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Perspective Shadow Maps:
Care and Feeding
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SoftLab-NSK

Chapter 14

14.1 Introduction

14.1 Introduction
Shadow generation has always been a big problem in real-time 3D graphics. Determin-
ing whether a point is in shadow is not a trivial operation for modern GPUs, particu-
larly because GPUs work in terms of rasterizing polygons instead of ray tracing.

Today’s shadows should be completely dynamic. Almost every object in the scene
should cast and receive shadows, there should be self-shadowing, and every object
should have soft shadows. Only two algorithms can satisfy these requirements: shadow
volumes (or stencil shadows) and shadow mapping.

The difference between the algorithms for shadow volumes and shadow mapping
comes down to object space versus image space:

● Object-space shadow algorithms, such as shadow volumes, work by creating a polygo-
nal structure that represents the shadow occluders, which means that we always have
pixel-accurate, but hard, shadows. This method cannot deal with objects that have no
polygonal structure, such as alpha-test-modified geometry or displacement mapped
geometry. Also, drawing shadow volumes requires a lot of fill rate, which makes it
difficult to use them for every object in a dense scene, especially when there are mul-
tiple lights.
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218 Chapter 14 Perspective Shadow Maps: Care and Feeding

● Image-space shadow algorithms deal with any object modification (if we can render an
object, we’ll have shadows), but they suffer from aliasing. Aliasing often occurs in
large scenes with wide or omnidirectional light sources. The problem is that the pro-
jection transform used in shadow mapping changes the screen size of the shadow
map texels so that texels near the camera become very large. As a result, we have to
use enormous shadow maps (four times the screen resolution or larger) to achieve
good quality. Still, shadow maps are much faster than shadow volumes in complex
scenes.

Perspective shadow maps (PSMs), presented at SIGGRAPH 2002 by Stamminger and
Drettakis (2002), try to eliminate aliasing in shadow maps by using them in post-projective
space, where all nearby objects become larger than farther ones. Unfortunately, it’s difficult
to use the original algorithm because it works well only in certain cases. 

The most significant problems of the presented PSM algorithm are these three:

● To hold all potential shadow casters inside the virtual camera frustum, “virtual cam-
eras” are used when the light source is behind the camera. This results in poor
shadow quality.

● The shadow quality depends heavily on the light position in camera space.

● Biasing problems weren’t discussed in the original paper. Bias is a problem with PSMs
because the texel area is distributed in a nonuniform way, which means that bias
cannot be a constant anymore and should depend on the texel position.

Each of these problems is discussed in the next section. This chapter focuses on direc-
tional lights (because they have bigger aliasing problems), but all the ideas and algo-
rithms can easily be applied to other types of light source (details are provided, where
appropriate). In addition, we discuss tricks for increasing the quality of the shadow map
by filtering and blurring the picture.

In general, this chapter describes techniques and methods that can increase the effec-
tiveness of using PSMs. However, most of these ideas still should be adapted to your
particular needs.
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14.2 Problems with the PSM Algorithm

14.2.1 Virtual Cameras
First, let’s look at the essence of this problem. The usual projective transform moves
objects behind the camera to the other side of the infinity plane in post-projective
space. However, if the light source is behind the camera too, these objects are potential
shadow casters and should be drawn into the shadow map.

In the perspective transform in Figure 14-1, the order of the points on the ray changes.
The authors of the original PSM paper propose “virtually” sliding the view camera back
to hold potential shadow casters in the viewing frustum, as shown in Figure 14-2, so
that we can use PSMs the normal way.

Figure 14-1. An Object Behind the Camera in Post-Projective Space
Adapted from Stamminger and Drettakis 2002.
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Virtual Camera Issues
In practice, however, using the virtual camera leads to poor shadow quality. The “virtual”
shift greatly decreases the resolution of the effective shadow map, so that objects near the
real camera become smaller, and we end up with a lot of unused space in the shadow
map. In addition, we may have to move the camera back significantly for large shadow-
casting objects behind the camera. Figure 14-3 shows how dramatically the quality
changes, even with a small shift.

