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Using Vertex Texture
Displacement for Realistic
Water Rendering
Yuri Kryachko
1C:Maddox Games

Chapter 18

18.1 Water Models

Water surfaces are common in computer graphics, especially in games. They are a criti-
cal element that can significantly improve the level of realism in a scene. But depicting
them realistically is a hard problem, because of the high visual complexity present in
the motion of water surfaces, as well as in the way light interacts with water. This chap-
ter describes techniques developed for rendering realistic depictions of the ocean for the
game Pacific Fighters.

Modern graphics hardware provides a number of useful features with DirectX Shader
Model 3.0 that can be used to aid the rendering of water surfaces. This chapter will
discuss how one of these features, vertex texturing, can be used to increase the realism
of rendered water surfaces. Figure 18-1 shows some sample results. In addition, we also
use branching in order to improve the performance of our vertex programs.

18.1 Water Models
For water animation and rendering, a number of methods have been developed. The
most remarkable and realistic-looking ones are those based on fluid dynamics and Fast
Fourier Transforms (FFTs)(such as Tessendorf 2001). These methods provide very real-
istic results, but unfortunately they require substantial amounts of computation, mak-
ing them inappropriate for interactive applications.
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At the other extreme, most games currently use very simple water models, most of
which employ normal maps to create visual details. Unfortunately, these approaches
cannot provide enough realism and do not faithfully reproduce waves on the surface.

We seek a technique that combines the speed of simple normal-mapped water-rendering
methods with the visual quality of FFT-like approaches.

18.2 Implementation
Our implementation builds upon rendering algorithms that employ normal maps for
lighting calculations. Because normal maps faithfully reproduce fine detail in high-
frequency waves, we use them for our lighting calculations. However, in addition, we
perturb the water mesh geometrically with lower-frequency waves with large amplitude.

18.2.1 Water Surface Model
Our model of a water surface is based on the superposition of several height maps, tiled
in both space and time. Each texture represents one “harmonic” or “octave” of the spec-
trum, and the textures are added together as in Fourier synthesis. These textures are
called height maps because each value represents the elevation of the corresponding
point above the horizontal plane.

Height maps are great for artists: creating them is as simple as painting a grayscale
image. See Figure 18-2. With height maps, artists can easily control the parameters of
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Figure 18-1. The Benefits of Displacement Mapping
Water surface rendered (left) with displacement mapping and (right) without displacement mapping.
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water animation down to individual waves by just painting their shapes. Height maps also
work well as vertex textures: using them to displace vertex positions vertically is trivial.

By combining several height maps with different spatial and time scales, we can achieve
complex and visually intricate animations:

The coefficients A and B and the number of terms under the sum are chosen heuristi-
cally to achieve the most aesthetically pleasing results while minimizing repeating-
pattern artifacts. In Pacific Fighters, we sum four height maps for lighting calculations,
and two of them with the largest scale are used for displacement mapping. This is suffi-
cient for simulating moving ocean surfaces at scales from 10 cm up to 40 km.

18.2.2 Implementation Details
All of the computations we need to perform can be classified into two groups: geometric
displacement computations and lighting computations. Because our water surface is
finely tessellated, it is reasonable to perform lighting calculations at the fragment program
level, offloading the displacement mapping to the vertex stage. Also, performing lighting
calculations at the vertex stage can create visual artifacts, especially in the distance.
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Figure 18-2. A Height Map Used for Water Displacement
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At the time of writing, the only hardware capable of doing vertex texturing were
GeForce 6 Series GPUs and the latest NVIDIA Quadro FX GPUs. The vertex texture
implementation on this hardware has certain restrictions; in particular, vertex textures
must be 32-bit-per-component textures, floating point, and they can’t use any filtering
mode except nearest filtering. Nevertheless, they proved to be very useful for the tech-
niques described in this chapter.

18.2.3 Sampling Height Maps
Our implementation samples the height maps per vertex and computes the resulting
displacement value in the vertex program. For sampling, we use a radial grid, centered
at the camera position. This grid is tessellated in such a way that it provides more detail
closer to the viewer, as shown in Figure 18-3.

