> 
<settechnique name="Plop"/> 
<draw type="buffer"/> 
<setcolortarget/> 
<settechnique name="Last"/> 
<draw type="buffer"/> 
</scene_commands> 

See Figure 3-2 for the representation of blur persistence of vision. 

 

Figure 3-2. Blur Persistance of Vision 
 



 FX Composer Scene Commands  

    

 

 

DA-01057-001_v03  20 
03/01/04  

3.3.2. TV Effect 
<scene_commands> 
<setcolortarget texture="BaseMap1"/> 
<setdepthstenciltarget texture="DepthMap"/> 
<clear color="0,0,0" depth="1.0"/> 
<draw type="objects"/> 
<setcolortarget/> 
<settechnique name="TV"/> 
<draw type="buffer"/> 
</scene_commands> 
 

 

Figure 3-3. Setviewpoint TV Effect 
 

 

 

 



 

 

DA-01057-001_v03  21 
03/01/04  

Chapter 4. 
Miscellaneous Hints and Tidbits… 

4.1. FX Composer Project Files 
The .fxcomposer project files are actually .zip archives that contain the following 
components: 

 An XML scene/material description (SceneGraph.xml) 
 A binary component for mesh/animation data (Binary.bin) 
 .fx files and textures. 

The project file tries to be the best of both worlds: an easy to parse, human-readable 
XML file format, with a binary chunk for data that doesn't store well as text (the 
XML refers to this data via an offset). 

As far as the XML content is concerned: 

 The first line or so contains the file version and the build version of FX 
Composer that created it 

 Then come the project-specific search paths 
 Then the scene graph, with materials, hierarchy, parameter data, etc. 
 Then a list of FX Composer objects/plugins required to successfully display this 
project. 

 Last in the file come the original paths of the media objects in the .fxcomposer 
compressed zip, so FX Composer knows where they were originally stored. 

In the future, you will have the option to add the media to the project or not, as well 
as other project management options, but for now all the media is included in the 
package by default. This means that you can ship a finished scene to anyone by just 
sending the .fxcomposer project, and because it's compressed you get quite a saving 
over regular mesh files. 

You can open and explore .fxcomposer projects simply by renaming to .zip. 

Note: While we may add features to the file format, FX Composer will always 
load previous versions. 



 Miscellaneous Hints and Tidbits  

    

 

 

DA-01057-001_v03  22 
03/01/04  

Full paths to all media and .fx files are always stored in the .fxcomposer project file. 
When you open a project, the current behavior is that FX Composer will look for 
your original drive copies, and if they aren't found, it will load the archived version 
into a 'MediaCache' directory underneath the main binary. Note that part of the 
search algorithm involves striping the file path and searching the FX Composer 
global and project-specific directories, set using the File Settings… dialog. 

4.2. Configuration Files 
The FX Composer/data directory has a few useful configuration files that can be 
changed. All files are XML, and should be backed up before you tweak! 

 fxcomposer_config.xml 
Contains the list of standard materials offered when you click the 'new material' 
button. You can add your own standard materials along with text descriptions 
here, useful to give your artists a game-specific list of effects to use. 

 fxedit.xml  
Contains rules for syntax highlighting.  You can change the keywords that get 
highlighted and the colors used to highlight them. 

 fxmapping.xml 
Lists the standard set of semantics and annotations supported by FX 
Composer. The <semantic name="foo"> field represents FX Composer's 
standard internal names for these values. Optional <mapping name="foo"> 
fields enable you to remap your semantic/annotation names to those used by 
FX Composer. 

 defaultscene.fx 
This is FX Composer's default scene command list. It is a very simple 
instruction list which simply clears the background to grey and draws all the 
elements in the scene. You can change the contents of this file and recompile it, 
just like other scene command materials; the advantage being that you will 
permanently change the default rendering method of FX Composer. Use with 
care! 

 plugins.inf 
Lists the plugins FX Composer should load, including ShaderPerf and geometry 
import plugins for .NVB and .x files.  A future FX Composer SDK will allow 
developers to create their own plugins. 