Another problem is minimizing the actual “slideback distance,” which maximizes image
quality. This requires us to analyze the scene, find potential shadow casters, and so on.
Of course, we could use bounding volumes, scene hierarchical organizations, and simi-

Figure 14-2. Using a Virtual Camera
Adapted from Stamminger and Drettakis 2002.
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lar techniques, but they would be a significant CPU hit. Moreover, we’ll always have
abrupt changes in shadow quality when an object stops being a potential shadow caster.
In this case, the slideback distance instantly changes, causing the shadow quality to
change suddenly as well.

A Solution for Virtual Camera Issues
We propose a solution to this virtual camera problem: Use a special projection trans-
form for the light matrix. In fact, post-projective space allows some projection tricks
that can’t be done in the usual world space. It turns out that we can build a special pro-
jection matrix that can see “farther than infinity.”

Let’s look at a post-projective space formed by an original (nonvirtual) camera with a
directional “inverse” light source and with objects behind the view camera, as shown in
Figure 14-4.

Figure 14-3.
Top: With the Virtual Shift. Bottom: Without the Virtual Shift.
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A drawback to this solution is that the ray should (but doesn’t) come out from the light
source, catch point 1, go to minus infinity, then pass on to plus infinity and return to
the light source, capturing information at points 2, 3, and 4. Fortunately, there is a
projection matrix that matches this “impossible” ray, where we can set the near plane to
a negative value and the far plane to a positive value. See Figure 14-5.

Figure 14-4. Post-Projective Space with an Inverse Light Source
Adapted from Stamminger and Drettakis 2002.

Figure 14-5. An Inverse Projection Matrix
The red arrow is the light camera direction.
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In the simplest case,

where a is small enough to fit the entire unit cube. Then we build this inverse projec-
tion as the usual projection matrix, as shown here, where matrices are written in a row-
major style:

So the formula for the resulting transformed z coordinates, which go into a shadow
map, is:

Zpsm(−a) = 0, and if we keep decreasing the z value to minus infinity, Zpsm tends to ½.
The same Zpsm = ½ corresponds to plus infinity, and moving from plus infinity to the
far plane increases Zpsm to 1 at the far plane. This is why the ray hits all points in the
correct order and why there’s no need to use “virtual slides” for creating post-projective
space.

This trick works only in post-projective space because normally all points behind the
infinity plane have w < 0, so they cannot be rasterized. But for another projection
transformation caused by a light camera, these points are located behind the camera, so
the w coordinate is inverted again and becomes positive.

By using this inverse projection matrix, we don’t have to use virtual cameras. As a re-
sult, we get much better shadow quality without any CPU scene analysis and the asso-
ciated artifacts.

The only drawback to the inverse projection matrix is that we need a better shadow
map depth-value precision, because we use big z-value ranges. However, 24-bit fixed-
point depth values are enough for reasonable cases.

Z Q
Z

Z
a
Zpsm

n= × −
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟ = × +

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟1 1

1

2
.

c

d

Q

QZ

c

d

n

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 1

−

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

→
22

1
2

1

0 0 0a

Q
Z

Z Z
a

a a
f

f n

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
−

=
− −

, where

(( )
=

1

2
.

Z Z an f= = ,

14.2 Problems with the PSM Algorithm 223

gems_ch14.qxp  2/25/2004  11:02 PM  Page 223



224

Virtual cameras still could be useful, though, because the shadow quality depends on
the location of the camera’s near plane. The formula for post-projective z is:

As we can see, Q is very close to 1 and doesn’t change significantly as long as Zn is much
smaller than Zf , which is typical. That’s why the near and far planes have to be changed
significantly to affect the Q value, which usually is not possible. At the same time, near-
plane values highly influence the post-projective space. For example, for Zn = 1 meter
(m), the first meter in the world space after the near plane occupies half the unit cube
in post-projective space. In this respect, if we change Zn to 2 m, we will effectively dou-
ble the z-value resolution and increase the shadow quality. That means that we should
maximize the Zn value by any means. 

The perfect method, proposed in the original PSM article, is to read back the depth
buffer, scan through each pixel, and find the maximum possible Zn for each frame.
Unfortunately, this method is quite expensive: it requires reading back a large amount
of video memory, causes an additional CPU/GPU stall, and doesn’t work well with
swizzled and hierarchical depth buffers. So we should use another (perhaps less accu-
rate) method to find a suitable near-plane value for PSM rendering. 

Such other methods for finding a suitable near-plane value for PSM rendering could
include various methods of CPU scene analysis: 

● A method based on rough bounding-volume computations (briefly described later in
“The Light Camera”).

