

Whitepaper

Shader Model 3.0
Using Vertex Textures

Philipp Gerasimov
Randima (Randy) Fernando
Simon Green
NVIDIA Corporation

DA-01373-001_v00 1
06/24/04

Shader Model 3.0:
Using Vertex Textures

Since the introduction of programmability to the GPU, the capabilities of the vertex
and pixel processors have been different. Now, with Shader Model 3.0, GeForce 6
Series GPUs have taken a huge step towards providing common functionality for
both vertex and pixel shaders. This paper focuses specifically on one such Shader
Model 3.0 feature: vertex texture fetch. Vertex texture fetch allows vertex shaders to
read data from textures, just like pixel shaders can.

In modern graphics processors, vertex processing performance tends to be
underutilized as most applications are either bound by pixel shaders, memory
bandwidth, or the CPU. This fact means that you can safely introduce complexity in
your vertex shaders, resulting in higher image quality without any performance
degradation. This additional complexity is useful for a number of effects, including
displacement mapping, fluid and water simulation, explosions, and more.

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 2
06/24/04

Figure 1. The Visual Effect of Displacement Mapping
Images taken from Pacific Fighters. (C) 2004 Developed by 1C:Maddox Games. All
rights reserved.
(C) 2004 Ubi Soft Entertainment.

This whitepaper begins by describing the specifications for vertex textures in both
DirectX and OpenGL. We then explain how to add vertex textures to your
applications and discuss filtering as well as performance. Finally, we include a case
study of a game to show how vertex textures can be used in real-world projects.
Two screenshots from the game, entitled Pacific Fighters, are shown in Figure 1.

Specification
Vertex textures are available in both DirectX and OpenGL. The following sections
explain how to use them in each API.

DirectX 9
The Microsoft DirectX 9.0 SDK documentation contains the full specification for
vertex textures (http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/graphics/reference/assemblylanguageshaders/vertexshaders
/vertextextures.asp).

Here are the most important facts:

http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/directx9_c/directx/graphics/reference/Shaders/VertexShader3_0/VertexShader3_0.asp

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 3
06/24/04

 Vertex Shader 3.0 (the vs_3_0 compilation target) supports texture fetches using
the texldl texture instructions.

 Four texture samplers are supported:
 D3DVERTEXTEXTURESAMPLER1
 D3DVERTEXTEXTURESAMPLER2
 D3DVERTEXTEXTURESAMPLER3
 D3DVERTEXTEXTURESAMPLER4

 Vertex texture functionality is identical to ordinary pixel textures, except for the
following restrictions:

 Bilinear or trilinear filtering is not supported directly in hardware (though it
can be implemented in the vertex shader)

 Anisotropic filtering is not supported directly in hardware.
 Rate of change information (that is, automatic mipmap level of detail
calculation) is not available.

 A new register set (s0..s3) has been introduced to represent texture samplers
in vertex shaders.

 The MaxVertexShader30InstructionSlots member value of the
D3DCAPS9 limits the number of texture instructions and the
MaxVShaderInstructionsExecuted member value limits the number of
total vertex shader instructions, including the number of texture fetches.

 DirectX 9 also supports vertex textures in software vertex processing mode, so
an application could use vertex textures even on hardware without native vertex
texture support.

 GeForce 6800 supports D3DFMT_R32F and D3DFMT_A32B32G32R32F texture
formats (2D, cubemap, volume) for vertex texturing.

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 4
06/24/04

OpenGL
Vertex texture lookups are available in OpenGL via the NV_vertex_program3
extension, the specification for which is available here:

http://www.nvidia.com/dev_content/nvopenglspecs/GL_NV_vertex_program3.txt

This extension is implemented as an option to the standard ARB vertex program
language. This means that you can use the existing ARB API calls to load programs
and set parameters. Vertex programs wishing to use the added functionality only
have to add the following line to the beginning of the code:
OPTION NV_vertex_program3;

Adding Vertex
Textures to an
Application

To use vertex textures, an application needs to do the following:

 Check hardware capabilities for availability of vertex textures

 Create vertex texture resources

 Add necessary code to the vertex shader

The following sections explain how to perform each of these steps in both DirectX
and OpenGL.

Checking Hardware Capabilities
DirectX 9

You first need to check the capability bits (“caps bits”) of DirectX to see if your
GPU supports Shader Model 3.0. Based on that, you may have to fall back to
software vertex processing if there isn’t support for the features you need.

An application can query the supported formats for vertex textures by calling
IDirect3D9::CheckDeviceFormat with the
D3DUSAGE_QUERY_VERTEXTEXTURE flag. Software vertex processing supports all
texture formats.