The following equations show how the vertex positions for the radial grid are computed.

where i = [0..N − 1], j = [0..M − 1]. We choose a0, a1 so that

r a

r a a NN

0 0

1 0 1
4

10

1 40

= =

= + −( ) =−

 cm

 km.

r a a i

x r j M

y r j M

i j

i j

= +

= ( )
= ( )

0 1
4

2

2

,

,

cos

sin ,

π

π

Chapter 18 Using Vertex Texture Displacement for Realistic Water Rendering

Figure 18-3. Radial Grid for Sampling Vertex Textures
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With this approach, we naturally get distance-based tessellation, which provides a sim-
ple level-of-detail (LOD) scheme. Other approaches, such as the ROAM or SOAR
terrain-rendering algorithms, could be used here, but they require a significant amount
of work on the CPU side, which would eliminate all the benefits of using vertex tex-
tures. See Chapter 2 of this book, “Terrain Rendering Using GPU-Based Geometry
Clipmaps,” for another approach to rendering height fields on the GPU with adaptive
tessellation.

Listing 18-1 shows the simple vertex shader that implements sampling from a single
height map with a radial grid.

Listing 18-1. Vertex Shader for Sampling from a Height Map Using the Radial Grid Geometry

float4 main(float4 position : POSITION, 

uniform sampler2D tex0,

uniform float4x4 ModelViewProj,

uniform float4 DMParameters, // displacement map parameters

uniform float4 VOfs) : POSITION

{

// Read vertex packed as (cos(), sin(), j)

float4 INP = position; 

// Transform to radial grid vertex

INP.xy = INP.xy * (pow(INP.z, 4) * VOfs.z);

// Find displacement map texture coordinates

// VOfs.xy, DMParameters.x - Height texture offset and scale

float2 t = (INP.xy + VOfs.xy) * DMParameters.x;

// Fetch displacement value from texture (lod 0)

float vDisp =  tex2D(tex0, t).x;

// Scale fetched value from 0..1: 

// DMParameters.y - water level

// DMParameters.z - wavy amplitude

INP.z = DMParameters.y + (vDisp - 0.5) * DMParameters.z; 

// Displace current position with water height

// and project it

return mul(ModelViewProj, INP);

}
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18.2.4 Quality Improvements and Optimizations

Packing Heights for Bilinear Filtering
Vertex texture fetch can be quite expensive. On GeForce 6 Series hardware, a single
vertex texture fetch can introduce noticeable latency in the vertex program. So we want
to minimize the number of texture fetches inside the vertex program. On the other
hand, it is very desirable to perform some kind of filtering on the texture values; other-
wise, visual quality will be significantly degraded.

Traditional well-known filtering methods are bilinear and trilinear filtering. Bilinear
filtering computes the weighted average of four texels closest to the coordinates of the
texture fetch. Trilinear filtering averages the results of bilinear lookups in adjacent mip
levels, weighting each by the corresponding LOD fraction.

Because the current generation of graphics hardware doesn’t support any form of filter-
ing of vertex texture values, we have to emulate filtering in the shader with explicit
math instructions. When implemented naively, even the simplest bilinear filter would
require four texture lookups to calculate a single filtered value. A trilinear filter would
require twice as many texture lookups.

To reduce the number of texture fetches necessary for filtering, we build our texture in a
special way, so that each texel contains all the data necessary for a single bilinear texture
lookup. This is possible because our height maps are essentially one-component textures,
and we can pack four height values into a single texel of a four-component texture:

where i = 0..N − 1, j = 0..M − 1. H is our height map value, F is a filtering function,
and A is the packed output texture.

Listing 18-2 implements bilinear texture lookup into vertex texture, packed as shown
previously.
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Listing 18-2. Efficient Bilinear Texture Interpolation in Vertex Shaders
Based on fetching the appropriate four height components with a single texture fetch.

float tex2D_bilinear4x(uniform sampler2D tex, 
float4 t, 
float2 Scales)

{
float size  = Scales.x;
float scale = Scales.y;

float4 tAB0 = tex2Dbias(tex, t);

float2 f = frac(t.xy * size);
float2 tAB  = lerp(tAB0.xz, tAB0.yw, f.x);
return lerp(tAB.x, tAB.y, f.y);

}

We can extend this approach for trilinear filtering. Because trilinear filtering requires a
fractional LOD value, we can use the distance from the camera as a good approxima-
tion of LOD. The code in Listing 18-3 implements trilinear texture lookup into the
packed vertex texture.