● A collision-detection system to estimate the distance to the closest object. 

● Additional software scene rendering with low-polygon-count level-of-details, which
could also be useful for occlusion culling. 

● Sophisticated analysis based on particular features of scene structure for the specific
application. For example, when dealing with scenarios using a fixed camera path, you
could precompute the near-plane values for every frame.

These methods try to increase the actual near-plane value, but we could also increase
the value “virtually.” The idea is the same as with the old virtual cameras, but with one
difference. When sliding the camera back, we increase the near-plane value so that the
near-plane quads of the original and virtual cameras remain on the same plane. See
Figure 14-6.
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14.2 Problems with the PSM Algorithm 225

When we slide the virtual camera back, we improve the z-values resolution. However,
this makes the value distribution for x and y values worse for near objects, thus balanc-
ing shadow quality near and far from the camera. Because of the very irregular z-value
distribution in post-projective space and the large influence of the near-plane value, this
balance could not be achieved without this “virtual” slideback. The usual problem of
shadows looking great near the camera but having poor quality on distant objects is the
typical result of unbalanced shadow map texel area distribution.

14.2.2 The Light Camera
Another problem with PSMs is that the shadow quality relies on the relationship be-
tween the light and camera positions. With a vertical directional light, aliasing prob-
lems are completely removed, but when light is directed toward the camera and is close
to head-on, there is significant shadow map aliasing.

We’re trying to hold the entire unit cube in a single shadow map texture, so we have to
make the light’s field of view as large as necessary to fit the entire cube. This in turn
means that the objects close to the near plane won’t receive enough texture samples. See
Figure 14-7.

The closer the light source is to the unit cube, the poorer the quality. As we know,

so for large outdoor scenes that have Zn= 1 and Zf = 4000, Q= 1.0002, which means
that the light source is extremely close to the unit cube. The Zf /Zn correlation is usually
bigger than 50, which corresponds to Q= 1.02, which is close enough to create problems.

We’ll always have problems fitting the entire unit cube into a single shadow map tex-
ture. Two solutions each tackle one part of the problem: Unit cube clipping targets the
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Figure 14-6. Difference Between Virtual Cameras
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light camera only on the necessary part of the unit cube, and the cube map approach
uses multiple textures to store depth information.

Unit Cube Clipping
This optimization relies on the fact that we need shadow map information only on
actual objects, and the volume occupied by these objects is usually much smaller than
the whole view frustum volume (especially close to the far plane). That’s why if we tune
the light camera to hold real objects only (not the entire unit cube), we’ll receive better
quality. Of course, we should tune the camera using a simplified scene structure, such
as bounding volumes.

Cube clipping was mentioned in the original PSM article, but it took into account all
objects in a scene, including shadow casters in the view frustum and potential shadow
casters outside the frustum for constructing the virtual camera. Because we don’t need
virtual cameras anymore, we can focus the light camera on shadow receivers only, which
is more efficient. See Figure 14-8. Still, we should choose near and far clip-plane values
for the light camera in post-projective space to hold all shadow casters in the shadow
map. But it doesn’t influence shadow quality because it doesn’t change the texel area
distribution.

Because faraway parts of these bounding volumes contract greatly in post-projective
space, the light camera’s field of view doesn’t become very large, even with light sources
that are close to the rest of the scene.

Chapter 14 Perspective Shadow Maps: Care and Feeding

Figure 14-7. The Light Camera with a Low Light Angle
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In practice, we can use rough bounding volumes to retain sufficient quality—we just
need to indicate generally which part of the scene we are interested in. In outdoor
scenes, it’s the approximate height of objects on the landscape; in indoor scenes, it’s a
bounding volume of the current room, and so on.

We’d like to formalize the algorithm of computing the light camera focused on shadow
receivers in the scene after we build a set of bounding volumes roughly describing the
scene. In fact, the light camera is given by position, direction, up vector, and projection
parameters, most of which are predefined:

● We can’t change the position: it’s a light position in post-projective space and nothing
else.

● In practice, the up vector doesn’t change quality significantly, so we can choose any-
thing reasonable.

● Projection parameters are entirely defined by the view matrix.