OpenGL:
In OpenGL, all you need to do is check for the presence of the
NV_vertex_program3 extension. If you are using the GLUT library, the
glutExtensionSupported function can perform that check. The number of
supported vertex texture images is queried as follows:
glGetIntegerv(MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB, &vtex_units);

http://www.nvidia.com/dev_content/nvopenglspecs/GL_NV_vertex_program3.txt

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 5
06/24/04

GeForce 6 Series GPUs support a maximum of four active vertex textures.
However, these four textures can be referenced as many times as you like, up to the
maximum instruction limit.

Creating Resources
DirectX 9

An application can create vertex textures using IDirect3D9::CreateTexture,
IDirect3D9::CreateCubeTexture, IDirect3D9::CreateVolumeTexture,
or any texture creation function from the D3DX library.

A vertex texture must be created in the scratch pool (D3DPOOL_SCRATCH) for use
with software vertex processing.

OpenGL
Vertex textures are bound using the standard texture calls, using the
GL_TEXTURE_2D texture targets. Currently only the
GL_LUMINANCE_FLOAT32_ATI and GL_RGBA_FLOAT32_ATI formats are
supported for vertex textures. These formats contain a single or four channels of
32-bit floating point data, respectively. Be aware that using other texture formats or
unsupported filtering modes may cause the driver to drop back to software vertex
processing, with a commensurate drop in interactive performance.

Here is some sample code for loading and binding a vertex texture:
GLuint vertex_texture;
glGenTextures(1, &vertex_texture);
glBindTexture(GL_TEXTURE_2D, vertex_texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST_MIPMAP_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_FLOAT32_ATI, width, height, 0,
GL_LUMINANCE, GL_FLOAT, data);

Accessing Vertex Textures in the Vertex Shader
DirectX 9:

An application sets vertex textures via the IDirect3DDevice9::SetTexture
call, with one of D3DVERTEXTEXTURESAMPLER1 through
D3DVERTEXTEXTURESAMPLER3 as a sampler index. The vertex textures created in
the default pool (D3DPOOL_DEFAULT) can also be set as a pixel texture.

In a vertex shader the samplers must be declared using the dcl_samplerType
instruction (just as in ps_2_0 and ps_3_0 pixel shaders).
// ASM example

dcl_texcoord0 v0
dcl_2D s0

texldl r0, o0, s0

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 6
06/24/04

// HLSL / Cg example

sampler2D tex;

vDisplacement = tex2Dlod (tex, t); // t.w selects the mipmap level

OpenGL:
Texture lookups are performed in an OpenGL vertex program using the TEX,
TXB, TXL or TXP instructions, just like in a fragment program. (Or in a high-level
language such as Cg, as shown in the code sample above.) A significant difference
from fragment programs texturing is that vertex texture lookups do not
automatically calculate level of detail.

Level of detail is a measure of how magnified or minified the texture image is on the
screen. It is normally calculated based on the rate of change of the texture
coordinates from pixel to pixel. Since vertex textures are only accessed at the
vertices there is no easy way for the hardware to calculate this value. If you want to
use mipmapped textures you will have to calculate the LOD yourself in the vertex
program and use the TXL instruction.

Here is an example ARB vertex program that illustrates how to perform a simple
texture lookup:
!!ARBvp1.0
OPTION NV_vertex_program3;
PARAM mvp[4] = { state.matrix.mvp };
PARAM texmat[4] = { state.matrix.texture };
PARAM scale = program.local[0];
TEMP pos, displace;
// vertex texture lookup
TEX displace, texcoord, vertex.texcoord, 2D;
// try and do as much work here as possible that isn't
// dependent on the texture lookup, to cover latency
MOV result.texcoord[0], texcoord;
MOV pos.w, 1.0;
// scale vertex along normal
MUL displace.x, displace.x, scale;
MAD pos.xyz, vertex.normal, displace.x, vertex.position;
 // transform position to clip space
DP4 result.position.x, mvp[0], pos;
DP4 result.position.y, mvp[1], pos;
DP4 result.position.z, mvp[2], pos;
DP4 result.position.w, mvp[3], pos;
END;

Mipmaps
Similar to conventional pixel shader textures, mipmapping can provide significant
performance and image quality benefits for vertex textures. Since vertices don't have
screen space partial derivatives (because pixel-level information is not yet available
this early in the graphics pipeline), the default level of detail (LOD) for all vertex

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 7
06/24/04

texture instructions is 0. To use mipmaps we need to calculate the LOD inside the
shader. For example:

