

Technical Report

Non-Power-of-Two
Mipmap Creation

Abstract

Mipmapping is commonly used to avoid sampling artifacts during texture minification. The
construction of mipmaps for textures whose size is a power-of-two is usually implemented
with a box filter that computes the average of a 2x2 block of texels (texture pixels).

The GeForce 6 Series GPU family generalizes mipmapping to accommodate textures whose
sizes are not powers-of-two. Here the mipmap construction is more complex. This
document describes and gives code for a mipmap construction algorithm for non-power-of-
two textures that yields good quality results. The box filter used for power-of-two textures is
generalized into a so-called polyphase filter that changes its filter weights for each texel.
Additionally, the support of the filter increases from a 2x2 block of texels to up to 3x3.
When a texture happens to have power-of-two dimensions, the algorithm described reduces
to the standard algorithm.

We recommend the use of the algorithm here for non-power-of-two mipmap construction
because use of other algorithms, such as naïve bilinear interpolation, for example, can lead to
poor image quality when texture mapping.

Stefan Guthe
sguthe@nvidia.com

Paul Heckbert
pheckbert@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

October 5, 2003

TR-01838-001_v01 i
04/15/05

mailto:sguthe@nvidia.com
mailto:pheckbert@nvidia.com

Mipmap Creation

Before generalizing mipmap creation to the non-power-of-two setting, let’s first take a look
at the commonly used algorithm. It involves averaging of 2 texels in the 1D case, 4 texels in
the 2D case and 8 texels in the 3D case.

Power-of-Two Mipmaps
Creating a mipmap for a power-of-two 2D texture is usually done with this simple box filter
algorithm.

// Initialize mipmap[0] with texture
...
// Compute mipmap levels
for (l=1; l<=maxlevel; l++)
 for (y=0; y<max(1,height>>l); y++) {
 float y0=y<<1;
 float y1=min(y0+1,max(1,height>>(l-1))-1);
 for (x=0; x<max(1,width>>l); x++) {
 float x0=x<<1;
 float x1=min(x0+1,max(1,width>>(l-1))-1);
 mipmap[l][y][x]=0.25*(mipmap[l-1][y0][x0]+mipmap[l-1][y0][x1]+
 mipmap[l-1][y1][x0]+mipmap[l-1][y1][x1]);
 }
 }

It constructs an array of 2D images mipmap[l], where level number l ranges from 0 at the finest
level to log2(max(width,height)) at the coarsest. The size of level l is max(1,height>>l) by
max(1,width>>l).

See [Lance Williams, Pyramidal Parametrics, SIGGRAPH ’83 Proceedings, July 1983].

Non-Power-of-Two Mipmaps
We describe the scheme in 1D first. With non-power-of-two textures, the widths of the
mipmap levels are no longer powers of two, but can be any number. Let wid[i] denote the
width of level l. Two rules for the sequence of level widths are:

 Rounding Down: wid[l] = floor(width>>l), maxlevel = floor(log2(width))

TR-01838-001_v01 1
04/15/05

Non-power-of-two Mipmap Creation Technical Report

 Rounding Up: wid[l] = ceil(width>>l), maxlevel = ceil(log2(width))

Examples:

 base width=127, rounding down: 127, 63, 31, 15, 7, 3, 1
 base width=127, rounding up: 127, 64, 32, 16, 8, 4, 2, 1
 base width=128, rounding down: 128, 64, 32, 16, 8, 4, 2, 1
 base width=128, rounding up: 128, 64, 32, 16, 8, 4, 2, 1
 base width=129, rounding down: 129, 64, 32, 16, 8, 4, 2, 1
 base width=129, rounding up: 129, 65, 33, 17, 9, 5, 3, 2, 1

If the base width happens to be a power of two, rounding up and down yield identical
results. In general, the scale factor between successive levels is no longer 2. Rounding up is
generally preferable because less information is lost between levels. But current Direct3D
and OpenGL APIs support rounding down only. See http://oss.sgi.com/projects/ogl-
sample/registry/ARB/texture_non_power_of_two.txt .