So the most interesting thing is choosing the light camera direction based on bounding
volumes. The proposed algorithm is this:

1. Compute the vertex list of constructive solid geometry operation, 

where Bi is the ith bounding volume, F is the frustum for every shadow caster

∪ ∩
i

i iB F( ),
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Figure 14-8. Focusing the Light Camera Based on the Bounding Volumes of Shadow Receivers
The bounding volume is shown in green.
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bounding volume that we see in the current frame, and all these operations are per-
formed in a view camera space. Then transform all these vertices into post-projective
space.

After this step, we have all the points that the light camera should “see.” (By the way,
we should find a good near-plane value based on these points, because reading back
the depth buffer isn’t a good solution.)

2. Find a light camera. As we already know, this means finding the best light camera
direction, because all other parameters are easily computed for a given direction. We
propose approximating the optimal direction by the axis of the minimal cone, cen-
tered in the light source and including all the points in the list. The algorithm that
finds the optimal cone for a set of points works in linear time, and it is similar to an
algorithm that finds the smallest bounding sphere for a set of points in linear time
(Gartner 1999).

In this way, we could find an optimal light camera in linear time depending on the
bounding volume number, which isn’t very large because we need only rough informa-
tion about the scene structure.

This algorithm is efficient for direct lights in large outdoor scenes. The shadow quality
is almost independent of the light angle and slightly decreases if light is directed toward
the camera. Figure 14-9 shows the difference between using unit cube clipping and not
using it.

Using Cube Maps
Though cube clipping is efficient in some cases, other times it’s difficult to use. For
example, we might have a densely filled unit cube (which is common), or we may not
want to use bounding volumes at all. Plus, cube clipping does not work with point
lights.

A more general method is to use a cube map texture for shadow mapping. Most light
sources become point lights in post-projective space, and it’s natural to use cube maps
for shadow mapping with point light sources. But in post-projective space, things
change slightly and we should use cube maps differently because we need to store infor-
mation about the unit cube only.

The proposed solution is to use unit cube faces that are back facing, with respect to the
light, as platforms for cube-map-face textures.

For a direct light source in post-projective space, the cube map looks like Figure 14-10.
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The number of used cube map faces (ranging from three to five) depends on the posi-
tion of the light. We use the maximum number of faces when the light is close to the
rest of the scene and directed toward the camera, so additional texture resources are
necessary. For other types of light sources located outside the unit cube, the pictures
will be similar.

For a point light located inside the unit cube, we should use all six cube map faces, but
they’re still focused on unit cube faces. See Figure 14-11.
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Figure 14-9. Unit Cube Clipping
Images produced using unit cube clipping (top) and not using it (bottom).

gems_ch14.qxp  2/25/2004  11:04 PM  Page 229



230

We could say we form a “cube map with displaced center,” which is similar to a normal
cube map, but with a constant vector added to its texture coordinates. In other words,
texture coordinates for cube maps are vertex positions in post-projective space shifted
by the light source position:

Texture coordinates = vertex position − light position

By choosing unit cube faces as the cube map platform, we distribute the texture area
proportionally to the screen size and ensure that shadow quality doesn’t depend on the
light and camera positions. In fact, texel size in post-projective space is in a guaranteed
range, so its projection on the screen depends only on the plane it’s projected onto.
This projection doesn’t stretch texels much, so the texel size on the screen is within
guaranteed bounds also.

Because the vertex and pixel shaders are relatively short when rendering the shadow
map, what matters is the pure fill rate for the back buffer and the depth shadow map

Chapter 14 Perspective Shadow Maps: Care and Feeding

Figure 14-10. Using a Cube Map for Direct Lights

Figure 14-11. Using Cube Maps with a Point Light
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buffer. So there’s almost no difference between drawing a single shadow map and draw-
ing a cube map with the same total texture size (with good occlusion culling, though).
The cube map approach has better quality with the same total texture size as a single
texture. The difference is the cost of the render target switch and the additional instruc-
tions to compute cube map texture coordinates in the vertex and pixel shaders.

Let’s see how to compute these texture coordinates. First, consider the picture shown in
Figure 14-12. The blue square is our unit cube, P is the light source point, and V is the
point for which we’re generating texture coordinates. We render all six cube map faces
in separate passes for the shadow map; the near plane for each pass is shown in green.
They’re forming another small cube, so Z1 = Zn/Zf is constant for every pass.

