
PART V

PERFORMANCE AND
PRACTICALITIES

gems_ch28.qxp 2/26/2004 12:49 AM Page 469

gems_ch28.qxp 2/26/2004 12:49 AM Page 470

As GPUs become more complex, incorporating the GPU efficiently into your ap-
plication can become challenging. This part of the book offers several perspec-
tives on shader management and integration, as well as an overview of the
graphics performance characteristics that shape integration decisions.

In Chapter 28, “Graphics Pipeline Performance,” Cem Cebenoyan gives an
overview of the modern graphics pipeline, including the programmable
pipelines that give rise to many of the techniques discussed in this book. In this
chapter, he describes a process to test for bottlenecks in the GPU pipeline, and
he offers potential remedies for several bottlenecks.

Dean Sekulic of Croteam discusses the powerful but often-misused occlusion
query feature in Chapter 29, “Efficient Occlusion Culling.” Occlusion queries
allow the GPU to return the amount of pixels that an object would represent on
screen. If the object represents no pixels, due to z or stencil tests, it can be
skipped. But because of the decoupled nature of the CPU and the GPU, an oc-
clusion query can’t be issued like a single-threaded function call, or else one
would lose most or all of the performance benefit. Instead, Dean discusses sev-
eral methods of ensuring that the results of the GPU occlusion query can be
applied quickly and efficiently.

In Chapter 30, “The Design of FX Composer,” Christopher Maughan discusses a
powerful shader-authoring tool. FX Composer 1.0 provides a full IDE for shader
authors, as well as an artist-tweakable GUI to adjust shader attributes. Chris
describes design aspects of the tool, offering insight into cutting-edge shader
integration.

Chapter 31, “Using FX Composer,” also by Christopher Maughan, delves into
the details of FX Composer usage, including shader authoring, setting up sim-
ple scenes, and applying shaders to objects. This chapter provides a good intro-
duction to both shader authoring and tool usage.

PART V PERFORMANCE AND PRACTICALITIES 471

gems_ch28.qxp 2/26/2004 12:49 AM Page 471

472

In Chapter 32, “An Introduction to Shader Interfaces,” Matt Pharr describes
shader objects, which can simplify the integration of shaders into applications
via the concept of shader interfaces. By specifying shader fragments as objects,
with well-defined interfaces, you can efficiently combine these fragments at
runtime automatically, improving both flexibility and performance.

In Chapter 33, “Converting Production RenderMan Shaders to Real Time,”
Stephen Marshall of Sony Pictures Imageworks tells how RenderMan-style off-
line shaders can be modified and leveraged in a GPU-aware production
pipeline. Offline shaders are written with CPU advantages and limitations in
mind; only by rethinking shaders in terms of modern GPUs can the maximum
speed benefits be realized.

Cinema 4D is another modern, shader-capable authoring tool. Jörn Loviscach, in
Chapter 34, “Integrating Hardware Shading into Cinema 4D,” discusses how he
integrated GPU shaders to emulate the existing CPU shading pipeline as closely
as possible. Jörn offers a compelling example of how to seamlessly add GPU
capability to a more traditional, existing workflow.

Although GPUs get more flexible and powerful each year, it will likely be quite a
while before all content-creation rendering tasks can be handled on the graph-
ics card. In Chapter 35, “Leveraging High-Quality Software Rendering Effects in
Real-Time Applications,” Alexandre Jean Claude and Marc Stevens discuss how
they leveraged the GPU shader horsepower while still retaining the flexibility of
a mature, existing software rendering and modeling pipeline.

Finally, John O’Rorke’s chapter on shader integration, Chapter 36, “Integrating
Shaders into Applications,” focuses on the DirectX .fx file format and how it can
be used. John demonstrates how to use .fx file features such as semantics and
annotations, which enable simpler shader integration. He concludes with sev-
eral ideas for customizing and extending .fx files, including shader inheritance.

