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Chapter 30

The previous chapter described how GPU architecture has changed as a result of compu-
tational and communications trends in microprocessing. This chapter describes the archi-
tecture of the GeForce 6 Series GPUs from NVIDIA, which owe their formidable
computational power to their ability to take advantage of these trends. Most notably, we
focus on the GeForce 6800 (NVIDIA’s flagship GPU at the time of writing, shown in
Figure 30-1), which delivers hundreds of gigaflops of single-precision floating-point com-
putation, as compared to approximately 12 gigaflops for current high-end CPUs. In this
chapter—and throughout the book—references to GeForce 6 Series GPUs should be read
to include the latest Quadro FX GPUs supporting Shader Model 3.0, which provide a
superset of the functionality offered by the GeForce 6 Series. We start with a general
overview of where the GPU fits into the overall computer system, and then we describe
the architecture along with details of specific features and performance characteristics.

30.1 How the GPU Fits into the Overall Computer System
The CPU in a modern computer system communicates with the GPU through a graph-
ics connector such as a PCI Express or AGP slot on the motherboard. Because the
graphics connector is responsible for transferring all command, texture, and vertex data
from the CPU to the GPU, the bus technology has evolved alongside GPUs over the
past few years. The original AGP slot ran at 66 MHz and was 32 bits wide, giving a
transfer rate of 264 MB/sec. AGP 2×, 4×, and 8× followed, each doubling the available

30.1 How the GPU Fits into the Overall Computer System

430_gems2_ch30_new.qxp  1/31/2005  6:56 PM  Page 471

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation



472 Chapter 30 The GeForce 6 Series GPU Architecture

bandwidth, until finally the PCI Express standard was introduced in 2004, with a maxi-
mum theoretical bandwidth of 4 GB/sec simultaneously available to and from the GPU.
(Your mileage may vary; currently available motherboard chipsets fall somewhat below
this limit—around 3.2 GB/sec or less.) 

It is important to note the vast differences between the GPU’s memory interface band-
width and bandwidth in other parts of the system, as shown in Table 30-1.

Table 30-1. Available Memory Bandwidth in Different Parts of the Computer System 

Component Bandwidth

GPU Memory Interface 35 GB/sec

PCI Express Bus (×16) 8 GB/sec

CPU Memory Interface 6.4 GB/sec
(800 MHz Front-Side Bus)

Figure 30-1. The GeForce 6800 Microprocessor
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Table 30-1 reiterates some of the points made in the preceding chapter: there is a vast
amount of bandwidth available internally on the GPU. Algorithms that run on the
GPU can therefore take advantage of this bandwidth to achieve dramatic performance
improvements. 

30.2 Overall System Architecture
The next two subsections go into detail about the architecture of the GeForce 6 Series
GPUs. Section 30.2.1 describes the architecture in terms of its graphics capabilities.
Section 30.2.2 describes the architecture with respect to the general computational capa-
bilities that it provides. See Figure 30-2 for an illustration of the system architecture.

30.2.1 Functional Block Diagram for Graphics Operations
Figure 30-3 illustrates the major blocks in the GeForce 6 Series architecture. In this
section, we take a trip through the graphics pipeline, starting with input arriving from
the CPU and finishing with pixels being drawn to the frame buffer. 

30.2 Overall System Architecture

Figure 30-2. The Overall System Architecture of a PC
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First, commands, textures, and vertex data are received from the host CPU through
shared buffers in system memory or local frame-buffer memory. A command stream is
written by the CPU, which initializes and modifies state, sends rendering commands, and
references the texture and vertex data. Commands are parsed, and a vertex fetch unit is
used to read the vertices referenced by the rendering commands. The commands, vertices,
and state changes flow downstream, where they are used by subsequent pipeline stages.

The vertex processors (sometimes called “vertex shaders”), shown in Figure 30-4, allow
for a program to be applied to each vertex in the object, performing transformations,
skinning, and any other per-vertex operation the user specifies. For the first time, a
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Figure 30-3. A Block Diagram of the GeForce 6 Series Architecture
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GPU—the GeForce 6 Series—allows vertex programs to fetch texture data. All opera-
tions are done in 32-bit floating-point (fp32) precision per component. The GeForce 6
Series architecture supports scalable vertex-processing horsepower, allowing the same
architecture to service multiple price/performance points. In other words, high-end
models may have six vertex units, while low-end models may have two.