 #define maxMipLevels 10.0f

 Out.HPOS = mul(ModelViewProj, vPos);
 float mipLevel = (Out.HPOS.z / Out.HPOS.w) * maxMipLevels;
 float vDisplacement = tex2Dbias(tex, float4(t, mipLevel, mipLevel);

This code bases the level of detail on the vertex depth, which is an inexpensive, yet
useful approximation. You can also modify this technique further by taking the
fractional part of mipLevel and using that to interpolate between mipmap levels:

 #define maxMipLevels 10.0f

 Out.HPOS = mul(ModelViewProj, vPos);

 float mipLevel = (Out.HPOS.z / Out.HPOS.w) * maxMipLevels;

 float mipLevelFloor = floor(mipLevel);
 float mipLevelCeiling = mipLevelFloor + 1;
 float mipLevelFrac = frac(mipLevel);

 float vDisplacementFloor = tex2D(tex, float4(t, mipLevelFloor,
 mipLevelFloor);

 float vDisplacementCeiling = tex2Dbias(tex,
 float4(t,mipLevelCeiling,mipLevelCeiling);

 float vDisplacement = vDisplacementFloor + vDisplacementCeiling

Filtering
Texture filtering is allowed with vertex texturing but the available filter types depend
on hardware (or reference rasterizer) support. GeForce 6 Series hardware only
supports the nearest-neighbor filtering mode, but you can implement your own
filtering functionality in the vertex shader.

Bilinear Filtering
#define textureSize 512.0f
#define texelSize 1.0f / 512.0f

float4 tex2D_bilinear(uniform sampler2D tex, float2 t)
{
 float2 f = frac(t.xy * textureSize);

 float4 t00 = tex2D(tex, t);
 float4 t10 = tex2D(tex, t + float2(texelSize, 0.0f);

 float4 tA = lerp(t00, t10, f.x);

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 8
06/24/04

 float4 t01 = tex2D(tex, t + float2(0.0f, texelSize));
 float4 t11 = tex2D(tex, t + float2(texelSize, texelSize));

 float4 tB = lerp(t01, t11, f.x);

 return lerp(tA, tB, f.y);
}

Bilinear Filtering With Mipmapping
float4 tex2D_bilinear(uniform sampler2D tex, float4 t)
{
 float2 f = frac(t.xy * miplevelSize);

 float4 t00 = tex2Dbias(tex, t);
 float4 t10 = tex2Dbias(tex, t + float4(texelSize, 0.0f, 0.0f, 0,0f);

 float4 tA = lerp(t00, t10, f.x);

 float4 t01 = tex2Dbias(tex, t + float4(0.0f, texelSize, 0.0f, 0.0f));
 float4 t11 = tex2Dbias(tex, t + float4(texelSize, texelSize, 0.0f, 0.0f));

 float4 tB = lerp(t01, t11, f.x);

 return lerp(tA, tB, f.y);
}

Since neighboring texels are in most cases present in the cache, bilinear filtering is
reasonably efficient from a performance standpoint. If you need only one
component from the texture, you can try using a 4-component texture with the four
neighboring samples packed into the four components for bilinear filtering.

Bicubic, trilinear, and other types of the filtering can be performed with the vertex
shader. However, trilinear filtering takes a higher performance hit because the
shader needs to access texels from different mipmap levels.

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 9
06/24/04

Performance Tips
The vertex processor on the GeForce 6800 is capable of processing on more than
600 million vertices per second! Of course, this number is a result of simply doing
the minimum amount of work on the vertex processor. More interestingly, what is
the maximum vertex throughput if vertex texture fetch is used? For a basic
displacement mapping shader with nearest filtering, we measured 33 million
displaced vertices per second.

33 million displaced vertices per second translates to more than a million displaced
vertices per frame at 30 frames per second. That’s more vertices per frame than just
about any currently shipping game. Furthermore, typically not all vertices in a frame
need to be displaced.

However, you can do even better. The aforementioned scenario assumes that you
are querying the vertex texture for each vertex. In practice, you can take advantage
of the efficient branching implementation in the GeForce 6 Series GPUs to test if a
vertex texture fetch is necessary. For example, you may be able to do a V dot N test
to see if a particular vertex is close to a silhouette or not. That way, you could avoid
displacing vertices that are not along silhouettes. You could then use the
performance you saved to do filtering on the other vertices.