For non-power-of-two textures, mipmap construction gets more complicated. First of all, we
have to define some properties we would like the filter to have. The filter has to be

 symmetric, i.e., mirroring the texture will mirror all mipmap levels.
 energy conserving, i.e., the average of all mipmap levels has to be the same.
 a box filter of width 2 for each reduction by exactly a factor of 2 in any axis from a

previous level.

Taking a look at the requirements, the simplest filter is a box filter with the width n’/n for
filtering from texture width n’ to n. For power-of-two textures or when n’ is even, n’/n=2,
but when rounding down with n’ odd, the ratio is greater than 2, and when rounding up with
n’ odd, the ratio is less than 2. In order to get the correct weights for each texel in the
previous mipmap level, we have to convolve this filter with a reconstruction filter, i.e. a box
filter of width 1. The output texel is at the origin in Figure 1, whereas the texel of the
previous mipmap level each have a distance of 1 to each other. The resulting “trapezoid
filter” has a support of width+1.

You can also derive this filter by thinking of each pixel as being one pixel wide, and
computing the fractional pixel areas covered by a sliding box of width ‘width’.

TR-01838-001_v01 2
04/15/2002

http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_non_power_of_two.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_non_power_of_two.txt

Non-power-of-two Mipmap Creation Technical Report

0

0.25

0.5

0.75

-2 -1 0 1 2

width 1.5
width 2
width 2.5

Figure 1. Trapezoid filters constructed by convolving different box filter
widths with a box filter of width 1.

Simplifying the Polyphase
Box Filter

Since the position of the filter is incremented by its width, the filter weights for the texel of
the previous level change with x and y if the filter width is not an integer. Thus we have a
polyphase filter. This is in contrast to the monophase filter used for power-of-two mipmap
construction, whose coefficients are the same at every pixel (in 1D, ½ and ½). To simplify
our filter a bit we first take a look at the possible settings we will encounter going from n’ to
n.

 Rounding down: i.e. n’=2*n+1, filter width (2*n+1)/n
 No rounding: i.e. n’=2*n, filter width 2
 Rounding up: i.e. n’=2*n-1, filter width (2*n-1)/n

For textures other than 1D textures, a combination of cases 1 and 2 or 2 and 3 will be
encountered for creating each of the mipmap levels.

Rounding Down
For the rounding down setting, we observe the following behavior.

 For position x in the current mipmap level, we always sample 2*x, 2*x+1 and 2*x+2 in
the previous level.

 The first sample always ends up on the upward slope.
 The second sample is always in the flat center area.
 The third sample always ends up on the downward slope.
 The sample points move with a speed of -1/n along the filter kernel.

TR-01838-001_v01 3
04/15/2002

Non-power-of-two Mipmap Creation Technical Report

Thus we can simplify the polyphase filter for this setting to the following algorithm in the
1D setting.

...
for (x=0; x<n; x++) {
 w0=(float)(n-x)/(2*n+1);
 w1=(float) n /(2*n+1);
 w2=(float)(1+x)/(2*n+1);
 mipmap[l][x]=w0*mipmap[l-1][2*x]+w1*mipmap[l-1][2*x+1]+
 w2*mipmap[l-1][2*x+2];
}
...

No Rounding
The no rounding setting is even simpler, since sampling a width 2 trapezoid at -.5 and .5
yields a monophase filter equivalent to a width 2 box filter. It can therefore be written as.

...
for (x=0; x<n; x++) {
 mipmap[l][x]=0.5*(mipmap[l-1][2*x]+mipmap[l-1][2*x+1]);
}
...

Rounding Up
The behavior for the rounding up setting is very similar to the rounding down setting.

 For position x in the current mipmap level, we always sample 2*x-1, 2*x and 2*x+1 in
the previous level.

 The first sample always ends up on the upward slope.
 The second sample is always in the flat center area.
 The third sample always ends up on the downward slope.
 The sample points move with a speed of 1/n along the filter kernel.

Thus we can simplify the polyphase filter for this setting to the following algorithm in the
1D setting.

...
for (x=0; x<n; x++) {
 w0=(float)(n-x-1)/(2*n-1);
 w1=(float) n /(2*n-1);
 w2=(float) x /(2*n-1);
 mipmap[l][x]=w0*mipmap[l-1][2*x-1]+w1*mipmap[l-1][2*x]+
 w2*mipmap[l-1][2*x+1];
}
...