 Miscellaneous Hints and Tidbits  

    

 

 

DA-01057-001_v03  23 
03/01/04  

4.3. Mesh Sections 
Both .nvb and .x have mesh sections.  But .x has the concept of polygon attributes 
which mean that within a mesh section you can have different material properties.  
.Eeach mesh section in a .nvb file has its own material.   

It's up to the FX Composer importer as to how it gets this data in.  Internally FX 
Composer has mesh sections, and per-polygon materials.  But the UI currently only 
exposes the mesh sections in the scene window (you can also modify all materials in 
the Materials panel). 

An FX Composer material refers to a .fx file, and a list of parameters for that .fx 
file.  More than one material can refer to the same .fx file with different parameters 
for each material. 

In the future, FX Composer will get better at manipulating these things. 

 



 

 

DA-01057-001_v03  24 
03/01/04  

Tutorial #1 
Measuring and Managing  

Shader Performance with FX Composer 

FX Composer does more than provide you with a way to view, edit, and test shaders on 
models and scenes. By using FX Composer’s performance tools and Shader Perf Panel 
display, you can assess and modify the efficiency and performance of your shaders—not just 
in general terms, but even for running on various different specific GPUs. 

In this brief tutorial, we’ll look at a sample shader file and make some changes to see how 
they affect the performance of that shader.  You will find the accompanying sample code in 
\MEDIA\fxcomposer\tutorials\perf_tutor.fxcomposer project. 

Sources of Performance Information 
FX Composer provides performance information through two major sources: the Shader 
Perf panel and the Scene panel. These panels are visible by default – the Scene panel 
displays your model with the currently-assigned shader(s), and the Shader Perf panel will be 
hidden under the Properties panel 
(tap the Shader Perf tab to reveal it). 
Both panels are dockable anywhere 
on screen or can be their own free-
floating windows. If you don’t see 
these panels, you can enable them 
from View Panels ShaderPerf 
panel to see them. 

The Shader Perf panel contains a 
large text area showing you the 
compiled DirectX 9.0 assembly-
language instructions that are 
executed for your HLSL shader. 
The pulldown menus at the top of 
the Shader Perf panel allow you to select each part of the selected HLSL FX shader – the 
technique, pass within that technique, vertex or pixel shaders, and (for pixel shaders) specific 
profiling based upon the GPU used (DirectX 9 is smart enough when compiling to consider 
this aspect at runtime). This last pulldown allows you to evaluate shader performance against 
a wide range of GPUs, from low-end consumer to the high-end workstation, to assess their 
specific problems and find their “sweet spots.”  



 Measuring and Managing Shader Performance with FX Composer 

    

 

 

DA-01057-001_v03  25 
03/01/04  

Performance analysis is presented in the main body of the Shader Perf panel, first with an 
instruction count before the shader begins, and then (for pixel shaders) with a report of its 
scheduling efficiency at the bottom of the listing. 

The Scene panel can give you further assessment of the efficiency of your shader, by 
displaying a frames-per-second number for the render. This number will be visible for 
supported GPUs (that is, those with scheduling info available) when Tools Options Draw 
Always is turned on. 

Try It Yourself:  
The PerfTutor.fx Shader 

To try the Performance Tools yourself, use a shader called PerfTutor.fx. The PerfTutor.fx is a 
very generic shader using per-pixel lighting, two different kinds of lamps, and a variety of 
options (set by #define flags) that permit you to try different methods to get the same or 
nearly-the-same results and see the effects on final image and scene performance. 

Use the following steps to create the scene in the example shown in Example 1: 

1. Start FX Composer. 

2. Make sure that the Scene panel is visible and the Shader Perf panel is available. 

3. From the File menu, select File Load Project. 

4. Open MEDIA/fxcomoser/tutorials/perftutor.fxcomposer. 

5. Right-click on the Scene panel and select New Scene From Shape Teapot.  

6. Select the teapot geometry in the Scene panel. 

7. Select the Perf Tutor material in the Materials panel. 

8. Right-click on the material and select Apply to Selection to assign the PerfTutor 
material to the teapot. Your display should look something like the shown in  
Example 1. 