Sim Dietrich, NVIDIA

PART V PERFORMANCE AND PRACTICALITIES

gems_ch28.qxp 2/26/2004 12:50 AM Page 472

473

Graphics Pipeline
Performance
Cem Cebenoyan
NVIDIA

Chapter 28

28.1 Overview

28.1 Overview
Over the past few years, the hardware-accelerated rendering pipeline has rapidly in-
creased in complexity, bringing with it increasingly intricate and potentially confusing
performance characteristics. Improving performance used to mean simply reducing the
CPU cycles of the inner loops in your renderer; now it has become a cycle of determin-
ing bottlenecks and systematically attacking them. This loop of identification and opti-
mization is fundamental to tuning a heterogeneous multiprocessor system; the driving
idea is that a pipeline, by definition, is only as fast as its slowest stage. Thus, while pre-
mature and unfocused optimization in a single-processor system can lead to only mini-
mal performance gains, in a multiprocessor system such optimization very often leads
to zero gains.

Working hard on graphics optimization and seeing zero performance improvement is
no fun. The goal of this chapter is to keep you from doing exactly that.

28.1.1 The Pipeline
The pipeline, at the very highest level, can be broken into two parts: the CPU and the
GPU. Although CPU optimization is a critical part of optimizing your application, it

gems_ch28.qxp 2/26/2004 12:52 AM Page 473

474

will not be the focus of this chapter, because much of this optimization has little to do
with the graphics pipeline.

Figure 28-1 shows that within the GPU, there are a number of functional units operating
in parallel, which essentially act as separate special-purpose processors, and a number of
spots where a bottleneck can occur. These include vertex and index fetching, vertex shad-
ing (transform and lighting, or T&L), fragment shading, and raster operations (ROP).

28.1.2 Methodology
Optimization without proper bottleneck identification is the cause of much wasted
development effort, and so we formalize the process into the following fundamental
identification and optimization loop:

1. Identify the bottleneck. For each stage in the pipeline, vary either its workload or its
computational ability (that is, clock speed). If performance varies, you’ve found a
bottleneck.

2. Optimize. Given the bottlenecked stage, reduce its workload until performance
stops improving or until you achieve your desired level of performance.

3. Repeat. Do steps 1 and 2 again until the desired performance level is reached.

Chapter 28 Graphics Pipeline Performance

Figure 28-1. The Graphics Pipeline

gems_ch28.qxp 2/26/2004 12:52 AM Page 474

28.2 Locating the Bottleneck 475

28.2 Locating the Bottleneck
Locating the bottleneck is half the battle in optimization, because it enables you to
make intelligent decisions about focusing your actual optimization efforts. Figure 28-2
shows a flow chart depicting the series of steps required to locate the precise bottleneck
in your application. Note that we start at the back end of the pipeline, with the frame-
buffer operations (also called raster operations) and end at the CPU. Note also that
while any single primitive (usually a triangle), by definition, has a single bottleneck,
over the course of a frame the bottleneck most likely changes. Thus, modifying the
workload on more than one stage in the pipeline often influences performance. For
example, a low-polygon skybox is often bound by fragment shading or frame-buffer
access; a skinned mesh that maps to only a few pixels on screen is often bound by CPU
or vertex processing. For this reason, it frequently helps to vary workloads on an object-
by-object, or material-by-material, basis.

For each pipeline stage, we also mention the GPU clock to which it’s tied (that is, core
or memory). This information is useful in conjunction with tools such as PowerStrip
(EnTech Taiwan 2003), which allows you to reduce the relevant clock speed and ob-
serve performance changes in your application.

Figure 28-2. Bottleneck Flowchart

gems_ch28.qxp 2/26/2004 12:53 AM Page 475

476

28.2.1 Raster Operations
The very back end of the pipeline, raster operations (often called the ROP), is responsi-
ble for reading and writing depth and stencil, doing the depth and stencil comparisons,
reading and writing color, and doing alpha blending and testing. As you can see, much
of the ROP workload taxes the available frame-buffer bandwidth.

The best way to test if your application is frame-buffer-bandwidth bound is to vary the
bit depths of the color or the depth buffers, or both. If reducing your bit depth from
32-bit to 16-bit significantly improves your performance, then you are definitely frame-
buffer-bandwidth bound.

Frame-buffer bandwidth is a function of GPU memory clock, so modifying memory
clocks is another technique for helping to identify this bottleneck.

28.2.2 Texture Bandwidth
Texture bandwidth is consumed any time a texture fetch request goes out to memory.
Although modern GPUs have texture caches designed to minimize extraneous memory
requests, they obviously still occur and consume a fair amount of memory bandwidth.