TR-01838-001_v01 4
04/15/2002

Non-power-of-two Mipmap Creation Technical Report

When generalizing to 2D, the formulas require slight modification to allow for non-square
textures.

 Rounding Down: wid[l] = max(1,floor(width>>l))
hei[l] = max(1,floor(height>>l))
maxlevel = floor(log2(max(width,height)))

 Rounding Up: similar, replacing ‘floor’ with ‘ceil’

With rounding down, for example, the sequence of level sizes for a 31x10 texture is: 31x10,
15x5, 7x2, 3x1, 1x1.

Using the 2D variant of this simplified polyphase box filter, we get a mipmap as seen in
Figure 2.

Figure 2. Mipmap for a 1272 checkerboard texture and rounding down
setting.

For a better evaluation of the quality of the mipmap creation algorithm we compare an
image (Figure 3) rendered with a power-of-two mipmap (1282) against an image (Figure 4)
rendered with a non-power-of-two mipmap (1272). This size, a power of two minus one,
was chosen because it is the most difficult test case for rounding down.

While there is little difference in the images rendered with anisotropic filtering, the isotropic
filtering is blurrier near the horizon for the non-power-of-two case. This is because the
hardware does level of detail (LOD) selection using log2(footprint size), which assumes a
factor of 2 between successive levels, but the mipmap deviates from this rule. The
hardware’s LOD formula assumes that the region in level 0 corresponding to a texel at level l
has width 2l, but in a non-power-of-two texture, that width is actually wid[0]/wid[l]. With
rounding down, that width is greater than 2l, so the image is blurred more than desired. This
blurring is worst when the texture size is a power of two minus one. There is no new
blurring when the size is a power of two, because our algorithm reduces to the standard
power-of-two mipmap construction algorithm in that case.

Although this blurring is undesirable, it is the best one can do when rounding down. A
naïve alternative algorithm would use standard bilinear interpolation to construct successive
mipmap levels, but that would result in dropped details because of gaps between the triangle
filters, and that would be far more objectionable than blurring.

TR-01838-001_v01 5
04/15/2002

Non-power-of-two Mipmap Creation Technical Report

If API’s supported rounding up, superior results would be achievable, nearly as good as
those for power-of-two textures, if overlapping filters of fixed width were used from level to
level. A complication of this approach is that the texture wrap mode (repeat, mirror, clamp,
etc) would need to be known during mipmap construction. We urge Direct3D and
OpenGL to adopt rounding up as their standards so that non-power-of-two mipmaps will
no longer be handicapped by blurring. For now, we must live with it, however.

Figure 3. Image rendered using a power-of-two mipmap (1282) with
isotropic (left) and anisotropic filtering (right).

Figure 4. Image rendered using a non-power-of-two mipmap (1272) with
isotropic (left) and anisotropic filtering (right), and rounding
down.

TR-01838-001_v01 6
04/15/2002

GPU Implementation

We now describe two implementations of the mipmap construction algorithm. The first,
higher precision approach employs a fragment program and operates in one pass, while the
second, lower precision approach employs no fragment program and operates in two passes.
The latter is faster.

To implement automatic generation of mipmaps and mipmapping for dynamic textures at
high speed, the filtering can be carried out using the GPU.

The simplified polyphase box filter is very easy to implement using a fragment program in
OpenGL or Direct3D that does 9 nearest neighbor samples and applies the filter weights. In
order to do so, we set up the rendering in a way that the center of texel 0 of the current
mipmap level maps to 0 in camera space and the center of texel n-1 maps to 1 in camera
space. We then set up the fragment program and supply it with the distance between two
texel in the previous mipmap level in texture space. After that we draw a quad that covers
the whole current mipmap level and supply the filter weights as texture coordinates of that
quad. The complete filtering to decimate an image of size lastwidth*lastheight to size
width*height, looks like this.