Because vertex processors can perform texture accesses, the vertex engines are connected
to the texture cache, which is shared with the fragment processors. In addition, there is
a vertex cache that stores vertex data both before and after the vertex processor, reduc-
ing fetch and computation requirements. This means that if a vertex index occurs twice
in a draw call (for example, in a triangle strip), the entire vertex program doesn’t have to
be rerun for the second instance of the vertex—the cached result is used instead. 

Vertices are then grouped into primitives, which are points, lines, or triangles. The
Cull/Clip/Setup blocks perform per-primitive operations, removing primitives that
aren’t visible at all, clipping primitives that intersect the view frustum, and performing
edge and plane equation setup on the data in preparation for rasterization.
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Figure 30-4. The GeForce 6 Series Vertex Processor
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The rasterization block calculates which pixels (or samples, if multisampling is enabled)
are covered by each primitive, and it uses the z-cull block to quickly discard pixels (or
samples) that are occluded by objects with a nearer depth value. Think of a fragment as
a “candidate pixel”: that is, it will pass through the fragment processor and several tests,
and if it gets through all of them, it will end up carrying depth and color information
to a pixel on the frame buffer (or render target).

Figure 30-5 illustrates the fragment processor (sometimes called a “pixel shader”) and
texel pipeline. The texture and fragment-processing units operate in concert to apply a
shader program to each fragment independently. The GeForce 6 Series architecture
supports a scalable amount of fragment-processing horsepower. Another popular way to
say this is that GPUs in the GeForce 6 Series can have a varying number of fragment
pipelines (or “pixel pipelines”). Similar to the vertex processor, texture data is cached on-
chip to reduce bandwidth requirements and improve performance.

The texture and fragment-processing unit operates on squares of four pixels (called
quads) at a time, allowing for direct computation of derivatives for calculating texture
level of detail. Furthermore, the fragment processor works on groups of hundreds of
pixels at a time in single-instruction, multiple-data (SIMD) fashion (with each fragment
processor engine working on one fragment concurrently), hiding the latency of texture
fetch from the computational performance of the fragment processor.

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-5. The GeForce 6 Series Fragment Processor and Texel Pipeline

430_gems2_ch30_new.qxp  1/31/2005  6:57 PM  Page 476

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation



The fragment processor uses the texture unit to fetch data from memory, optionally filter-
ing the data before returning it to the fragment processor. The texture unit supports many
source data formats (see Section 30.3.3, “Supported Data Storage Formats”). Data can be
filtered using bilinear, trilinear, or anisotropic filtering. All data is returned to the fragment
processor in fp32 or fp16 format. A texture can be viewed as a 2D or 3D array of data that
can be read by the texture unit at arbitrary locations and filtered to reconstruct a continu-
ous function. The GeForce 6 Series supports filtering of fp16 textures in hardware.

The fragment processor has two fp32 shader units per pipeline, and fragments are
routed through both shader units and the branch processor before recirculating through
the entire pipeline to execute the next series of instructions. This rerouting happens once
for each core clock cycle. Furthermore, the first fp32 shader can be used for perspective
correction of texture coordinates when needed (by dividing by w), or for general-purpose
multiply operations. In general, it is possible to perform eight or more math operations
in the pixel shader during each clock cycle, or four math operations if a texture fetch
occurs in the first shader unit.

On the final pass through the pixel shader pipeline, the fog unit can be used to blend
fog in fixed-point precision with no performance penalty. Fog blending happens often
in conventional graphics applications and uses the following function:

out = FogColor * fogFraction + SrcColor * (1 - fogFraction)

This function can be made fast and small using fixed-precision math, but in general
IEEE floating point, it requires two full multiply-adds to do effectively. Because fixed
point is efficient and sufficient for fog, it exists in a separate small unit at the end of the
shader. This is a good example of the trade-offs in providing flexible programmable
hardware while still offering maximum performance for legacy applications.

Fragments leave the fragment-processing unit in the order that they are rasterized and
are sent to the z-compare and blend units, which perform depth testing (z comparison
and update), stencil operations, alpha blending, and the final color write to the target
surface (an off-screen render target or the frame buffer).