Modifying texture formats can be trickier than modifying frame-buffer formats as we
did when inspecting the ROP; instead, we recommend changing the effective texture
size by using a large amount of positive mipmap level-of-detail (LOD) bias. This makes
texture fetches access very coarse levels of the mipmap pyramid, which effectively re-
duces the texture size. If this modification causes performance to improve significantly,
you are bound by texture bandwidth.

Texture bandwidth is also a function of GPU memory clock.

28.2.3 Fragment Shading
Fragment shading refers to the actual cost of generating a fragment, with associated
color and depth values. This is the cost of running the “pixel shader” or “fragment
shader.” Note that fragment shading and frame-buffer bandwidth are often lumped
together under the heading fill rate, because both are a function of screen resolution.
However, they are two distinct stages in the pipeline, and being able to tell the differ-
ence between the two is critical to effective optimization.

Before the advent of highly programmable fragment-processing GPUs, it was rare to be
bound by fragment shading. It was often frame-buffer bandwidth that caused the in-

Chapter 28 Graphics Pipeline Performance

gems_ch28.qxp 2/26/2004 12:53 AM Page 476

evitable correlation between screen resolution and performance. This pendulum is now
starting to swing toward fragment shading, however, as the newfound flexibility enables
developers to spend oodles of cycles making fancy pixels.

The first step in determining if fragment shading is the bottleneck is simply to change
the resolution. Because we’ve already ruled out frame-buffer bandwidth by trying dif-
ferent frame-buffer bit depths, if adjusting resolution causes performance to change, the
culprit is most likely fragment shading. A supplementary approach would be to modify
the length of your fragment programs and see if this influences performance. But be
careful not to add instructions that can easily be optimized away by a clever device
driver.

Fragment-shading speed is a function of the GPU core clock.

28.2.4 Vertex Processing
The vertex transformation stage of the rendering pipeline is responsible for taking an
input set of vertex attributes (such as model-space positions, vertex normals, texture
coordinates, and so on) and producing a set of attributes suitable for clipping and ras-
terization (such as homogeneous clip-space position, vertex lighting results, texture
coordinates, and more). Naturally, performance in this stage is a function of the work
done per vertex, along with the number of vertices being processed.

With programmable transformations, determining if vertex processing is your bottle-
neck is a simple matter of changing the length of your vertex program. If performance
changes, you are vertex-processing bound. If you’re adding instructions, be careful to
add ones that actually do meaningful work; otherwise, the instructions may be opti-
mized away by the compiler or the driver. For example, no-ops that refer to constant
registers (such as adding a constant register that has a value of zero) often cannot be
optimized away because the driver usually doesn’t know the value of a constant at pro-
gram-compile time.

If you’re using fixed-function transformations, it’s a little trickier. Try modifying the
load by changing vertex work such as specular lighting or texture-coordinate generation
state.

Vertex processing speed is a function of the GPU core clock.

28.2 Locating the Bottleneck 477

gems_ch28.qxp 2/26/2004 12:53 AM Page 477

478

28.2.5 Vertex and Index Transfer
Vertices and indices are fetched by the GPU as the first step in the GPU part of the
pipeline. The performance of vertex and index fetching can vary depending on where
the actual vertices and indices are placed. They are usually either in system memory—
which means they will be transferred to the GPU over a bus such as AGP or PCI Ex-
press—or in local frame-buffer memory. Often, on PC platforms especially, this
decision is left up to the device driver instead of the application, although modern
graphics APIs allow applications to provide usage hints to help the driver choose the
correct memory type.

Determining if vertex or index fetching is a bottleneck in your application entails mod-
ifying the vertex format size.

Vertex and index fetching performance is a function of the AGP/PCI Express rate if the
data is placed in system memory; it’s a function of the memory clock if data is placed in
local frame-buffer memory.

If none of these tests influences your performance significantly, you are primarily CPU
bound. You may verify this fact by underclocking your CPU: if performance varies
proportionally, you are CPU bound.

28.3 Optimization
Now that we have identified the bottleneck, we must optimize that particular stage to
improve application performance. The following tips are categorized by offending
stage.