Now we should compute texture coordinates and depth values to compare for the point V.
This just means that we should move this point in the (V− P ) direction until we intersect
the cube. Consider d1, d2, d3, d4, d5, and d6 (see the face numbers in Figure 14-12) as the
distances from P to each cube map face.

The point on the cube we are looking for (which is also the cube map texture coordi-
nate) is:
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Figure 14-12. A Detailed Cube Map View in Post-Projective Space
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Compare the value in the texture against the result of the projective transform of the a
value. Because we already divided it by the corresponding d value, thus effectively mak-
ing Zf = 1 and Zn = Z1, all we have to do is apply that projective transform. Note that
in the case of the inverse camera projection from Section 14.2.1, Zn = −Z1, Zf = Z1.

(All these calculations are made in OpenGL-like coordinates, where the unit cube is
actually a unit cube. In Direct3D, the unit cube is half the size, because the z coordi-
nate is in the [0..1] range.)

Listing 14-1 is an example of how the shader code might look.

Listing 14-1. Shader Code for Computing Cube Map Texture Coordinates

// c[d1] = 1/d1, 1/d2, 1/d3, 0

// c[d2] = -1/d4, -1/d5, -1/d6, 0

// c[z] = Q, -Q * Zn, 0, 0 

// c[P] = P

// r[V] = V

// cbmcoord – output cube map texture coordinates

// depth – depth to compare with shadow map values 

//Per-vertex level

sub r[VP], r[V], c[P]

mul r1, r[VP], c[d1]

mul r2, r[VP], c[d2]

//Per-pixel level

max r3, r1, r2

max r3.x, r3.x, r3.y

max r3.x, r3.x, r3.z

rcp r3.w, r3.x

mad cbmcoord, r[VP], r3.w, c[P]

rcp r3.x, r3.w

mad depth, r3.x, c[z].x, c[z].y

Because depth textures cannot be cube maps, we could use color textures, packing
depth values into the color channels. There are many ways to do this and many 
implementation-dependent tricks, but their description is out of the scope of this chapter.
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Another possibility is to emulate this cube map approach with multitexturing, in which
every cube map face becomes an independent texture (depth textures are great in this
case). We form several texture coordinate sets in the vertex shader and multiply by the
shadow results in the pixel shader. The tricky part is to manage these textures over the
objects in the scene, because every object rarely needs all six faces.

14.2.3 Biasing
As we stated earlier, the constant bias that is typically used in uniform shadow maps
cannot be used with PSMs because the z values and the texel area distributions vary
greatly with different light positions and points in the scene.

If you plan to use depth textures, try z slope–scaled bias for biasing. It’s often enough to
fix the artifacts, especially when very distant objects don’t fall within the camera. How-
ever, some cards do not support depth textures (in DirectX, depth textures are
supported only by NVIDIA cards), and depth textures can’t be a cube map. In these
cases, you need a different, more general algorithm for calculating bias. Another diffi-
culty is that it’s hard to emulate and tweak z slope–scaled bias because it requires addi-
tional data—such as the vertex coordinates of the current triangle—passed into the
pixel shader, plus some calculations, which isn’t robust at all.

Anyway, let’s see why we can’t use constant bias anymore. Consider these two cases: the
light source is near the unit cube, and the light source is far from the unit cube. See
Figure 14-13.

The problem is that the Zf /Zn correlation, which determines the z-value distribution
into a shadow map, varies a lot in these two cases. So the constant bias would mean a
totally different actual bias in world and post-projective space: The constant bias tuned
to the first light position won’t be correct for the second light, and vice versa. Mean-
while, Zf /Zn changes a lot, because the light source could be close to the unit cube and
could be distant (even at infinity), depending on the relative positions of the light and
the camera in world space. 

Even with a fixed light source position, sometimes we cannot find a suitable constant
for the bias. The bias should depend on the point position—because the projective
transform enlarges the near objects and shrinks the far ones—so the bias should be
smaller near the camera and bigger for distant objects. Figure 14-14 shows the typical
artifacts of using a constant bias in this situation.

In short, the proposed solution is to use biasing in world space (and not to analyze the
results of the double-projection matrix) and then transform this world-space bias in
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post-projective space. The computed value depends on the double projection, and it’s
correct for any light and camera position. These operations could be done easily in a
vertex shader. Furthermore, this world-space bias value should be scaled by texel size in
world space to deal with artifacts caused by the distribution of nonuniform texel areas.

where Porig is the original point position, L is the light vector direction in world space,
Ltexel is the texel size in world space, M is the final shadow map matrix, and a and b are
bias coefficients.