 Measuring and Managing Shader Performance with FX Composer 

    

 

 

DA-01057-001_v03  26 
03/01/04  

 

Example 1. perftutor.fx 
The PerfTutor.fx file contains a number of compile-time #define flags that let you change 
the way the code functions with a minimum of typing. These flags can turn on and off 
specific features of the shader, or control the way shading is calculated. The flags are right at 
the head of the shader code: 
// Compile-time flags 
// feature flags 
//#define DO_COLORTEX 
//#define DO_BUMP 
//#define DO_GLOSSMAP 
//#define DO_QUADRATIC 
//#define DO_REFLECTION 
 
// performance flags 
//#define USE_NORMALIZATION_CUBEMAP 

By default, these flags are all commented-out. We’ll change them later to see their effects on 
final shader performance. 

Looking at the Shader Perf Panel 
Playing with the pulldowns Shader Perf  panel, you can select any of the available 
techniques within PerfTutor.fx (OnePass, MultiPass, AmbiOnly, DirOnly, PtOnly).  



 Measuring and Managing Shader Performance with FX Composer 

    

 

 

DA-01057-001_v03  27 
03/01/04  

Select AmbiOnly, the pass p0 (the only pass in this particular technique), Pixel Shader, and 
NV30.  

The display of the shader panel fills with NV30-specific information about this particular (a 
deliberately very short) pixel shader: 
Pixel Shader: 255.255 #Instructions: 7 
def c2, 1.000000, 0.000000, 0.000000, 0.000000 
mov r0.rgb, c1 
mul r0.rgb, r0, c0 
mov r0.a, c2.r 
mov oC0, r0 
end 
Scheduling: 
This shader has a general efficiency rating of 100% 
Passes: 3 Effective Passes: 0.00 
--- # of R register: 2 --- 

GPU Efficiency 
Switching the hardware profile to NV36 changes the lines at the bottom slightly: 
Scheduling: 
This shader has a general efficiency rating of 33% 
There are opportunities to change a MOV instruction (executed on 
the SHD) to a MUL by 1 instruction for execution on CMB/FPB 
Passes: 3 Effective Passes: 0.00 
--- # of R register: 2 --- 

What does this mean? Will the shader run slower on the (usually) faster NV36 GPU? 

Fortunately not – what it does mean is that this shader could be tweaked to run even faster 
on NV36 by adjusting the code to use the NV36’s greater floating point resources. For such 
a small pixel shader, the code would need careful tweaking. For a larger shader, the compiler 
is clever enough to adjust things on the fly for maximum performance. Efficiency numbers 
rate the shader against what the maximum possible throughput of the specific GPU might 
be (a shader perfectly-fitted to the NV36 could potentially run three times faster than this 
one). 



 Measuring and Managing Shader Performance with FX Composer 

    

 

 

DA-01057-001_v03  28 
03/01/04  

Shader Passes 
Let’s switch to a more complex example. Select “OnePass” and the Pixel Shader. The 
compiled code for NV30 is now much longer – 48 instructions. At the bottom, we’ll see: 
Scheduling: 
This shader has a general efficiency rating of 100% 
Passes: 68 Effective Passes: 0.00 
--- # of R register: 4 --- 
Switching profiles to the NV36: 
Scheduling: 
This shader has a general efficiency rating of 49% 
There are opportunities to change a MOV instruction (executed on 
the SHD) to a MUL by 1 instruction for execution on CMB/FPB 
Passes: 40 Effective Passes: 0.00 
--- # of R register: 4 --- 

While the efficiency rating of resource usage on the NV36 has dropped, look at the number 
of passes. On NV30, this shader would require 68 cycles through the shader core to execute 
– but on NV36, with its improved floating-point performance, only 40 passes are needed. 
This equates to an automatic improvement of around 30% (even at the same clock speed), 
over the older NV30 architecture.  

Tweaking the Code 
In this example, we are going to set a compile-time flag and see the results on shader 
performance. 