The memory system is partitioned into up to four independent memory partitions,
each with its own dynamic random-access memories (DRAMs). GPUs use standard
DRAM modules rather than custom RAM technologies to take advantage of market
economies and thereby reduce cost. Having smaller, independent memory partitions
allows the memory subsystem to operate efficiently regardless of whether large or small
blocks of data are transferred. All rendered surfaces are stored in the DRAMs, while
textures and input data can be stored in the DRAMs or in system memory. The four

30.2 Overall System Architecture 477

430_gems2_ch30_new.qxp  1/31/2005  6:57 PM  Page 477

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation



478

independent memory partitions give the GPU a wide (256 bits), flexible memory sub-
system, allowing for streaming of relatively small (32-byte) memory accesses at near the
35 GB/sec physical limit.

30.2.2 Functional Block Diagram for Non-Graphics Operations
As graphics hardware becomes more and more programmable, applications unrelated to
the standard polygon pipeline (as described in the preceding section) are starting to
present themselves as candidates for execution on GPUs.

Figure 30-6 shows a simplified view of the GeForce 6 Series architecture, when used as a
graphics pipeline. It contains a programmable vertex engine, a programmable fragment
engine, a texture load/filter engine, and a depth-compare/blending data write engine.

In this alternative view, a GPU can be seen as a large amount of programmable floating-
point horsepower and memory bandwidth that can be exploited for compute-intensive
applications completely unrelated to computer graphics.

Figure 30-7 shows another way to view the GeForce 6 Series architecture. When used for
non-graphics applications, it can be viewed as two programmable blocks that run serially:
the vertex processor and the fragment processor, both with support for fp32 operands and
intermediate values. Both use the texture unit as a random-access data fetch unit and access
data at a phenomenal 35 GB/sec (550 MHz DDR memory clock × 256 bits per clock
cycle × 2 transfers per clock cycle). In addition, both the vertex and the fragment processor
are highly computationally capable. (Performance details follow in Section 30.4.)

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-6. The GeForce 6 Series Architecture Viewed as a Graphics Pipeline
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The vertex processor operates on data, passing it directly to the fragment processor, or
by using the rasterizer to expand the data into interpolated values. At this point, each
triangle (or point) from the vertex processor has become one or more fragments.

Before a fragment reaches the fragment processor, the z-cull unit compares the pixel’s
depth with the values that already exist in the depth buffer. If the pixel’s depth is
greater, the pixel will not be visible, and there is no point shading that fragment, so the
fragment processor isn’t even executed. (This optimization happens only if it’s clear that
the fragment processor isn’t going to modify the fragment’s depth.) Thinking in a 
general-purpose sense, this early culling feature makes it possible to quickly decide to
skip work on specific fragments based on a scalar test. Chapter 34 of this book, “GPU
Flow-Control Idioms,” explains how to take advantage of this feature to efficiently
predicate work for general-purpose computations. 

After the fragment processor runs on a potential pixel (still a “fragment” because it has
not yet reached the frame buffer), the fragment must pass a number of tests in order to
move farther down the pipeline. (There may also be more than one fragment that
comes out of the fragment processor if multiple render targets [MRTs] are being used.
Up to four MRTs can be used to write out large amounts of data—up to 16 scalar
floating-point values at a time, for example—plus depth.)

First, the scissor test rejects the fragment if it lies outside a specified subrectangle of the
frame buffer. Although the popular graphics APIs define scissoring at this location in the
pipeline, it is more efficient to perform the scissor test in the rasterizer. Scissoring in x and
y actually happens in the rasterizer, before fragment processing, and z scissoring happens
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Figure 30-7. The GeForce 6 Series Architecture for Non-Graphics Applications
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during z-cull. This avoids all fragment processor work on scissored (rejected) pixels. Scis-
soring is rarely useful for general-purpose computation because general-purpose program-
mers typically draw rectangles to perform computations in the first place.

Next, the fragment’s depth is compared with the depth in the frame buffer. If the depth
test passes, the fragment moves on in the pipeline. Optionally, the depth value in the
frame buffer can be replaced at this stage.

After this, the fragment can optionally test and modify what is known as the stencil
buffer, which stores an integer value per pixel. The stencil buffer was originally
intended to allow programmers to mask off certain pixels (for example, to restrict draw-
ing to a cockpit’s windshield), but it has found other uses as a way to count values by
incrementing or decrementing the existing value. This feature is used for stencil shadow
volumes, for example.

