View Independent Environment Mapping with Dual Paraboliod Maps

Mark J. Kilgard

NVIDIA Corporation

Issues

- Must have way to "pick" environment from the correct texture of the two for a given pixel
 - Alpha testing works in two passes
 - The blend texture environment works will for ARB_multitexture
- Rotation needed to supply view independence & projection needed
- Think texture matrix and perspective correct textures!

9

OpenGL.

OpenGL

Two pass approach

- Adjust texture matrix for front view
- Bind to "front" paraboloid map
- Draw object with reflection map texgen, alpha test away non-unity alpha
- Adjust texture matrix for back view
- Bind to "back" paraboloid map
- Draw object same as before

Reflection Vector Tex Coords

- Alternative is to use NV_reflection_vector OpenGL extension
 - Special texture coordinate generation mode
 - Supported by RIVA TNT OpenGL and Mesa 3.1
 - GL_REFLECTION_MAP_NV generates eye-space reflection vector
 - GL_NORMAL_MAP_NV generates eye-space normal vector

15

Extension Usage

Reflection map usage


```
mapMode = GL_REFLECTION_MAP_NV;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, mapMode);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, mapMode);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, mapMode);
```


Normal map usage


```
mapMode = GL_NORMAL_MAP_NV;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, mapMode);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, mapMode);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, mapMode);
```


Basis for Per-pixel Lighting

 Two multi-textured passes gives per-pixel specular and diffuse lighting

Dual-parabolic Mapping Math

How to map (rx,ry,rz) unit vector to (s,t) texture coordinate in [-1,1] range.

back front s = -rx / (rz + 1)s = rx / (1-rz)t = -ry/(rz + 1)t = ry / (1-rz)

Reverse mapping: (s,t) to (rx,ry,rz)

References

• Heidrich & Seidel, "View-independent Environment Maps" *Eurographics Workshop on Graphics Hardware*, 1998.

• Background: Doug Voorhies & Jim Foran, "Reflection vector shading hardware," *SIGGRAPH '94 Proceedings*, 1994.

21