P P L a bL Mbiased orig texel= + +( )( ) ,
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Figure 14-13. Light Close to and Far from the Unit Cube
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The texel size in world space could be approximately computed with simple matrix calcu-
lations. First, transform the point into shadow map space, and then shift this point by the
texel size without changing depth. Next, transform it back into world space and square
the length of the difference between this point and the original one. This gives us Ltexel :

and Sx and Sy are shadow map resolutions.

Obviously, we can build a single matrix that performs all the transformations (except
multiplying the coordinates, of course):

where M′ includes transforming, shifting, transforming back, and subtracting.
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Figure 14-14. Artifacts with Constant Bias
Notice how some of the near-vertical surfaces (such as the wall at the far left and the bridge in the
distance) are full of artifacts.
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This turns out to be a rather empirical solution, but it should still be tweaked for your
particular needs. See Figure 14-15.

The vertex shader code that performs these calculations might look like Listing 14-2.

Listing 14-2. Calculating Bias in a Vertex Shader

def c0, a, b, 0 ,0

// Calculating Ltexel

dp4 r1.x, v0, c[LtexelMatrix_0]

dp4 r1.y, v0, c[LtexelMatrix_1]

dp4 r1.z, v0, c[LtexelMatrix_2]

dp4 r1.w, v0, c[LtexelMatrix_3]

// Transforming homogeneous coordinates 

// (in fact, we often can skip this step)

rcp r1.w, r1.w

mul r1.xy, r1.w, r1.xy

// Now r1.x is an Ltexel

mad r1.x, r1.x, c0.x, c0.y

dp3 r1.x, r1, r1

// Move vertex in world space

mad r1, v0, c[Lightdir], r1.x

// Transform vertex into post-projective space

// (we need z and w only)

dp4 r[out].z, r1, c[M_2]

dp4 r[out].w, r1, c[M_3]

The r[out] register holds the result of the biasing: the depth value, and the corre-
sponding w, that should be interpolated across the triangle. Note that this interpolation
should be separate from the interpolation of texture coordinates (x, y, and the corre-
sponding w), because these w coordinates are different. This biased value could be used
when comparing with the shadow map value, or during the actual shadow map render-
ing (the shadow map holds biased values).
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14.3 Tricks for Better Shadow Maps
The advantage of shadow mapping over shadow volumes is the potential to create a
color gradient between “shadowed” and “nonshadowed” samples, thus simulating soft
shadows. This shadow “softness” doesn’t depend on distance from the occluder, light
source size, and so on, but it still works in world space. Blurring stencil shadows, on the
other hand, is more difficult, although Assarsson et al. (2003) make significant progress.

This section covers methods of filtering and blurring shadow maps to create a fake
shadow softness that has a constant range of blurring but still looks good.

14.3.1 Filtering
Most methods of shadow map filtering are based on the percentage-closer filtering (PCF)
principle. The only difference among the methods is how the hardware lets us use it.
NVIDIA depth textures perform PCF after comparison with the depth value; on other
hardware, we have to take several samples from the nearest texels and average their re-
sults (for true PCF). In general, the depth texture filtering is more efficient than the
manual PCF technique with four samples. (PCF needs about eight samples to produce
comparable quality.) In addition, using depth texture filtering doesn’t forbid PCF, so we
can take several filtered samples to further increase shadow quality.
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Figure 14-15. Bias Calculated in the Vertex Shader
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Using PCF with PSMs is no different from using it with standard shadow maps: sam-
ples from neighboring texels are used for filtering. On the GPU, this is achieved by
shifting texture coordinates one texel in each direction. For a more detailed discussion
of PCF, see Chapter 11, “Shadow Map Antialiasing.”

The shader pseudocode for PCF with four samples looks like Listings 14-3 and 14-4.