...
float hx = (2.0f*width -1.0f)/lastwidth;
float hy = (2.0f*height-1.0f)/lastheight;
float w0xs, w0xe, w2xs, w2xe, w0ys, w0ye, w2ys, w2ye;

if (lastwidth&1) {
 w0xs = w2xe = (float) width/(float) lastwidth;
 w0xe = w2xs = 1.0f/(float) lastwidth;
} else {
 w0xs = w0xe = 0.5f;
 w2xs = w2xe = 0.0f;
}
if (lastheight&1) {
 w0ys = w2ye = (float) height/(float) lastheight;
 w0ye = w2ys = 1.0f/(float) lastheight;
} else {
 w0ys = w0ye = 0.5f;
 w2ys = w2ye = 0.0f;
}
float w1x = w0xs;
float w1y = w0ys;

glBegin(GL_QUADS);

TR-01838-001_v01 7
04/15/05

Non-power-of-two Mipmap Creation Technical Report

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, 0.0f, 0.0f);
glMultiTexCoord4fARB(GL_TEXTURE1_ARB, w0xs, w2xs, w0ys, w2ys);
glVertex2f(0.0f, 0.0f);

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, 0.0f, hy);
glMultiTexCoord4fARB(GL_TEXTURE1_ARB, w0xs, w2xs, w0ye, w2ye);
glVertex2f(0.0f, 1.0f);

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, hx, hy);
glMultiTexCoord4fARB(GL_TEXTURE1_ARB, w0xe, w2xe, w0ye, w2ye);
glVertex2f(1.0f, 1.0f);

glMultiTexCoord2fARB(GL_TEXTURE0_ARB, hx, 0.0f);
glMultiTexCoord4fARB(GL_TEXTURE1_ARB, w0xe, w2xe, w0ys, w2ys);
glVertex2f(1.0f, 0.0f);
glEnd();
...

Together with the following fragment program.

!!FP2.0
DECLARE Const0 = {1.0f/lastwidth, 1.0f/lastheight, w1x, w1y);
TEX R0, f[TEX0], TEX0, 2D;
MULR R0, R0, f[TEX1].x;
MADR R3.xy, Const0, {1,0}, f[TEX0];
TEX R1, R3, TEX0, 2D;
MADR R0, R1, Const0.z, R0;
MADR R3.xy, Const0, {2,0}, f[TEX0];
TEX R1, R3, TEX0, 2D;
MADR R0, R1, f[TEX1].y, R0;
MULR R0, R0, f[TEX1].z;
MADR R3.xy, Const0, {0,1}, f[TEX0];
TEX R1, R3, TEX0, 2D;
MULR R1, R1, f[TEX1].x;
MADR R3.xy, Const0, {1,1,0,0}, f[TEX0];
TEX R2, R3, TEX0, 2D;
MADR R1, R2, Const0.z, R1;
MADR R3.xy, Const0, {2,1,0,0}, f[TEX0];
TEX R2, R3, TEX0, 2D;
MADR R1, R2, f[TEX1].y, R1;
MADR R0, R1, Const0.w, R0;
MADR R3.xy, Const0, {0,2,0,0}, f[TEX0];
TEX R1, R3, TEX0, 2D;
MULR R1, R1, f[TEX1].x;
MADR R3.xy, Const0, {1,2,0,0}, f[TEX0];
TEX R2, R3, TEX0, 2D;
MADR R1, R2, Const0.z, R1;
MADR R3.xy, Const0, {2,2,0,0}, f[TEX0];
TEX R2, R3, TEX0, 2D;
MADR R1, R2, f[TEX1].y, R1;

TR-01838-001_v01 8
04/15/2002

Non-power-of-two Mipmap Creation Technical Report

MADR o[COLR], R1, f[TEX1].w, R0;
END

Two-Pass Approach
If we take a closer look at what the filter does, we can rewrite the filter weights w0, w1 and
w2 as

 w0 = (1 - a) / 2
 w1 = (1 - b) / 2 + a / 2
 w2 = 1 - w0 - w1 = b / 2

with

 a = 1 - 2 * w0 = 1 - 2 * (n - x) / (2 * n + 1) = (1 + 2 * x) / (2 * n + 1)
 b = 2 * w2 = (2 + 2 * x) / (2 * n + 1).