28.3.1 Optimizing on the CPU
Many applications are CPU bound—sometimes for good reason, such as complex
physics or AI, and sometimes because of poor batching or resource management. If
you’ve found that your application is CPU bound, try the following suggestions to
reduce CPU work in the rendering pipeline.

Reduce Resource Locking
Anytime you perform a synchronous operation that demands access to a GPU resource,
there is the potential to massively stall the GPU pipeline, which costs both CPU and
GPU cycles. CPU cycles are wasted because the CPU must sit and spin in a loop, wait-

Chapter 28 Graphics Pipeline Performance

gems_ch28.qxp 2/26/2004 12:53 AM Page 478

ing for the (very deep) GPU pipeline to idle and return the requested resource. GPU
cycles are then wasted as the pipeline sits idle and has to refill.

This locking can occur anytime you

● Lock or read from a surface you were previously rendering to

● Write to a surface the GPU is reading from, such as a texture or a vertex buffer

In general, you should avoid accessing a resource the GPU is using during rendering.

Maximize Batch Size
We can also call this tip “Minimize the Number of Batches.” A batch is a group of
primitives rendered with a single API rendering call (for example, DrawIndexed-
Primitive in DirectX 9). The size of a batch is the number of primitives it contains.
As a wise man once said, “Batch, Batch, Batch!” (Wloka 2003). Every API function call
to draw geometry has an associated CPU cost, so maximizing the number of triangles
submitted with every draw call will minimize the CPU work done for a given number
of triangles rendered.

Some tips to maximize the size of your batches:

● If using triangle strips, use degenerate triangles to stitch together disjoint strips.
This will enable you to send multiple strips, provided that they share material, in a
single draw call.

● Use texture pages. Batches are frequently broken when different objects use different
textures. By arranging many textures into a single 2D texture and setting your texture
coordinates appropriately, you can send geometry that uses multiple textures in a
single draw call. Note that this technique can have issues with mipmapping and an-
tialiasing. One technique that sidesteps many of these issues is to pack individual 2D
textures into each face of a cube map.

● Use GPU shader branching to increase batch size. Modern GPUs have flexible ver-
tex- and fragment-processing pipelines that allow for branching inside the shader. For
example, if two batches are separate because one requires a four-bone skinning vertex
shader and the other requires a two-bone skinning vertex shader, you could instead
write a vertex shader that loops over the number of bones required, accumulating
blending weights, and then breaks out of the loop when the weights sum to one. This
way, the two batches could be combined into one. On architectures that don’t sup-
port shader branching, similar functionality can be implemented, at the cost of

28.3 Optimization 479

gems_ch28.qxp 2/26/2004 12:53 AM Page 479

480

shader cycles, by using a four-bone vertex shader on everything and simply zeroing
out the bone weights on vertices that have fewer than four bone influences.

● Use the vertex shader constant memory as a lookup table of matrices. Often batches
get broken when many small objects share all material properties but differ only in
matrix state (for example, a forest of similar trees, or a particle system). In these cases,
you can load n of the differing matrices into the vertex shader constant memory and
store indices into the constant memory in the vertex format for each object. Then
you would use this index to look up into the constant memory in the vertex shader
and use the correct transformation matrix, thus rendering n objects at once.

● Defer decisions as far down in the pipeline as possible. It’s faster to use the alpha
channel of your texture as a gloss factor, rather than break the batch to set a pixel
shader constant for glossiness. Similarly, putting shading data in your textures and
vertices can allow for larger batch submissions.

28.3.2 Reducing the Cost of Vertex Transfer
Vertex transfer is rarely the bottleneck in an application, but it’s certainly not impossi-
ble for it to happen. If the transfer of vertices or, less likely, indices is the bottleneck in
your application, try the following:

● Use the fewest possible bytes in your vertex format. Don’t use floats for everything if
bytes would suffice (for colors, for example).

● Generate potentially derivable vertex attributes inside the vertex program instead
of storing them inside the input vertex format. For example, there’s often no need to
store a tangent, binormal, and normal: given any two, the third can be derived using
a simple cross product in the vertex program. This technique trades vertex-processing
speed for vertex transfer rate.