These tricks improve shadow quality, but they do not hide serious aliasing problems.
For example, if many screen pixels map to one shadow map texel, large stair-stepping

Listing 14-3. Vertex Shader Pseudocode for PCF

def c0, sample1x, sample1Y, 0, 0

def c1, sample2x, sample2Y, 0, 0

def c2, sample3x, sample3Y, 0, 0

def c3, sample4x, sample4Y, 0, 0

// The simplest case:

// def c0, 1 / shadowmapsizeX, 1 / shadowmapsizeY, 0, 0

// def c1, -1 / shadowmapsizeX, -1 / shadowmapsizeY, 0, 0

// def c2, -1 / shadowmapsizeX, 1/ shadowmapsizeY, 0, 0

// def c3, 1 / shadowmapsizeX, -1 / shadowmapsizeY, 0, 0

. . . 

// Point – vertex position in light space

mad oT0, point.w, c0, point

mad oT1, point.w, c1, point

mad oT2, point.w, c2, point

mad oT3, point.w, c3, point

Listing 14-4. Pixel Shader Pseudocode for PCF

def c0, 0.25, 0.25, 0.25, 0.25

tex t0

tex t1

tex t2

tex t3

. . .

// After depth comparison

mul r0, t0, c0

mad r0, t1, c0, r0

mad r0, t2, c0, r0

mad r0, t3, c0, r0

Chapter 14 Perspective Shadow Maps: Care and Feeding
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artifacts will be visible, even if they are somewhat blurred. Figure 14-16 shows an
aliased shadow without any filtering, and Figure 14-17 shows how PCF helps improve
shadow quality but cannot completely remove aliasing artifacts.

14.3.2 Blurring
As we know from projective shadows, the best blurring results often come from render-
ing to a smaller resolution texture with a pixel shader blur, then feeding this resulting
texture back through the blur pixel shader several times (known as ping-pong rendering).
Shadow mapping and projective shadows are similar techniques, so why can’t we use
this method? The answer: because the shadow map isn’t a black-and-white picture; it’s a
collection of depth values, and “blurring a depth map” doesn’t make sense.

In fact, the proposal is to use the color part of the shadow map render (which comes
almost for free) as projective texture for some objects. For example, assume that we
have an outdoor landscape scene and we want a high-quality blurred shadow on the
ground because ground shadows are the most noticeable.

Figure 14-16. Strong Aliasing
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1. Before rendering the depth shadow map, clear the color buffer with 1. During the
render, draw 0 into the color buffer for every object except the landscape; for the
landscape, draw 1 in color. After the whole shadow map renders, we’ll have 1 where
the landscape is nonshadowed and 0 where it’s shadowed. See Figure 14-18.

2. Blur the picture (the one in Figure 14-18) severely, using multiple passes with a sim-
ple blur pixel shader. For example, using a simple two-pass Gaussian blur gives good
results. (You might want to adjust the blurring radius for distant objects.) After this
step, we’ll have a high-quality blurred texture, as shown in Figure 14-19.

3. While rendering the scene with shadows, render the landscape with the blurred tex-
ture instead of the shadow map, and render all other objects with the depth part of
the shadow map. See Figure 14-20.

The difference in quality is dramatic.

Of course, we can use this method not only with landscapes, but also with any object that
does not need self-shadowing (such as floors, walls, ground planes, and so on). Fortunately,

Chapter 14 Perspective Shadow Maps: Care and Feeding

Figure 14-17. Filtered Aliasing
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Figure 14-18. The Original Color Part for a Small
Test Scene

Figure 14-19. The Blurred Color Part for a Small
Test Scene

Figure 14-20. Applying Blurring to a Real Scene
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in these areas shadows are most noticeable and aliasing problems are most evident. Because
we have several color channels, we can blur shadows on several objects at the same time:

● Using depth textures, the color buffer is completely free, so we can use all four chan-
nels for four objects.

● For floating-point textures, one channel stores depth information, so we have three
channels for blurring.

● For fixed-point textures, depth is usually stored in the red and green channels, so we
have only two free channels.

This way we’ll have nice blurred shadows on the ground, floor, walls, and so on while re-
taining all other shadows (blurred with PCF) on other objects (with proper self-shadowing).

14.4 Results
The screenshots in Figures 14-21, 14-22, 14-23, and 14-24 were captured on the
NVIDIA GeForce4 Ti 4600 in 1600×1200 screen resolution, with 100,000 to
500,000 visible polygons. All objects receive and cast shadows with real-time frame
rates (more than 30).

Figure 14-21.
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Figure 14-22.

Figure 14-23.
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Figure 14-24.
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