View Independent Environment
Mapping with Dual Paraboliod
Maps

Mark J. Kilgard
NVIDIA Corporation

Environment Map Problem

* Sphere mapping is view dependent

* Requests constant regeneration of sphere
map texture for changing viewpoints

* Must be a better way!

There is!

» Wolfgang Heidrich & Hans-Peter Seidel
have proposed a view independent
environment mapping scheme

* No special hardware requirements

* Uses two environment textures, each with
a parabolic basis

Parabolic basis (not spherical)

Requires two texture images

Advantage

Dual paraboloid maps capture complete
environment with no singularities

Linear basis

Well suited for dual-texture hardware such
as the RIVA TNT

View independent!

left front l'ight right back left

L bottom ‘

front texture back texture
alpha=1.0 inside circle,
alpha=0.0 outside circle

meshes
added

for clarity

Issues

* Must have way to “pick” environment
from the correct texture of the two for a
given pixel

— Alpha testing works in two passes

— The blend texture environment works will for
ARB_ multitexture

» Rotation needed to supply view
independence & projection needed

» Think texture matrix and perspective
correct textures!

Two pass approach

Adjust texture matrix for front view
Bind to “front” paraboloid map

Draw object with reflection map texgen,
alpha test away non-unity alpha

Adjust texture matrix for back view
Bind to “back” paraboloid map
Draw object same as before

Texture Matrix Setup

T P S M!

M !is linear part of the

affine modelview transformation

Texture Matrix Sub-parts

P is projective transform that divides
by the z component

Texture Matrix Sub-parts (2)

10 0 dx
0 -1 0 dy
S= 10 0 1 dz
0 0 0 1

S subtracts object-space reflection vector
from each paraboloid’s orientation, d
d is either [0,0,-1] or [0,0,1]

Texture Matrix Sub-parts (3)

S
)
0
|

T maps [-1, 1] vector space range

into [0, 1] texture space range

Reflection Vector Tex Coords

\ -] ° Texture matrix assumes glTexCoor3f
used to pass in eye-space reflection vector

 Alternative is to use NV _reflection_vector

OpenGL extension

— Special texture coordinate generation mode

— Supported by RIVA TNT OpenGL and Mesa 3.1

— GL _REFLECTION MAP NV generates eye-space
reflection vector

— GL_ NORMAL MAP NV generates eye-space
normal vector

Extension Usage

@ » Reflection map usage

mapMode = GL REFLECTION MAP NV;

glTexGeni(GL_S, GL TEXTURE GEN MODE, mapMode);
glTexGeni(GL T, GL TEXTURE GEN MODE, mapMode);
glTexGeni(GL R, GL TEXTURE GEN MODE, mapMode);

* Normal map usage

mapMode = GL NORMAL MAP NV;

glTexGeni(GL_S, GL TEXTURE GEN MODE, mapMode);
glTexGeni(GL T, GL_ TEXTURE GEN MODE, mapMode);
glTexGeni(GL_R, GL TEXTURE GEN MODE, mapMode);

Extension Enumerant Values

* #define GL NORMAL MAP NV 0x8511
+ #define GL REFLECTION MAP NV 0x8512

Basis for Per-pixel Lighting

* Encode the specular directional light
contributions in the scene as two dual
paraboloid maps; use with reflection vector

* Encode the diffuse directional light
contributions for the scene in another set of
maps; use with normal vector

* Two multi-textured passes gives per-pixel
specular and diffuse lighting

How to map (rx,ry,rz) unit vector to
(s,t) texture coordinate in [-1,1] range.

front back
s=1x/(1-rz) s=-1x/(rz+1)
t =ty /(l-rz) t=-ry/(z+1)

Reverse mapping: (s,t) to (rx,ry,rz)

front back
x=2s/(s"2+t"2+1) rx=-28/(s"2+t"2+1)
ry=2t/(s"2+t"2+ 1) ry=-2t/(s"2+t2+1)
Z=(1+s2+t12)/ ("2 +t2+1) 1z=-(-1+2+t"2)/(s"2+t"2+1)

References

» Heidrich & Seidel, “View-independent
Environment Maps”™ Eurographics
Workshop on Graphics Hardware, 1998.

» Background: Doug Voorhies & Jim
Foran, “Reflection vector shading
hardware,” SIGGRAPH ‘94 Proceedings,
1994.