● Use 16-bit indices instead of 32-bit indices. 16-bit indices are cheaper to fetch, are
cheaper to move around, and take less memory.

● Access vertex data in a relatively sequential manner. Modern GPUs cache memory
accesses when fetching vertices. As in any memory hierarchy, spatial locality of refer-
ence helps maximize hits in the cache, thus reducing bandwidth requirements.

28.3.3 Optimizing Vertex Processing
Vertex processing is rarely the bottleneck on modern GPUs, but it may occur, depend-
ing on your usage patterns and target hardware.

Chapter 28 Graphics Pipeline Performance

gems_ch28.qxp 2/26/2004 12:53 AM Page 480

Try these suggestions if you’re finding that vertex processing is the bottleneck in your
application:

● Optimize for the post-T&L vertex cache. Modern GPUs have a small first-in, first-
out (FIFO) cache that stores the result of the most recently transformed vertices; a hit
in this cache saves all transform and lighting work, along with all work done earlier in
the pipeline. To take advantage of this cache, you must use indexed primitives, and
you must order your vertices to maximize locality of reference over the mesh. There
are tools available—including D3DX and NVTriStrip (NVIDIA 2003)—that can
help you with this task.

● Reduce the number of vertices processed. This is rarely the fundamental issue, but
using a simple level-of-detail scheme, such as a set of static LODs, certainly helps
reduce vertex-processing load.

● Use vertex-processing LOD. Along with using LODs for the number of vertices
processed, try LODing the vertex computations themselves. For example, it is likely
unnecessary to do full four-bone skinning on distant characters, and you can proba-
bly get away with cheaper approximations for the lighting. If your material is multi-
passed, reducing the number of passes for lower LODs in the distance will also
reduce vertex-processing cost.

● Pull out per-object computations onto the CPU. Often, a calculation that changes
once per object or per frame is done in the vertex shader for convenience. For exam-
ple, transforming a directional light vector to eye space is sometimes done in the
vertex shader, although the result of the computation changes only once per frame.

● Use the correct coordinate space. Frequently, choice of coordinate space affects the
number of instructions required to compute a value in the vertex program. For exam-
ple, when doing vertex lighting, if your vertex normals are stored in object space and
the light vector is stored in eye space, then you will have to transform one of the two
vectors in the vertex shader. If the light vector was instead transformed into object
space once per object on the CPU, no per-vertex transformation would be necessary,
saving GPU vertex instructions.

● Use vertex branching to “early-out” of computations. If you are looping over a
number of lights in the vertex shader and doing normal, low-dynamic-range, [0..1]
lighting, you can check for saturation to 1—or if you’re facing away from the light—
and then break out of further computations. A similar optimization can occur with
skinning, where you can break when your weights sum to 1 (and therefore all subse-
quent weights would be 0). Note that this depends on how the GPU implements
vertex branching, and it isn’t guaranteed to improve performance on all architectures.

28.3 Optimization 481

gems_ch28.qxp 2/26/2004 12:53 AM Page 481

482

28.3.4 Speeding Up Fragment Shading
If you’re using long and complex fragment shaders, it is often likely that you’re fragment-
shading bound. If so, try these suggestions:

● Render depth first. Rendering a depth-only (no-color) pass before rendering your
primary shading passes can dramatically boost performance, especially in scenes with
high depth complexity, by reducing the amount of fragment shading and frame-
buffer memory access that needs to be performed. To get the full benefits of a depth-
only pass, it’s not sufficient to just disable color writes to the frame buffer; you
should also disable all shading on fragments, even shading that affects depth as well
as color (such as alpha test).

● Help early-z optimizations throw away fragment processing. Modern GPUs have
silicon designed to avoid shading occluded fragments, but these optimizations rely on
knowledge of the scene up to the current point; they can be improved dramatically
by rendering in a roughly front-to-back order. Also, laying down depth first (see the
previous tip) in a separate pass can help substantially speed up subsequent passes
(where all the expensive shading is done) by effectively reducing their shaded-depth
complexity to 1.

● Store complex functions in textures. Textures can be enormously useful as lookup
tables, and their results are filtered for free. The canonical example here is a normal-
ization cube map, which allows you to normalize an arbitrary vector at high precision
for the cost of a single texture lookup.