In the Editing Panel, un-comment the definition of  
    //#define USE_NORMALIZATION_CUBEMAP  
by removing the leading // marks so the line appears as: 
#define USE_NORMALIZATION_CUBEMAP 

You are able to see the color shift immediately from green to blue and black, showing that 
FX Composer recognizes these instructions. 

Now press Ctrl-S or select File Save to save these changes and press the Build button to 
recompile the shader (or select Build Compile or press Ctrl-F7). The panel information is 
updated.  You can see a new texture in the Textures panel (if displayed), showing a 
normalization cube map. When this option is enabled, the cube map is generated by 
PerfTutor.fx, using the DirectX 9.0 virtual machine (the specific functions are defined in the 
header file normalization.fxh). PerfTutor.fx is written to replace all calls to normalize() in 
the pixel shaders with texCUBE() calls when this texture is present. 

What effect does this have on our shader performance numbers? We can check in the Shader 
Perf  Panel. 

The newly-compiled shader actually has more assembly-language instructions—59 
instructions, versus the previous 48—but checking the efficiency and pass counts tell us that 
instruction counts can be deceptive. 



 Measuring and Managing Shader Performance with FX Composer 

    

 

 

DA-01057-001_v03  29 
03/01/04  

For NV30, still at 100% efficient use of the GPU, the number of shader passes, the count of 
clock cycles needed to execute this shader, has declined from 68 to 60, a 13% improvement. 
So, even though the shader itself is longer, the execution of the shader on NV30 is faster. 

The story for NV36 is even stronger. The GPU efficiency rises slightly, and the number of 
passes drops from 40 to 30—a 33% speed increase for this high-end GPU. 

Frames per Second 
For GPUs that the performance analyzer recognizes an FPS counter can be displayed in the 
Render panel. To see the counter, turn on the Tools Options Draw Always option, and then 
either wiggle the model in the render window using the transform tools (e.g., Rotate Scene 

) or press the green Run Animation  button (you can use Ctrl-G/Ctrl-H to toggle 
animation on/off). 

A few things to remember when using this frame counter: 

 The frame counter is showing you the speed of FX Composer in this window on this 
model. It is not showing you the frame rate of your model in your game engine. The 
frame counter is there as a means for you to evaluate relative performance between 
shader methods within FX Composer on your computer with your GPU—not as an 
absolute counter of efficiency and speed. Use the Shader Perf panel numbers to create 
those estimates and calibrate them against your game engine’s own characteristics. 

 The technique used in the Scene panel is the one specified in the Properties panel for this 
shader—not the technique specified in the Shader Perf panel.  

 While the Shader Perf panel can evaluate many different GPUs, the Scene panel shows 
you the value for just one—the GPU installed in your system. 

 When Draw Always is engaged, FX Composer is using the CPU to the maximum. When 
Draw Always is turned off, FX Composer only draws the scene when something changes. 
If you’re multitasking (running Microsoft’s Visual Studio or a game engine 
simultaneously with FX Composer) you may see resource fighting. Turn off Draw Always 
to get best performance from external applications. 

Moving Forward 
Now you can experiment with setting other PerfTutor options, checking the characteristics 
of other GPUs, editing the code, and more importantly, applying these same lessons to your 
own .fx shaders. Have fun! 

 

 

 



 

 

DA-01057-001_v03  30 
03/01/04  

Tutorial #2. 
Optimizing a Bump Mapping Shader 

Building on what you learned in Tutorial #1, this tutorial provides some additional 
techniques you can use in performance tuning your shaders, using a simple tangent-space 
bump mapping example. You can find the accompanying sample code in the following 
location: 
\MEDIA\fxcomposer\perf_bumpplastic.fxcomposer project. 