If the fragment passes the depth and stencil tests, it can then optionally modify the
contents of the frame buffer using the blend function. A blend function can be
described as

out = src * srcOp + dst * dstOp

where source is the fragment color flowing down the pipeline; dst is the color value
in the frame buffer; and srcOp and dstOp can be specified to be constants, source
color components, or destination color components. Full blend functionality is sup-
ported for all pixel formats up to fp16×4. However, fp32 frame buffers don’t support
blending—only updating the buffer is allowed.

Finally, a feature called occlusion query makes it possible to quickly determine if any of
the fragments that would be rendered in a particular computation would cause results
to be written to the frame buffer. (Recall that fragments that do not pass the z-test don’t
have any effect on the values in the frame buffer.) Traditionally, the occlusion query test
is used to allow graphics applications to avoid making draw calls for occluded objects,
but it is useful for GPGPU applications as well. For instance, if the depth test is used to
determine which outputs need to be updated in a sparse array, updating depth can be
used to indicate when a given output has converged and no further work is needed. In
this case, occlusion query can be used to tell when all output calculations are done. See
Chapter 34 of this book, “GPU Flow-Control Idioms,” for further information about
this idea.

Chapter 30 The GeForce 6 Series GPU Architecture

430_gems2_ch30_new.qxp  1/31/2005  6:57 PM  Page 480

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation



30.3 GPU Features
This section covers both fixed-function features and Shader Model 3.0 support (de-
scribed in detail later) in GeForce 6 Series GPUs. As we describe the various pieces, we
focus on the many new features that are meant to make applications shine (in terms of
both visual quality and performance) on GeForce 6 Series GPUs.

30.3.1 Fixed-Function Features

Geometry Instancing
With Shader Model 3.0, the capability for sending multiple batches of geometry with
one Direct3D call has been added, greatly reducing driver overhead in these cases. The
hardware feature that enables instancing is vertex stream frequency—the ability to read
vertex attributes at a frequency less than once every output vertex, or to loop over a
subset of vertices multiple times. Instancing is most useful when the same object is
drawn multiple times with different positions, for example, when rendering an army of
soldiers or a field of grass.

Early Culling/Clipping
GeForce 6 Series GPUs are able to cull nonvisible primitives before shading at a high
rate and clip partially visible primitives at full speed. Previous NVIDIA products would
cull nonvisible primitives at primitive-setup rates, and clip all partially visible primitives
at full speed.

Rasterization
Like previous NVIDIA products, GeForce 6 Series GPUs are capable of rendering the
following objects:

● Point sprites

● Aliased and antialiased lines

● Aliased and antialiased triangles

Multisample antialiasing is also supported, allowing accurate antialiased polygon ren-
dering. Multisample antialiasing supports all rasterization primitives. Multisampling is
supported in previous NVIDIA products, though the 4× multisample pattern was
improved for GeForce 6 Series GPUs.

30.3 GPU Features 481
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Z-Cull
NVIDIA GPUs since GeForce3 have technology, called z-cull, that allows hidden sur-
face removal at speeds much faster than conventional rendering. The GeForce 6 Series
z-cull unit is the third generation of this technology, which has increased efficiency for
a wider range of cases. Also, in cases where stencil is not being updated, early stencil
reject can be employed to remove rendering early when stencil test (based on equals
comparison) fails.

Occlusion Query
Occlusion query is the ability to collect statistics on how many fragments passed or
failed the depth test and to report the result back to the host CPU. Occlusion query
can be used either while rendering objects or with color and z-write masks turned off,
returning depth test status for the objects that would have been rendered, without
modifying the contents of the frame buffer. This feature has been available since the
GeForce3 was introduced.

Texturing
Like previous GPUs, GeForce 6 Series GPUs support bilinear, trilinear, and anisotropic
filtering on 2D and cube-map textures of various formats. Three-dimensional textures
support bilinear, trilinear, and quad-linear filtering, with and without mipmapping.
Here are the new texturing features on GeForce 6 Series GPUs:

● Support for all texture types (2D, cube map, 3D) with fp16×2, fp16×4, fp32×1,
fp32×2, and fp32×4 formats

● Support for all filtering modes on fp16×2 and fp16×4 texture formats

● Extended support for non-power-of-two textures to match support for power-of-two
textures, specifically:

