
View Independent Environment
Mapping with Dual Paraboliod

Maps

Mark J. Kilgard
NVIDIA Corporation

2

Environment Map Problem

• Sphere mapping is view dependent
• Requests constant regeneration of sphere

map texture for changing viewpoints
• Must be a better way!

3

There is!

• Wolfgang Heidrich & Hans-Peter Seidel
have proposed a view independent
environment mapping scheme

• No special hardware requirements
• Uses two environment textures, each with

a parabolic basis

4

Sphere maps work like this

Sphere collects environment image

5

Dual paraboloid approach

Parabolic basis (not spherical)
Requires two texture images

6

Advantage

• Dual paraboloid maps capture complete
environment with no singularities

• Linear basis
• Well suited for dual-texture hardware such

as the RIVA TNT
• View independent!

7

Dual Paraboloid Map

front texture back texture
alpha=1.0 inside circle,
alpha=0.0 outside circle

front back

toptop

bottom bottom

left right leftright

8

In practice

meshes
added

for clarity

9

Issues
• Must have way to “pick” environment

from the correct texture of the two for a
given pixel
– Alpha testing works in two passes
– The blend texture environment works will for

ARB_multitexture

• Rotation needed to supply view
independence & projection needed

• Think texture matrix and perspective
correct textures!

10

Two pass approach

• Adjust texture matrix for front view
• Bind to “front” paraboloid map
• Draw object with reflection map texgen,

alpha test away non-unity alpha
• Adjust texture matrix for back view
• Bind to “back” paraboloid map
• Draw object same as before

11

Texture Matrix Setup

Rx
Ry
Rz
1

=

s
t
1
1

Ml
-1SPT

Ml
-1 is linear part of the

affine modelview transformation

12

Texture Matrix Sub-parts

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

P =

P is projective transform that divides
by the z component

13

Texture Matrix Sub-parts (2)

-1 0 0 dx
0 -1 0 dy
0 0 1 dz
0 0 0 1

S =

S subtracts object-space reflection vector
from each paraboloid’s orientation, d

d is either [0, 0, -1] or [0, 0, 1]

14

Texture Matrix Sub-parts (3)

.5 0 0 .5
0 .5 0 .5
0 0 1 0
0 0 0 1

T =

T maps [-1, 1] vector space range
into [0, 1] texture space range

15

Reflection Vector Tex Coords

• Texture matrix assumes glTexCoor3f
used to pass in eye-space reflection vector

• Alternative is to use NV_reflection_vector
OpenGL extension
– Special texture coordinate generation mode
– Supported by RIVA TNT OpenGL and Mesa 3.1
– GL_REFLECTION_MAP_NV generates eye-space

reflection vector
– GL_NORMAL_MAP_NV generates eye-space

normal vector

16

Extension Usage

• Reflection map usage

mapMode = GL_REFLECTION_MAP_NV;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, mapMode);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, mapMode);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, mapMode);

• Normal map usage

mapMode = GL_NORMAL_MAP_NV;
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, mapMode);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, mapMode);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, mapMode);

17

Extension Enumerant Values

• #define GL_NORMAL_MAP_NV 0x8511
• #define GL_REFLECTION_MAP_NV 0x8512

18

Example Scene

19

Basis for Per-pixel Lighting
• Encode the specular directional light

contributions in the scene as two dual
paraboloid maps; use with reflection vector

• Encode the diffuse directional light
contributions for the scene in another set of
maps; use with normal vector

• Two multi-textured passes gives per-pixel
specular and diffuse lighting

20

Dual-parabolic Mapping Math

s = rx / (1-rz)
t = ry / (1-rz)

How to map (rx,ry,rz) unit vector to
(s,t) texture coordinate in [-1,1] range.

s = - rx / (rz + 1)
t = - ry / (rz + 1)

front back

Reverse mapping: (s,t) to (rx,ry,rz)

front back
rx = 2 s / (s^2 + t^2 + 1)
ry = 2 t / (s^2 + t^2 + 1)
rz = (-1 + s^2 + t^2) / (s^2 + t^2 + 1)

rx = - 2 s / (s^2 + t^2 + 1)
ry = - 2 t / (s^2 + t^2 + 1)
rz = - (-1 + s^2 + t^2) / (s^2 + t^2 + 1)

21

References

• Heidrich & Seidel, “View-independent
Environment Maps” Eurographics
Workshop on Graphics Hardware, 1998.

• Background: Doug Voorhies & Jim
Foran, “Reflection vector shading
hardware,” SIGGRAPH ‘94 Proceedings,
1994.