Listing 18-3. Extending the Bilinear Filtering Technique to Trilinear Filtering

float tex2D_trilinear(uniform sampler2D tex, 
float4 t,
float2 Scales) 

{
float fr = frac(t.z);
t.z -= fr;  // floor(t.zw);
float Res;
if (fr < 0.30) 
Res =  tex2D_bilinear4x(tex, t.xyzz, Scales);

else if (fr > 0.70) 
Res =  tex2D_bilinear4x(tex, t.xyzz + float4(0, 0, 1, 1), 

Scales * float2(0.5, 2));
else {
Res = tex2D_bilinear4x(tex, t.xyzz, Scales);
float Res1 = tex2D_bilinear4x(tex, t.xyzz + float4(0, 0, 1, 1),

Scales * float2(0.5, 2));
fr = saturate((fr - 0.30) * (1 / (0.70 - 0.30)));
Res = Res1 * fr + Res * (1 - fr);

}
return Res;

}

18.2 Implementation 289
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Note that we’ve further optimized trilinear texture fetch by performing two texture lookups
only in the region where the influence of both mip levels is significant. In other regions, we
“snap” the LOD value to the closest mip level, thus saving on texture bandwidth.

Avoiding Unnecessary Work with Branching
Even with optimized texture filtering, the number of texture fetches during water ren-
dering can still be high, which significantly affects performance. We could reduce the
total number of rendered vertices, but that would lower overall visual detail and in-
crease aliasing.

Because we render our water with large batches of geometry, some of the triangles end up
being completely off-screen. Note that even for such triangles, the vertex program is still
executed, wasting precious computational resources. We can save a significant amount of
per-vertex work if we skip computation for triangles falling outside the camera frustum.

The vertex program operates at one vertex at a time and has no access to topological
information, so we can make decisions only on the per-vertex level, but not on the per-
triangle level. This can create artifacts if some of the vertices within a triangle skip ver-
tex texturing and others don’t. We have found that in practice our triangles and our
vertex texture displacements are small enough for this artifact not to be detectable.

The following pseudocode illustrates this idea:

float4 ClipPos = mul(ModelViewProj, INP);

float3 b0 = abs(ClipPos.xyz) < (ClipPos.www * C0 + C1);

if (all(b0)) { 

// Vertex belongs to visible triangle,

// Perform texture sampling and displace vertex accordingly

}

In the preceding code, we use the clip-space vertex position to determine if the current
vertex lies within the frustum, and then we perform the expensive computations only
when necessary.

The values C0 and C1 are special “fudge” constants that control how much triangles
need to extend beyond the camera frustum to trigger clipping. That way, we avoid arti-
facts caused by skipping texturing for out-of-frustum vertices whose triangles are still
visible. Effectively, we are making our “clipping” frustum slightly wider, allowing for a
certain amount of “guard-band” space along screen edges. Because our water plane is
tessellated finely enough and the vertex texture displacements are reasonable, this sim-
ple method works well in practice.

Chapter 18 Using Vertex Texture Displacement for Realistic Water Rendering
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Using Render-to-Texture
We can also improve the speed of our approach by first combining our height map
textures into a single floating-point texture in a separate pass. It then becomes unneces-
sary to perform multiple expensive filtering operations in the vertex shader. Addition-
ally, we can now use a more compact texture format, 16-bit floating point, for storage
of the original height maps. We could also store a sequence of animated height maps as
slices of a 3D texture, which would make animation smoother.

With this optimization, our rendering loop becomes two passes:

1. Combine the height maps using a special pixel shader by rendering a single quadrilat-
eral into an fp32-texture. Texels in this texture map to the vertices of the radial mesh.