– Mipmapping

– Wrapping and clamping

– Cube map and 3D textures

Shadow Buffer Support
NVIDIA GPUs support shadow buffering directly. The application first renders the
scene from the light source into a separate z-buffer. Then during the lighting phase, it
fetches the shadow buffer as a projective texture and performs z-compares of the
shadow buffer data against a value corresponding to the distance from the light. If the

Chapter 30 The GeForce 6 Series GPU Architecture
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distance passes the test, it’s in light; if not, it’s in shadow. NVIDIA GPUs have dedi-
cated transistors to perform four z-compares per pixel (on four neighboring z-values)
per clock, and to perform bilinear filtering of the pass/fail data. This more advanced
variation of percentage-closer filtering saves many shader instructions compared to
GPUs that don’t have direct shadow buffer support.

High-Dynamic-Range Blending Using fp16 Surfaces, Texture Filtering,
and Blending
GeForce 6 Series GPUs allow for fp16×4 (four components, each represented by a 
16-bit float) filtered textures in the pixel shaders; they also allow performing all alpha-
blending operations on fp16×4 filtered surfaces. This permits intermediate rendered
buffers at a much higher precision and range, enabling high-dynamic-range rendering,
motion blur, and many other effects. In addition, it is possible to specify a separate
blending function for color and alpha values. (The lowest-end member of the GeForce
6 Series family, the GeForce 6200 TC, does not support floating-point blending or
floating-point texture filtering because of its lower memory bandwidth, as well as to
save area on the chip.)

30.3.2 Shader Model 3.0 Programming Model
Along with the fixed-function features listed previously, the capabilities of the vertex
and the fragment processors have been enhanced in GeForce 6 Series GPUs. With
Shader Model 3.0, the programming models for vertex and fragment processors are
converging: both support fp32 precision, texture lookups, and the same instruction set.
Specifically, here are the new features that have been added.

Vertex Processor
● Increased instruction count. The total instruction count is now 512 static instructions

and 65,536 dynamic instructions. The static instruction count represents the number
of instructions in a program as it is compiled. The dynamic instruction count repre-
sents the number of instructions actually executed. In practice, the dynamic count can
be much higher than the static count due to looping and subroutine calls.

● More temporary registers. Up to 32 four-wide temporary registers can be used in a
vertex program.

● Support for instancing. This enhancement was described earlier.

30.3 GPU Features 483
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● Dynamic flow control. Branching and looping are now part of the shader model. On
the GeForce 6 Series vertex engine, branching and looping have minimal overhead of
just two cycles. Also, each vertex can take its own branches without being grouped in
the way pixel shader branches are. So as branches diverge, the GeForce 6 Series vertex
processor still operates efficiently.

● Vertex texturing. Textures can now be fetched in a vertex program, although only
nearest-neighbor filtering is supported in hardware. More advanced filters can of
course be implemented in the vertex program. Up to four unique textures can be
accessed in a vertex program, although each texture can be accessed multiple times.
Vertex textures generate latency for fetching data, unlike true constant reads. There-
fore, the best way to use vertex textures is to do a texture fetch and follow it with
arithmetic operations to hide the latency before using the result of the texture fetch.

Each vertex engine is capable of simultaneously performing a four-wide SIMD MAD
(multiply-add) instruction and a scalar special function per clock cycle. Special function
instructions include:

● Exponential functions: EXP, EXPP, LIT, LOG, LOGP

● Reciprocal instructions: RCP, RSQ

● Trigonometric functions: SIN, COS

Fragment Processor
● Increased instruction count. The total instruction count is now 65,535 static in-

structions and 65,535 dynamic instructions. There are limitations on how long the
operating system will wait while the shader finishes working, so a long shader pro-
gram working on a full screen of pixels may time-out. This makes it important to
carefully consider the shader length and number of fragments rendered in one draw
call. In practice, the number of instructions exposed by the driver tends to be smaller,
because the number of instructions can expand as code is translated from Direct3D
pixel shaders or OpenGL fragment programs to native hardware instructions.