● Move per-fragment work to the vertex shader. Just as per-object work in the vertex
shader should be moved to the CPU instead, per-vertex computations (along with
computations that can be correctly linearly interpolated in screen space) should be
moved to the vertex shader. Common examples include computing vectors and trans-
forming vectors between coordinate systems.

● Use the lowest precision necessary. APIs such as DirectX 9 allow you to specify pre-
cision hints in fragment shader code for quantities or calculations that can work with
reduced precision. Many GPUs can take advantage of these hints to reduce internal
precision and improve performance.

● Avoid excessive normalization. A common mistake is to get “normalization-happy”:
normalizing every single vector every step of the way when performing a calculation.
Recognize which transformations preserve length (such as transformations by an
orthonormal basis) and which computations do not depend on vector length (such as
cube-map lookups).

Chapter 28 Graphics Pipeline Performance

gems_ch28.qxp 2/26/2004 12:53 AM Page 482

● Consider using fragment shader level of detail. Although it offers less bang for the
buck than vertex LOD (simply because objects in the distance naturally LOD them-
selves with respect to pixel processing, due to perspective), reducing the complexity of
the shaders in the distance, and decreasing the number of passes over a surface, can
lessen the fragment-processing workload.

● Disable trilinear filtering where unnecessary. Trilinear filtering, even when not con-
suming extra texture bandwidth, costs extra cycles to compute in the fragment shader
on most modern GPU architectures. On textures where mip-level transitions are not
readily discernible, turn trilinear filtering off to save fill rate.

● Use the simplest shader type possible. In both Direct3D and OpenGL, there are a
number of different ways to shade fragments. For example, in Direct3D 9, you can
specify fragment shading using, in order of increasing complexity and power, texture-
stage states, pixel shaders version 1.x (ps.1.1 – ps.1.4), pixel shaders version 2.x., or
pixel shaders version 3.0. In general, you should use the simplest shader type that
allows you to create the intended effect. The simpler shader types offer a number of
implicit assumptions that often allow them to be compiled to faster native pixel-
processing code by the GPU driver. A nice side effect is that these shaders would then
work on a broader range of hardware.

28.3.5 Reducing Texture Bandwidth
If you’ve found that you’re memory-bandwidth bound, but mostly when fetching from
textures, consider these optimizations:

● Reduce the size of your textures. Consider your target resolution and texture coordi-
nates. Do your users ever get to see your highest mip level? If not, consider scaling
back the size of your textures. This can be especially helpful if overloaded frame-
buffer memory has forced texturing to occur from nonlocal memory (such as system
memory, over the AGP or PCI Express bus). The NVPerfHUD tool (NVIDIA 2003)
can help diagnose this problem, as it shows the amount of memory allocated by the
driver in various heaps.

● Compress all color textures. All textures that are used just as decals or detail textures
should be compressed, using DXT1, DXT3, or DXT5, depending on the specific tex-
ture’s alpha needs. This step will reduce memory usage, reduce texture bandwidth
requirements, and improve texture cache efficiency.

28.3 Optimization 483

gems_ch28.qxp 2/26/2004 12:53 AM Page 483

484

● Avoid expensive texture formats if not necessary. Large texture formats, such as 64-
bit or 128-bit floating-point formats, obviously cost much more bandwidth to fetch
from. Use these only as necessary.

● Always use mipmapping on any surface that may be minified. In addition to im-
proving quality by reducing texture aliasing, mipmapping improves texture cache
utilization by localizing texture-memory access patterns for minified textures. If you
find that mipmapping on certain surfaces makes them look blurry, avoid the tempta-
tion to disable mipmapping or add a large negative LOD bias. Prefer anisotropic
filtering instead and adjust the level of anisotropy per batch as appropriate.

28.3.6 Optimizing Frame-Buffer Bandwidth
The final stage in the pipeline, ROP, interfaces directly with the frame-buffer memory
and is the single largest consumer of frame-buffer bandwidth. For this reason, if band-
width is an issue in your application, it can often be traced to the ROP. Here’s how to
optimize for frame-buffer bandwidth:

● Render depth first. This step reduces not only fragment-shading cost (see the previ-
ous section), but also frame-buffer bandwidth cost.