Another advantage of the dynamic branching in the vertex shaders is the possibility
of early-out. Since graphics hardware culls vertices only after they have been
processed by the vertex-shader, the vertex shader could be doing a lot of work for
vertices that ultimately get thrown away. Thus, an expensive vertex shader should
test early on if a vertex is going to be clipped, and if so early-out via a dynamic
branch. Here is an example of clipping on the GPU:
// OpenGL example
float4 vClipPos = mul(ModelViewProj, vPos);
float3 bClip = abs(vClipPos.xyz) < (vClipPos.www + vClipOffset);

if(all(bClip))
{
 DoLightingAndDisplacement();
}

Vertex Textures as
Constant Memory

Since vertex texture reads are much slower than constant reads (see previous
section), we strongly advise against using vertex textures as constant memory. The
pixel processing architecture in the GPU is highly optimized to hide texture fetch
latency, but the vertex shader is not nearly as efficient. Therefore, you should limit
your vertex texture fetches to a small number of coherent accesses per vertex.

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 10
06/24/04

Case Study
Game developers are already adopting vertex textures for projects currently in
development. In this section, we take a look at one such game, called Pacific Fighters,
developed by 1C:Maddox Games and published by Ubi Soft Entertainment.

When considering displacement mapping in modern games, flight simulators often
make excellent candidates. This is because they contain massive outdoor
environments with terrain, rivers, and oceans – all of which can benefit from
displacement mapping. In this section, we look at a case study of a development
team who integrated displacement mapping into their flight simulator.

IL-2 Sturmovik from Ubisoft and 1C:Maddox Games is one of the most spectacular
and modern fly simulators of recent years. The game’s developer, 1C:Maddox
Games, has always striven to incorporate the latest technologies to be on razor’s
edge of the game industry. Their latest product, called Pacific Fighters, takes full
advantage of the GeForce 6 Series family of GPUs. “The ability to use textures in
the vertex shader is one of the most awaited features of 3D accelerators,” said Yuri
Kryachko, lead 3D programmer of Pacific Fighters.

Because the game’s environment has expansive ocean surfaces, 1C:Maddox Games
used vertex textures to create one of the most realistic water surfaces in the game
industry. Before using vertex textures, the developer used dynamic bump mapping
to visualize waves but this technology did not provide anywhere near the level of
realism that vertex textures and geometry displacement added to the water surface.
The screenshots on the right of Figure 2 show the vast increase in realism achieved
by adding displacement mapping to the engine.

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 11
06/24/04

Without Displacement Mapping With Displacement Mapping

Figure 2. The Visual Effect of Displacement Mapping
Images taken from Pacific Fighters. (C) 2004 Developed by 1C:Maddox Games. All
rights reserved.
(C) 2004 Ubi Soft Entertainment.

The water shaders in Pacific Fighters are very complex (more than 140 instructions
long) and used to calculate physically corrected water reflection, refraction and
waves animation. They combine multiple dynamic normal maps to calculate the
appropriate geometric displacement at each vertex. In addition, the shader uses
multiple texture fetches to perform filtering, which results in higher visual quality.

Yuri Kryacko explains, “Performance dramatically improved by using dynamic
branching both in pixel and vertex shaders. We plan to optimize and improve visual
quality of other parts of project, using vertex textures, new shaders, instancing, and
CPU-free occluders to push our graphics engine to the next generation of realism.”

Downloads
Learn more about vertex texture fetch by downloading our examples:

The “paint_sculpt” FX Composer effect uses the
new features of PS_3_0 and VS_3_0 to allow
you to interactively sculpt geometry in a paint-
like application. paint_sculpt paints on any 3D
surface with valid texture coordinates, and then
the result of your painting actions are read back
into that object via vertex texture fetch. The
values then are applied to the surface geometry
to permit you to freely sculpt any painted
displacement you like in real time.

http://download.nvidia.com/developer/SDK/Individual_Samples/MEDIA/HLSL/paint_sculpt.fx
http://download.nvidia.com/developer/SDK/Individual_Samples/MEDIA/HLSL/paint_sculpt.fx

 Shader Model 3.0: Vertex and Pixel Shaders for GeForce 6 Series GPUs

DA-01373-001_v00 12
06/24/04

The “simple vertex texture” OpenGL example
demonstrates the use of the
NV_vertex_program3 extension to perform
texture look-ups in a vertex program. It uses
this feature to perform simple displacement
mapping. The example also shows how to
implement bilinear filtering of vertex texture
fetches.

These examples, and hundreds of others, are available at:

http://download.nvidia.com/developer/SDK/Individual_Samples/samples.html

http://download.nvidia.com/developer/SDK/Individual_Samples/effects.html

http://download.nvidia.com/developer/SDK/Individual_Samples/samples.html
http://download.nvidia.com/developer/SDK/Individual_Samples/effects.html
http://download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/simple_vertex_texture.zip
http://download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/OpenGL/simple_vertex_texture.zip

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo and are trademarks or registered trademarks of NVIDIA
Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