● Multiple render targets. The fragment processor can output to up to four separate
color buffers, along with a depth value. All four separate color buffers must be the
same format and size. MRTs can be particularly useful when operating on scalar data,
because up to 16 scalar values can be written out in a single pass by the fragment
processor. Sample uses of MRTs include particle physics, where positions and veloci-
ties are computed simultaneously, and similar GPGPU algorithms. Deferred shading
is another technique that computes and stores multiple four-component floating-
point values simultaneously: it computes all material properties and stores them in

Chapter 30 The GeForce 6 Series GPU Architecture

430_gems2_ch30_new.qxp  1/31/2005  6:57 PM  Page 484

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation



separate textures. So, for example, the surface normal and the diffuse and specular
material properties could be written to textures, and the textures could all be used in
subsequent passes when lighting the scene with multiple lights. This is illustrated in
Figure 30-8.

● Dynamic flow control (branching). Shader Model 3.0 supports conditional branch-
ing and looping, allowing for more flexible shader programs.

● Indexing of attributes. With Shader Model 3.0, an index register can be used to
select which attributes to process, allowing for loops to perform the same operation
on many different inputs.

● Up to ten full-function attributes. Shader Model 3.0 supports ten full-function 
attributes/texture coordinates, instead of Shader Model 2.0’s eight full-function at-
tributes plus specular color and diffuse color. All ten Shader Model 3.0 attributes are
interpolated at full fp32 precision, whereas Shader Model 2.0’s diffuse and specular
color were interpolated at only 8-bit integer precision.

● Centroid sampling. Shader Model 3.0 allows a per-attribute selection of center sam-
pling, or centroid sampling. Centroid sampling returns a value inside the covered por-
tion of the fragment, instead of at the center, and when used with multisampling, it
can remove some artifacts associated with sampling outside the polygon (for example,
when calculating diffuse or specular color using texture coordinates, or when using
texture atlases).

● Support for fp32 and fp16 internal precision. Fragment programs can support full
fp32-precision computations and intermediate storage or partial-precision fp16 com-
putations and intermediate storage.

30.3 GPU Features 485

Figure 30-8. How MRTs Work
MRTs make it possible for a fragment program to return four four-wide color values plus a depth value.
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● 3:1 and 2:2 coissue. Each four-component-wide vector unit is capable of executing
two independent instructions in parallel, as shown in Figure 30-9: either one three-
wide operation on RGB and a separate operation on alpha, or one two-wide opera-
tion on red-green and a separate two-wide operation on blue-alpha. This gives the
compiler more opportunity to pack scalar computations into vectors, thereby doing
more work in a shorter time.

● Dual issue. Dual issue is similar to coissue, except that the two independent instruc-
tions can be executed on different parts of the shader pipeline. This makes the
pipeline easier to schedule and, therefore, more efficient. See Figure 30-10.

Chapter 30 The GeForce 6 Series GPU Architecture

Figure 30-9. How Coissue Works
Two separate operations can concurrently execute on different parts of a four-wide register.

Figure 30-10. How Dual Issue Works
Independent instructions can be executed on independent units in the computational pipeline.
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Fragment Processor Performance
The GeForce 6 Series fragment processor architecture has the following performance
characteristics:

● Each pipeline is capable of performing a four-wide, coissue-able multiply-add (MAD)
or four-term dot product (DP4), plus a four-wide, coissue-able and dual-issuable
multiply instruction per clock in series, as shown in Figure 30-11. In addition, a
multifunction unit that performs complex operations can replace the alpha channel
MAD operation. Operations are performed at full speed on both fp32 and fp16 data,
although storage and bandwidth limitations can favor fp16 performance sometimes.
In practice, it is sometimes possible to execute eight math operations and a texture
lookup in a single cycle.

● Dedicated fp16 normalization hardware exists, making it possible to normalize a
vector at fp16 precision in parallel with the multiplies and MADs just described.

● An independent reciprocal operation can be performed in parallel with the multiply,
MAD, and fp16 normalization described previously.

● Because the GeForce 6800 has 16 fragment-processing pipelines, the overall available
performance of the system is given by these values multiplied by 16 and then by the
clock rate.

● There is some overhead to flow-control operations, as defined in Table 30-2.
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Figure 30-11. Shader Units and Capabilities in the Fragment Processor
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Table 30-2. Overhead Incurred When Executing Flow-Control Operations in Fragment Programs

Instruction Cost (Cycles)
If / endif 4
If /else / endif 6
Call 2
Ret 2
Loop / endloop 4

Furthermore, branching in the fragment processor is affected by the level of divergence
of the branches. Because the fragment processor operates on hundreds of pixels per
instruction, if a branch is taken by some fragments and not others, all fragments exe-
cute both branches, but only writing to the registers on the branches each fragment is
supposed to take. For low-frequency and mid-frequency branch changes, this effect is
hidden, although it can become a limiter as the branch frequency increases.