● Reduce alpha blending. Note that alpha blending, with a destination-blending factor
set to anything other than 0, requires both a read and a write to the frame buffer,
thus potentially consuming double the bandwidth. Reserve alpha blending for only
those situations that require it, and be wary of high levels of alpha-blended depth
complexity.

● Turn off depth writes when possible. Writing depth is an additional consumer of
bandwidth, and it should be disabled in multipass rendering (where the final depth is
already in the depth buffer); when rendering alpha-blended effects, such as particles;
and when rendering objects into shadow maps (in fact, for rendering into color-based
shadow maps, you can turn off depth reads as well).

● Avoid extraneous color-buffer clears. If every pixel is guaranteed to be overwritten in
the frame buffer by your application, then avoid clearing color, because it costs pre-
cious bandwidth. Note, however, that you should clear the depth and stencil buffers
whenever you can, because many early-z optimizations rely on the deterministic con-
tents of a cleared depth buffer.

● Render roughly front to back. In addition to the fragment-shading advantages men-
tioned in the previous section, there are similar benefits for frame-buffer bandwidth.
Early-z hardware optimizations can discard extraneous frame-buffer reads and writes.

Chapter 28 Graphics Pipeline Performance

gems_ch28.qxp 2/26/2004 12:53 AM Page 484

In fact, even older hardware, which lacks these optimizations, will benefit from this
step, because more fragments will fail the depth test, resulting in fewer color and
depth writes to the frame buffer.

● Optimize skybox rendering. Skyboxes are often frame-buffer-bandwidth bound, but
you must decide how to optimize them: (1) render them last, reading (but not writ-
ing) depth, and allow the early-z optimizations along with regular depth buffering to
save bandwidth; or (2) render the skybox first, and disable all depth reads and writes.
Which option will save you more bandwidth is a function of the target hardware and
how much of the skybox is visible in the final frame. If a large portion of the skybox
is obscured, the first technique will likely be better; otherwise, the second one may
save more bandwidth.

● Use floating-point frame buffers only when necessary. These formats obviously
consume much more bandwidth than smaller, integer formats. The same applies for
multiple render targets.

● Use a 16-bit depth buffer when possible. Depth transactions are a huge consumer of
bandwidth, so using 16-bit instead of 32-bit can be a giant win, and 16-bit is often
enough for small-scale, indoor scenes that don’t require stencil. A 16-bit depth buffer
is also often enough for render-to-texture effects that require depth, such as dynamic
cube maps.

● Use 16-bit color when possible. This advice is especially applicable to render-to-
texture effects, because many of these, such as dynamic cube maps and projected-
color shadow maps, work just fine in 16-bit color.

28.4 Conclusion
As power and programmability increase in modern GPUs, so does the complexity of
extracting every bit of performance out of the machine. Whether your goal is to im-
prove the performance of a slow application or to look for areas where you can improve
image quality “for free,” a deep understanding of the inner workings of the graphics
pipeline is required. As the GPU pipeline continues to evolve, the fundamental ideas of
optimization will still apply: first identify the bottleneck, by varying the load or the
computational power of each unit; then systematically attack those bottlenecks, using
your understanding of how each pipeline unit behaves.

28.4 Conclusion 485

gems_ch28.qxp 2/26/2004 12:53 AM Page 485

486 Chapter 28 Graphics Pipeline Performance

28.5 References
EnTech Taiwan. 2003. Web site. http://www.entechtaiwan.com. Information on the

PowerStrip package is available here.

NVIDIA. 2003. Developer Web site. http://developer.nvidia.com. On this site, you can
find tools that will help you with performance tuning.

Wloka, Matthias. 2003. “Batch, Batch, Batch: What Does It Really Mean?” Presenta-
tion at Game Developers Conference 2003. Available online at
http://developer.nvidia.com/docs/IO/8230/BatchBatchBatch.pdf

Specific information can be found at the following Web addresses.
D3DX: Available in the Microsoft DirectX 9 SDK. See

http://msdn.microsoft.com/directx

NVTriStrip: http://developer.nvidia.com/object/nvtristrip_library.html

NVPerfHUD: http://developer.nvidia.com

gems_ch28.qxp 2/26/2004 12:53 AM Page 486

