

Technical Brief

Fast Texture Downloads and
Readbacks using Pixel Buffer
Objects in OpenGL

August 2005
TB-02011-001_v01

DA-00xxx-001_v01 i
9/28/2005 NVIDIA CONFIDENTIAL

Document Change History

Version Date Responsible Reason for Change
01 00/00/00 Initial release

02 08/17/05 Ikrima
Elhassan

Added Chris, Mark, and Eric’s suggestions

03 08/17/05 Ikrima
Elhassan

Added perf #s and section about motherboards &
chipsets

TB-02011-001_v01 1
08/17/05

 Preface

Bandwidth bottleneck is a common occurrence in many applications. This technical
brief discusses how to achieve efficient bandwidth rates in your application,
including transfers from and to the graphics processing unit (GPU).

Ikrima Elhassan
sdkfeedback@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

August 16, 2005

TB-02011-001_v01 1
08/17/05

Achieving Efficient
Bandwidth Rates

Graphics applications are often bandwidth bound. To make matters worse, non
PCI-e video cards have asymmetric bandwidth rates, with slower readback rates
than download rates.

Unfortunately, applications often require reading the frame buffer. For example,
some applications write intermediary results to the frame buffer and use it as an
input to additional rendering or computation passes.

This paper aims to discuss ways to achieve fast transfers by:

 Using an nForce3 or comparable AGP chipset
 Using pixel sizes that are multiples of 32 bits to avoid data padding.
 Storing 8-bit textures in a BGRA layout in system memory and use the

GL_BGRA as the external format for textures to avoid swizzling.
Using a PBO to transfer data to and from the GPU. If possible, using multiple
PBOs to implement an asynchronous readback scheme.

Motherboard System
Configuration

The motherboard system configuration plays an important role in achieving fast
texture downloads and readbacks. For both AGP 8x and PCIe machines, use an
nForce3 or comparable AGP chipset to achieve higher transfer rates. Using a
Geforce 6-series card or higher with these chipsets allows for higher speed
readbacks than when using an nForce2 or comparable chipset.

Set the Correct Image Format
As a developer, you need to pay attention to the texture formats to ensure efficient
transfer rates. Different texture formats affect performance differently.

Pixel Size
To begin with, make sure the pixel sizes are an integer multiple of 32-bits; if you fail
to do this, the driver will perform data padding, which causes the transfer rate to
slow down.

 Achieving Optimal Bandwidth Rates

TB-02011-001_v01 2
08/17/05 NVIDIA CONFIDENTIAL

Pixel Format
For 8-bit textures, NVIDIA graphics cards are built to match the Microsoft GDI
pixel layout, so make sure the pixel format in system memory is BGRA.

Why are these formats important? Because if the texture in system memory is laid
out in RGBA, the driver has to swizzle the incoming pixels to BGRA, which slows
down the transfer rate. For example, in the case of glTexImage2D(), the
format argument specifies how to interpret the data that is laid out in memory (such
as GL_BGRA, GL_RGBA, or GL_RED); the internalformat argument
specifies how the graphics card internally stores the pixel data in terms of bits
(GL_RGB16, GL_RGBA8, and GL_R3_G3_B2, to name a few). To make matters
more confusing, OpenGL allows you to specify GL_RGBA as an internal format,
but this is taken to mean GL_RGBA8. It is always best to explicitly specify the
number of bits in the internal format. Refer to Table 1 to see the performance
impact of using non-optimal texture formats. Note, this is not the case with 16-bit
and 32-bit floating point formats.

Here are code snippets showing what to avoid and how to achieve fast transfer
rates:

//These calls will cause a slow down because of
driver swizzling
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA8 ,
img_width, img_height, 0, GL_RGBA, GL_UNSIGNED_BYTE,
img_data);
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA ,
img_width, img_height, 0, GL_RGBA, GL_UNSIGNED_BYTE,
img_data);
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0,
GL_FLOAT_RGBA16_NV , img_width, img_height, 0, GL_BGRA,
GL_HALF_FLOAT_NV, img_data);
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_FLOAT_RGBA_NV,
img_width, img_height, 0, GL_BGRA, GL_FLOAT_NV, img_data);

//These calls would not require unnecessary
swizzling
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA8 ,
img_width, img_height, 0, GL_BGRA, GL_UNSIGNED_BYTE,
img_data);
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA ,
img_width, img_height, 0, GL_BGRA, GL_UNSIGNED_BYTE,
img_data);
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0,
GL_FLOAT_RGBA16_NV , img_width, img_height, 0, GL_RGBA,
GL_HALF_FLOAT_NV, img_data);
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_FLOAT_RGBA_NV,
img_width, img_height, 0, GL_RGBA, GL_FLOAT_NV, img_data);

 Achieving Optimal Bandwidth Rates

TB-02011-001_v01 3
08/17/05 NVIDIA CONFIDENTIAL

Table 1. Performance Impact of Using Non-Optimal
Texture Formats using an AMD64 Athlon 3500+,
1 GB of RAM, using an nForce4 chipset. A
1024x1024 texture is used for measuring transfer