30.3.3 Supported Data Storage Formats
Table 30-3 summarizes the data formats supported by the graphics pipeline.

30.4 Performance
The GeForce 6800 Ultra is the flagship product of the GeForce 6 Series family at the
time of writing. Its performance is summarized as follows:

● 425 MHz internal graphics clock

● 550 MHz memory clock

● 600 million vertices/second

● 6.4 billion texels/second

● 12.8 billion pixels/second, rendering z/stencil-only (useful for shadow volumes and
shadow buffers)

● 6 four-wide fp32 vector MADs per clock cycle in the vertex shader, plus one scalar multi-
function operation (a complex math operation, such as a sine or reciprocal square root)

● 16 four-wide fp32 vector MADs per clock cycle in the fragment processor, plus 16
four-wide fp32 multiplies per clock cycle

● 64 pixels per clock cycle early z-cull (reject rate)

As you can see, there’s plenty of programmable floating-point horsepower in the vertex
and fragment processors that can be exploited for computationally demanding problems.

Chapter 30 The GeForce 6 Series GPU Architecture
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Table 30-3. Data Storage Formats Supported by GeForce 6 Series GPUs

Format Description of Data in Memory

Vertex
Texture
Support

Fragment
Texture
Support

Render
Target

Support

B8 One 8-bit fixed-point number ✗ ✓ ✓

A1R5G5B5 A 1-bit value and three 5-bit unsigned fixed-point
numbers

✗ ✓ ✓

A4R4G4B4 Four 4-bit unsigned fixed-point numbers ✗ ✓ ✗

R5G6B5 5-bit, 6-bit, and 5-bit fixed-point numbers ✗ ✓ ✓

A8R8G8B8 Four 8-bit fixed-point numbers ✗ ✓ ✓

DXT1 Compressed 4×4 pixels into 8 bytes ✗ ✓ ✗

DXT2,3,4,5 Compressed 4×4 pixels into 16 bytes ✗ ✓ ✗

G8B8 Two 8-bit fixed-point numbers ✗ ✓ ✓

B8R8_G8R8 Compressed as YVYU; two pixels in 32 bits ✗ ✓ ✗

R8B8_R8G8 Compressed as VYUY; two pixels in 32 bits ✗ ✓ ✗

R6G5B5 6-bit, 5-bit, and 5-bit unsigned fixed-point numbers ✗ ✓ ✗

DEPTH24_D8 A 24-bit unsigned fixed-point number and 8 bits of
garbage

✗ ✓ ✓

DEPTH24_D8_FLOAT A 24-bit unsigned float and 8 bits of garbage ✗ ✓ ✓

DEPTH16 A 16-bit unsigned fixed-point number ✗ ✓ ✓

DEPTH16_FLOAT A 16-bit unsigned float ✗ ✓ ✓

X16 A 16-bit fixed-point number ✗ ✓ ✗

Y16_X16 Two 16-bit fixed-point numbers ✗ ✓ ✗

R5G5B5A1 Three unsigned 5-bit fixed-point numbers and a 1-bit
value

✗ ✓ ✓

HILO8 Two unsigned 16-bit values compressed into two 8-bit
values

✗ ✓ ✗

HILO_S8 Two signed 16-bit values compressed into two 8-bit
values

✗ ✓ ✗

W16_Z16_Y16_X16 FLOAT Four fp16 values ✗ ✓ ✓

W32_Z32_Y32_X32 FLOAT Four fp32 values ✓
(unfiltered)

✓
(unfiltered)

✓

X32_FLOAT One 32-bit floating-point number ✓
(unfiltered)

✓
(unfiltered)

✓

D1R5G5B5 1 bit of garbage and three unsigned 5-bit fixed-point
numbers

✗ ✓ ✓

D8R8G8B8 8 bits of garbage and three unsigned 8-bit fixed-point
numbers

✗ ✓ ✓

Y16_X16 FLOAT Two 16-bit floating-point numbers ✗ ✓ ✗

✓ = Yes ✗ = No

430_gems2_ch30_new.qxp  1/31/2005  6:58 PM  Page 489

Excerpted from GPU Gems 2
Copyright 2005 by NVIDIA Corporation



490

30.5 Achieving Optimal Performance
While graphics hardware is becoming more and more programmable, there are still
some tricks to ensuring that you exploit the hardware fully to get the most perform-
ance. This section lists some common techniques that you may find helpful. A more
detailed discussion of performance advice is available in the NVIDIA GPU Program-
ming Guide, which is freely available in several languages from the NVIDIA Developer
Web site (http://developer.nvidia.com/object/gpu_programming_guide.html).