We can then change the calculation of the current mipmap from

mipmap[l][x] = w0 * mipmap[l-1][2*x] + w1 * mipmap[l-1][2*x+1] +
 w2 * mipmap[l-1][2*x+2];

into

mipmap[l][x] = 0.5f * ((1 – a) * mipmap[l-1][2*x] +
 a * mipmap[l-1][2*x+1]) +
 0.5f * ((1 – b) * mipmap[l-1][2*x+1] +
 b * mipmap[l-1][2*x+2]));

Now the filtering is implemented as two linear interpolations, one by a, and the other by b,
followed by the average of two textures. Additionally, if we compare b(x) to a(x), we get:

 a(x) = (1 + 2 * x) / (2 * n + 1)
 b(x) = (2 + 2 * x) / (2 * n + 1)
 a(x+1) = (3 + 2 * x) / (2 * n + 1)
 b(x+1) = (4 + 2 * x) / (2 * n + 1)

So the first two linear interpolations can be combined into a single one and the average can
be calculated as a width 2 box filter. Therefore we can do the filtering in two passes of
standard texture mapping with bilinear filtering. We first set up an intermediate texture of
size 2*width×2*height and render the first quad.

...
glViewport(0, 0, 2*width, 2*height);
glOrtho(0, 2*width, 0, 2*height, 0, -1);

float lx = (float) (lastwidth -2*width)/(2*lastwidth *lastwidth);
float ly = (float) (lastheight-2*height)/(2*lastheight*lastheight);
float hx = 1.0 - lx;
float hy = 1.0 - ly;

TR-01838-001_v01 9
04/15/2002

Non-power-of-two Mipmap Creation Technical Report

glBegin(GL_QUADS);
(GL_TEXTURE0_ARB, lx, ly);

0_ARB, lx, hy);

hx, hy);

hx, ly);

that we render the second quad using the intermediate one as the current texture.

wport(0, 0, width, height);
);

Begin(GL_QUADS);
(GL_TEXTURE0_ARB, 0.0f, 0.0f);

XTURE0_ARB, 0.0f, 1.0f);

URE0_ARB, 1.0f, 1.0f);

URE0_ARB, 1.0f, 0.0f);

gh this implementation is a lot simpler, the result is nearly always the same as for the

 the

glMultiTexCoord2fARB
glVertex2f(0.0f , 0.0f);
glMultiTexCoord2fARB(GL_TEXTURE
glVertex2f(0.0f , 2.0f*height);
glMultiTexCoord2fARB(GL_TEXTURE0_ARB,
glVertex2f(2.0f*width, 2.0f*height);
glMultiTexCoord2fARB(GL_TEXTURE0_ARB,
glVertex2f(2.0f*width, 0.0f);
glEnd();
...

After

...
glVie
glOrtho(0, width, 0, height, 0, -1

gl
glMultiTexCoord2fARB
glVertex2f(0.0f, 0.0f);
glMultiTexCoord2fARB(GL_TE
glVertex2f(0.0f, height);
glMultiTexCoord2fARB(GL_TEXT
glVertex2f(width, height);
glMultiTexCoord2fARB(GL_TEXT
glVertex2f(width, 0.0f);
glEnd();
...

Althou
single pass algorithm. It would be exactly the same if not for quantization of fractional
texture coordinates during bilinear interpolation, and quantization of pixel values during
first pass. We have found that mipmaps constructed with the two pass algorithm differ in
pixel value from those of the one pass algorithm by at most 1 in each level with non-integer
scaling, however. The average of each mipmap level stays constant with this approach; so
the 1x1 mipmap level has an error of 1 or less. Since the two pass algorithm is about twice as
fast as the one pass algorithm, we recommend it.

TR-01838-001_v01 10
04/15/2002

NVIDIA Corporation
2701 San Tomas Expressway

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, are trademarks of NVIDIA Corporation.

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft
Corporation.

OpenGL is a trademark of SGI. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© Copyright 2005 NVIDIA Corporation

developer.nvidia.com
The Source for GPU Programming

Santa Clara, CA 95050
www.nvidia.com

	Mipmap Creation
	Power-of-Two Mipmaps
	Non-Power-of-Two Mipmaps
	Simplifying the Polyphase Box Filter
	Rounding Down
	No Rounding
	Rounding Up

	GPU Implementation
	Two-Pass Approach
	Trademarks
	Copyright