Shader Optimization 
Optimizing pixel shaders for modern graphics processors is a non-trivial task. In previous 
generations of hardware there was usually a one-to-one correspondence between pixel 
shader assembly code and the instructions that got executed by the hardware. One could 
often assume that each instruction would take a single clock cycle to execute. As GPUs 
have become more complex, and more like CPUs in many ways, the gap between the 
assembly language abstraction and the hardware has become larger. Modern GPUs include 
multiple pixel pipelines, each of which may include multiple math units and texture units. 
This means that the GPU can potentially execute multiple math and texture instructions in 
a single cycle. The ordering of instructions can affect the extent to which these execution 
units are used optionally. 

Performance is also affected by register usage. The GPU processes groups of pixels in 
parallel, but only has a finite amount of register storage. Therefore using more registers 
means that fewer pixels can be processed at a time, and performance is reduced. NVIDIA 
GPUs support 16-bit “half” precision floating point numbers, which can help to improve 
performance by reducing register storage requirements. Data dependencies between 
instructions can also affect performance. In addition, these performance characteristics 
can vary widely between different GPUs. Using high level shading languages such as 
HLSL adds another layer of abstraction which can further obscure performance issues. 

Fortunately, technology has come to the rescue. NVIDIA’s Unified Compiler, which is 
built into the graphics driver, takes high-level pixel and vertex shader assembly code and 
generates optimized micro-code for the target GPU. The Shader Perf panel in FX 
Composer simulates the Unified Compiler to allow you to analyze the performance of 
your shaders and report how they will execute on different GPUs. 



 Optimizing Tangent-space Bump Mapping Shader 

    

 

 

DA-01057-001_v03  31 
03/01/04  

Despite the automated optimization in the Unified Compiler, there are still a few simple 
rules that you can follow to ensure that your shaders run as fast as possible on all 
hardware. 

 Optimize your algorithms 
Premature optimization is the root of all evil. Before attempting any of the lower-level 
optimizations described below, take a high-level look at the shader and see if there is 
some way you could rearrange the code so that it that requires less work. 

 Perform calculations only as often as necessary 
Some calculations can be moved from the pixel shader to the vertex shader, and the 
results passed to the pixel shader as texture coordinates. A common example is 
calculating a view vector. This varies linearly, so can be calculated per-vertex and 
interpolated. Texture coordinate interpolation is not always free, but this is almost 
always a performance win overall. In a similar way, sometimes calculations can be 
moved off the hardware completely. For example, multiplying a light color by a 
material color can be done on the CPU. 

 Replace complex math functions with texture look-ups 
Complex expressions such as lighting functions can be encoded into textures, and then 
accessed using a single texture lookup. This sacrifices some interactivity (the parameters 
can not be changed without rebuilding the texture), but is almost always faster on 
current hardware. The FX runtime includes a virtual machine that allows you to write 
functions in HLSL that can be used to generate textures very easily. 

 Use half precision where possible 
Half precision is almost always sufficient for representing colors and unit-length 
vectors, and requires half the register storage. Vectors representing distances in world 
coordinates will usually need to use full float precision. Remember that there are an 
infinite number of real numbers, but half precision floats can only represent 65536 of 
them! 

 Use lower pixel shader versions if possible 
GeForce FX series GPUs include support for the fixed-point type and instructions 
used in Direct3D Pixel Shader v1.4 and below. If your shader can be expressed in a 
lower version pixel shader, it may run faster than the equivalent operations in pixel 
shader v2.0 and FX Composer supports all of these shader profiles 

 



 Optimizing Tangent-space Bump Mapping Shader 

    

 

 

DA-01057-001_v03  32 
03/01/04  

FX Composer Shader Performance Tools 
The Shader Perf panel in FX Composer makes it easy to see how much modifying your 
shader effects performance. It is based on an architectural simulator of the GeForce FX 
shader hardware, and can simulate hardware from the GeForce FX 5200 to the FX 5950. 
It displays four important statistics: 

 PS Instructions 
The number of Direct3D pixel shader instructions used 

 Cycles 
The number of clocks cycles the optimized shader will take to execute on the selected 
hardware. Note that this is often lower than the number of instructions, since multiple 
instructions can be executed per clock cycle. 