2. Use the generated height map as a vertex texture to displace the radial mesh vertices,
as described previously.

Back Sides of Waves
Because our lighting computations are performed in the pixel shader under the assumption
that the water surface is flat, this approximation can cause visual artifacts in certain cases.

In the case depicted in Figure 18-4, we see the back side of the wave, even though it is
directed outward from the viewer due to geometrical displacement and shouldn’t be
visible in reality. This results in disturbing bright areas at the tops of the waves.

To minimize these artifacts, we adjust our normal vectors used for the lighting calculation
by “tilting” them toward the viewer a bit, so that they correspond to the front faces of the
wave more closely. You can find source code for this technique on the accompanying CD.
Figure 18-5 shows a scene produced using the methods described in this chapter.
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Figure 18-4. The r(x ) Function
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18.2.5 Rendering Local Perturbations
Sometimes it is desirable to render local choppiness caused by buoyant objects or by
objects falling into the water. This is especially important for games, where it is neces-
sary to generate explosions, ship trails, or the like. Because it is hard to integrate physi-
cally correct methods in our height-map-based model of the water surface, we discuss
simpler methods, based on heuristics.

Analytical Deformation Model
The simplest way to achieve local choppiness is to disturb displaced vertex positions
analytically, by combining them with the computed vertex position in the vertex
shader. For explosions, we can use the following formula:
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Figure 18-5. Extremely Realistic Water Rendered with Techniques Presented Here
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where r is the distance from the explosion center in the water plane and b is a decima-
tion constant. The values of I0, ω, and k are chosen according to a given explosion and
its parameters.

For rendering, we can use the same radial grid as the one used for regular water render-
ing, but centered at the explosion location.

Dynamic Displacement Mapping
Another option is to render all of the locally generated displacements directly into the
vertex texture, essentially implementing a general-purpose programming on the GPU
(GPGPU) type of approach. That way, we generate a vertex texture in the first pass and
then use it in a subsequent pass for the actual water rendering. As an additional benefit,
we can offload some work from the vertex shaders by filtering the base height map and
summing “octaves” in the pixel shader.

To calculate displacements, we can either employ the above-mentioned analytical
model or try using a cellular-automata approach, by evolving local displacements from
frame to frame. Wind effects can also be taken into account by blurring the texture
along the appropriate direction.

However, to cover 1 km of water surface with 50 cm resolution, it would be necessary
to use a texture about 2048×2048 in size, which would create additional pressure on
texture memory and shader execution speed. Also, quick transitions of the viewpoint
would be problematic.

Nevertheless, we encourage the reader to experiment with these approaches.

Foam Generation
When choppiness is strong enough, we can generate foam to further increase realism.
The simplest way to do this is to blend in a precreated foam texture at vertices
displaced above a certain height H0. Transparency of the foam texture is calculated ac-
cording to the following formula:

where Hmax is the height at which the foam is at maximum, H0 is the base height, and
H is the current height.
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The foam texture can be animated to show the evolution of foam creation and dissipa-
tion. The animation sequence can be either created manually by artists or generated
programmatically.

18.3 Conclusion
By combining the flexibility of vertex texture fetch and the performance-saving features of
dynamic branching, we were able to develop a practical method for rendering realistic-
looking water surfaces at interactive speeds. The approach described here was successfully
applied in the title Pacific Fighters, and it allowed us to create a realistic water surface
across a significant range of distances—from 10 cm up to 40 km. This is acceptable for
modern flight simulators. We were able to eliminate tiling artifacts across the whole visi-
ble region of the water surface.

Future hardware is likely to enable even more robust implementations of the technique,
in particular eliminating the need to manually perform filtering of the texture values, as
well as providing even more vertex shader performance.

The quality of our approach can be increased even further by employing advanced
shading techniques, such as parallax mapping, to provide fine-grained details and
bumps on the water surface. See Chapter 8, “Per-Pixel Displacement Mapping with
Distance Functions,” for one approach like this.

Finally, lighting calculations could greatly benefit from high-dynamic-range techniques,
because highly reflective water surfaces can exhibit huge brightness variations.
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