30.5.1 Use Z-Culling Aggressively
Z-cull avoids work that won’t contribute to the final result. It’s better to determine early
on that a computation doesn’t matter and save doing the work. In graphics, this can be
done by rendering the z-values for all objects first, before shading. For general-purpose
computation, the z-cull unit can be used to select which parts of the computation are
still active, culling computational threads that have already resolved. See Section 34.2.3
of Chapter 34, “GPU Flow-Control Idioms,” for more details on this idea.

30.5.2 Exploit Texture Math When Loading Data
The texture unit filters data before returning it to the fragment processor, thus reducing the
total data needed by the shader. The texture unit’s bilinear filtering can frequently be used
to reduce the total work done by the shader if it’s performing more sophisticated shading.

Often, large filter kernels can be dissected into groups of bilinear footprints, which are
scaled and accumulated to build the large kernel. A few caveats apply here, most no-
tably that all filter coefficients must be positive for bilinear footprint assembly to work
properly. (See Chapter 20, “Fast Third-Order Texture Filtering,” for more information
about this technique.)

Similarly, the filtering support given by shadow buffering can be used to offload the
work from the processor when performing compares, then filtering the results.

30.5.3 Use Branching in Fragment Programs Judiciously
Because the fragment processor is a SIMD machine operating on many fragments at a
time, if some fragments in a given group take one branch and other fragments in that
group take another branch, the fragment processor needs to take both branches. Also,
there is a six-cycle overhead for if-else-endif control structures. These two effects can
reduce the performance of branching programs if not considered carefully. Branching
can be very beneficial, as long as the work avoided outweighs the cost of branching.
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Alternatively, conditional writes (that is, write if a condition code is set) can be used
when branching is not performance-effective. In practice, the compiler will use the
method that delivers higher performance when possible.

30.5.4 Use fp16 Intermediate Values Wherever Possible
Because GeForce 6 Series GPUs support a full-speed fp16 normalize instruction in parallel
with the multiplies and adds, and because fp16 intermediate values reduce internal storage
and datapath requirements, using fp16 intermediate values wherever possible can be a
performance win, saving fp32 intermediate values for cases where the precision is needed.

Excessive internal storage requirements can adversely affect performance in the follow-
ing way: The shader pipeline is optimized to keep hundreds of fragments in flight given
a fixed amount of register space per fragment (four fp32×4 registers or eight fp16×4
registers). If the register space is exceeded, then fewer fragments can remain in flight,
reducing the latency tolerance for texture fetches, and adversely affecting performance.
The GeForce 6 Series fragment processor will have the maximum number of fragments
in flight when shader programs use up to four fp32×4 temporary registers (or eight
fp16×4 registers). That is, at any one time, a maximum of four temporary fp32×4 (or
eight fp16×4) registers are in use. This decision was based on the fact that for the over-
whelming majority of analyzed shaders, four or fewer simultaneously active fp32×4
registers proved to be the sweet spot during the shaders’ execution. In addition, the
architecture is designed so that performance degrades slowly if more registers are used. 

Similarly, the register file has enough read and write bandwidth to keep all the units
busy if reading fp16×4 values, but it may run out of bandwidth to feed all units if
using fp32×4 values exclusively. NVIDIA’s compiler technology is smart enough to
reduce this effect’s impact substantially, but fp16 intermediate values are never slower
than fp32 values; because of the resource restrictions and the fp16 normalize hardware,
they can often be much faster.

30.6 Conclusion
GeForce 6 Series GPUs provide the GPU programmer with unparalleled flexibility and
performance in a product line that spans the entire PC market. After reading this chap-
ter, you should have a better understanding of what GeForce 6 Series GPUs are capable
of, and you should be able to use this knowledge to develop applications—either
graphical or general purpose—in a more efficient way.
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