 # R registers  
This is how many full-precision “R” registers the optimized shader uses. This is 
affected by how many temporary variables your shader uses, and can have a big effect 
on performance.  Note that two half-precision registers can fit in a single R register, so 
if you are using half-precision, double this number to get the actual number of 
registers used. 

 GPU utilization  
This is a measure of how well the shader utilizes the GPU’s math and texture 
functional units. Sometimes rearranging your code or switching to half precision will 
allow the optimizer to make better use of these units. 

Optimizing Your Shader  
One Step at a Time 

Once you have loaded the perf_bumpplastic.fxcomposer project, click on the 
BumpPlasticPerf.fx material to make it the active material and look in the Properties panel.  
Each step in optimizing the shader is implemented as a separate “technique”. You can 
switch between the techniques by selecting them from the Techniques pull-down menu in 
the properties panel.  By clicking on the Shader Perf panel and selecting Pixel shader 
from the pull down menu, you can compare the performance of the different optimization 
steps. 

The shader implements simple tangent space bump mapping with a color map, using the 
Blinn/Phong lighting model. 

If you read through the BumpPlasticPerf.fx file you will see the section of HLSL code that 
corresponds to each technique. The vertex shader is the same for each technique; we only 
modify the pixel shader. 

Step 1.  The initial version of the shader BumpPlasticPS_0 uses math for the 
lighting calculation. It calls a function Phong to calculate the Blinn/Phong 
lighting model given the dot products between the normal vector, light 
vector and half angle vector. It uses float precision for everything. 

Step 2.  In this version of the shader, we remove the code to normalize the normal 
vector “N”. Since the normal is being read from a normal map, we can 



 Optimizing Tangent-space Bump Mapping Shader 

    

 

 

DA-01057-001_v03  33 
03/01/04  

assume that it will be almost unit length, apart from de-normalization 
caused by linear texture filtering. If you switch between step 1 and step 2 
you might be able to notice a slight change in the appearance of the 
specular highlights. Note that although this only reduces the number of 
instructions by one (the NRM instruction), it reduces the number of cycles 
by 2 because the NRM macro is expanded to several instructions (DP3, RSQ, 
MUL). 

Step 3.  In this step we replace the lighting math with a texture lookup. We use the 
same Phong to build a texture that encodes the lighting function. In the 
shader we can then replace the function call with a 2D texture lookup based 
on N.L and N.H. 

Step 4.  This is identical to step 2, but we have changed all the variables to half 
precision.  This reduces the number of R registers required to 2. 

Step 5.  In the final step we convert the shader to pixel shader version 1.1. 
Obviously this will not be possible with all shaders, but for this example it 
illustrates the performance benefits.. 

The table below shows the relative performance of each optimization step. Frames 
per second numbers were measured on a NV35 with a full screen window. 

 

Step FPS Instrs. Cycles #R regs Comment 
0 75 23 14 4 Original shader 

1 85 22 12 4 Remove normalize (N) 

2 103 21  9 4 Replace math with texture lookup 

3 143 21  5 2 Change floats to half precision 

4 148 10  4 2 Convert to PS1.1 

 
Working through all four optimization steps in this sample shader yields a 2x performance 
improvement (measured by FPS). The largest benefits come from replacing math with 
texture lookups and using half precision. By following these same simple rules and making 
use of the performance tools in FX Composer, you can ensure that your shaders will run 
as fast possible and provide the best end user experience on all hardware. 

 

 



 

NVIDIA Corporation 
2701 San Tomas Expressway 

Santa Clara, CA 95050 
www.nvidia.com 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, 
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) 
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, 
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS 
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A 
PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation 
assumes no responsibility for the consequences of use of such information or for any 
infringement of patents or other rights of third parties that may result from its use. No license is 
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. 
Specifications mentioned in this publication are subject to change without notice. This 
publication supersedes and replaces all information previously supplied. NVIDIA Corporation 
products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

 

Trademarks 

NVIDIA and the NVIDIA logo are registered trademarks of NVIDIA Corporation.  
Other company and product names may be trademarks of the respective companies with which 
they are associated.  

 

Copyright 

© 2004 NVIDIA Corporation. All rights reserved 