Readback FX8RGBA FX8BGRA FP16RGBA FP16BGRA FP32RGBA FP32BGRA
GeForce
6800 Ultra

768 MB/s 790 MB/s 602 MB/s 650 MB/s 568 MB/s 581 MB/s

GeForce
7800 GT

770 MB/s 718 MB/s 630 MB/s 653 MB/s 640 MB/s 677 MB/s

Quadro FX
4400

789 MB/s 824 MB/s 787 MB/s 827 MB/s 710 MB/s 738 MB/s

Quadro FX
4500

745 MB/s 805 MB/s 760 MB/s 806 MB/s 770 MB/s 810 MB/s

Download

GeForce
6800 Ultra

480 MB/s 1596 MB/s 1583 MB/s 490 MB/s 1734 MB/s 480 MB/s

GeForce
7800 GT

483 MB/s 2238 MB/s 1987 MB/s 527 MB/s 2367 MB/s 525 MB/s

Quadro FX
4400

471 MB/s 2167 MB/s 2157 MB/s 503 MB/s 2237 MB/s 463 MB/s

Quadro FX
4500

490 MB/s 2605 MB/s 2613 MB/s 493 MB/s 2689 MB/s 527 MB/s

Use the Pixel Buffer Object
Extension

To achieve fast transfers to and from the graphics card, applications should use the
Pixel Buffer Object (PBO) extension. Conceptually, a PBOs is simply an array of
bytes in memory.

 To achieve a fast readback, bind the buffer object to GL_PIXEL_PACK_ BUFFER
using glBindBufferARB() After a buffer is bound, glReadPixels()
will pack (write) data into the Pixel Buffer Object.

 To download data to the GPU, bind the buffer to the GL_PIXEL_UNPACK_
BUFFER target using glBindBufferARB(). The glTexImage2D()
command will then unpack (read) their data from the buffer object.

 To modify the data in the PBO, use glMapBuffer() to retrieve a pointer to
the PBO’s data. Once data modification is completed, the application must
issue a glUnmapBuffer(). All updates to the buffer object must be done
between these two calls.

These PBOs can improve performance because they allow the driver to streamline
reading and writing to and from video memory. For example, when streaming

 Achieving Optimal Bandwidth Rates

TB-02011-001_v01 4
08/17/05 NVIDIA CONFIDENTIAL

textures, using PBOs and glMapBuffer() and glUnmapBuffer() usually
eliminates an expensive data copy that is usually required for downloading a texture
to the GPU.

Implement an Asynchronous
Readback

Problem
OpenGL makes it difficult to pipeline readback of multiple images. For example, if
the application requests readback data using glReadPixels, the driver often has
to send the hardware a readback command and wait for all the data to return before
it can let the application proceed.

This stall prevents the application from processing the readback data while kicking
off another glReadPixels(). Moreover, stalls can occur because any impending
commands to the frame buffer must be completed before readback can begin. This
is essentially the same as a glFinish() before every glReadPixels().

Solutions
If, however, you use PBOs, the application can work around these stalls and
perform asynchronous readback of the frame buffer. When you use PBOs,
glReadPixels()returns asynchronously and doesn’t wait for the data to return
from the GPU. Instead, the driver ensures that all the data to be read back is ready
when the application issues the glMapBuffer() command.

By using multiple PBOs, such as the two explained below, the application can
asynchronously read back data.

Split the Frame Buffer into Multiple Portions
One way of asynchronously reading back data is to split the frame buffer into
multiple portions and map those into different PBOs. For example, if we split the
frame buffer in half, the application could issue glReadPixels() from the top
half of the frame buffer into PBO1, and issue glReadPixels() from the
bottom half of the frame buffer into PBO2. Because glReadPixels() returns
asynchronously when using PBOs, both transfers are kicked off simultaneously.
Then, the application can map the top portion of the frame into PBO1, causing any
outstanding Direct Memory Access (DMA) transfers to finish.

The benefit is that the application is not being stalled by DMA transfers into the
bottom half of the frame. This means the application can perform calculations on
the readback data from the first half of the frame buffer while data is still being
readback from the second portion of the frame. This allows the application to
pipeline CPU processing of readback data and continue to read back data from the
frame buffer. Be aware, however, this method still requires rendering of the image

 Achieving Optimal Bandwidth Rates

TB-02011-001_v01 5
08/17/05 NVIDIA CONFIDENTIAL

to complete before it is read back. In other words, there is always an implicit
glFinish() before each glReadPixels().

Map Different Frames to Different PBOs
Another way of asynchronously reading back data requires mapping different frames
to different PBOs. For example, using two PBOs, the application calls
glReadPixels() into PBO1 at frame n. At frame n+1, the application calls
glReadPixels() into PBO2 and then processes the data in PBO1. Ideally,
enough time should pass between the readback calls to allow the first to complete to
before the CPU begins processing it.

By alternating between PBO1 and PBO2 on every frame, asynchronous readback
can be achieved. Moreover, applications can wait two or more frames.

Conclusion
To achieve efficient bandwidth rates, applications should implement fast download
and readback paths. Using the techniques outlined in this technical brief should
improve performance of data transfers.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce™, and Quadro® are trademarks or registered trademarks of
NVIDIA Corporation in the United States and other countries. Other company and product
names may be trademarks of the respective companies with which they are associated.

Copyright

© 2005 by NVIDIA Corporation. All rights reserved.

