
NVIDIA OpenGL 2.0 Support
Mark J. Kilgard
April 26, 2005

These release notes explain NVIDIA’s support for OpenGL 2.0. These notes are written
mainly for OpenGL programmers writing OpenGL 2.0 applications. These notes may
also be useful for OpenGL-savvy end-users seeking to understand the OpenGL 2.0
capabilities of NVIDIA GPUs.

This document addresses

• What is OpenGL 2.0?

• What NVIDIA Drivers and GPUs support OpenGL 2.0?

• Programmable Shading API Updates for OpenGL 2.0

• Correctly Detecting OpenGL 2.0 in Applications

• Enabling OpenGL 2.0 Emulation on Older GPUs

• Known Issues

• OpenGL 2.0 API Declarations

• Distinguishing NV3xGL-based and NV4xGL-based Quadro FX GPUs by Product
Names

1. What is OpenGL 2.0?

OpenGL 2.0 is the latest core revision of the OpenGL graphics system. The OpenGL 2.0
specification was finalized September 17, 2004 by the OpenGL Architectural Review
Board (commonly known as “the ARB”).

OpenGL 2.0 incorporates the following functionality into the core OpenGL standard:

• High-level Programmable Shading. The OpenGL Shading Language
(commonly called GLSL) and the related APIs for creating, managing, and using
shader and program objects defined with GLSL is now a core feature of OpenGL.

This functionality was first added to OpenGL as a collection of ARB extensions,
namely ARB_shader_objects, ARB_vertex_shader, and
ARB_fragment_shader. OpenGL 2.0 updated the API from these original ARB

NVIDIA OpenGL 2.0 Support

2 of 22

extensions. These API updates are discussed in section 3.

• Multiple Render Targets. Previously core OpenGL supported a single RGBA
color output from fragment processing. OpenGL 2.0 specifies a maximum
number of draw buffers (though the maximum can be 1). When multiple draw
buffers are provided, a low-level assembly fragment program or GLSL fragment
shader can output multiple RGBA color outputs that update a specified set of
draw buffers respectively. This functionality matches the ARB_draw_buffers
extension.

• Non-Power-Of-Two Textures. Previously core OpenGL required texture images
(not including border texels) to be a power-of-two size in width, height, and
depth. OpenGL 2.0 allows arbitrary sizes for width, height, and depth.
Mipmapping of such textures is supported. The functionality matches the
ARB_texture_non_power_of_two extension.

• Point Sprites. Point sprites override the single uniform texture coordinate set
values for a rasterized point with interpolated 2D texture coordinates that blanket
the point with the full texture image. This allows application to define a texture
pattern for rendered points. The functionality matches the ARB_point_sprite
extension but with additional origin control.

• Two-Sided Stencil Testing. Previously core OpenGL provided a single set of
stencil state for both front- and back-facing polygons. OpenGL 2.0 introduces
separate front- and back-facing state. This can improve the performance of
certain shadow volume and Constructive Solid Geometry (CSG) rendering
algorithms. The functionality merges the capabilities of the
EXT_stencil_two_side and ATI_stencil_separate extensions.

• Separate RGB and Alpha Blend Equations. Previously core OpenGL provided
a blend equation (add, subtract, reverse subtract, min, or max) that applied to both
the RGB and alpha components of a blended pixel. OpenGL 1.4 allowed separate
RGB and alpha components to support distinct source and destination functions.
OpenGL 2.0 generalizes the control to provide separate RGB and alpha blend
equations.

• Other Specification Changes. OpenGL 2.0 includes several minor revisions and
corrections to the specification. These changes are inconsequential to OpenGL
programmers as the changes did not change the understood and implemented
behavior of OpenGL. See appendix I.6 of the OpenGL 2.0 specification for
details.

NVIDIA OpenGL 2.0 Support

3 of 22

2. What NVIDIA Drivers and GPUs support
OpenGL 2.0?

NVIDIA support for OpenGL 2.0 begins with the Release 75 series of drivers. GeForce
FX (NV3x), GeForce 6 Series (NV4x), NV3xGL-based Quadro FX and NV4xGL-based
Quadro FX GPUs, and all future NVIDIA GPUs support OpenGL 2.0.

Prior to Release 75, drivers for these OpenGL 2.0-capable GPUs advertised OpenGL 1.5
support but also exposed the feature set of OpenGL 2.0 through the corresponding
extensions listed in section 1.

Earlier GPUs (such as GeForce2, GeForce3, and GeForce4) continue to support OpenGL
1.5 with no plans to ever support OpenGL 2.0 because the hardware capabilities of these
GPUs are not sufficient to accelerate the OpenGL 2.0 feature set properly.

However, NVIDIA provides an option with Release 75 drivers to emulate OpenGL 2.0
features on these earlier GPUs. This option is further discussed in section 5. This
emulation option is not recommended for general users because OpenGL 2.0 features
will be emulated in software very, very slowly. OpenGL 2.0 emulation may be useful for
developers and students without access to the latest NVIDIA GPU hardware.

2.1. Acceleration for GeForce 6 Series and
NV4xGL-based Quadro FX

All key OpenGL 2.0 features are hardware-supported by NVIDIA’s GeForce 6 Series and
NV4xGL-based Quadro FX GPUs. These GPUs offer the best OpenGL 2.0 hardware
acceleration available from any vendor today.

2.1.1. Fragment-Level Branching

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs support structured
fragment-level branching. Structured branching allows standard control-flow
mechanisms such as loops, early exit from loops (comparable to a break statement in C),
if-then-else decision making, and function calls. Specifically, the hardware can support
data-dependent branching such as a loop where the different fragments early exit the loop
after a varying number of iterations.

Much like compilers for CPUs, NVIDIA’s Cg-based compiler technology decides
automatically whether to use the hardware’s structured branching capabilities or using
simpler techniques such as conditional assignment, unrolling loops, and inlining
functions.

Hardware support for fragment-level branching is not as general as vertex-level
branching. Some flow control constructs are too complicated or cannot be expressed by
the hardware’s structured branching capabilities. A few restrictions of note:

NVIDIA OpenGL 2.0 Support

4 of 22

• Function calls can be nested at most 4 calls deep.

• If-then-else decision making can be nested at most 47 branches deep.

• Loops cannot be nested more than 4 loops deep.

• Each loop can have at most 255 iterations.

The compiler can often generate code that avoids these restrictions, but if not, the
program object containing such a fragment shader will fail to compile. These restrictions
are also discussed in the NV_fragment_program2 OpenGL extension specification.

2.1.2. Vertex Textures

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs accelerate texture
fetches by GLSL vertex shaders.

The implementation-dependent constant GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS is
advertised to be 4 meaning these GPUs provide a maximum of 4 vertex texture image
units.

2.1.2.1. Hardware Constraints

Keep in mind these various hardware constraints for vertex textures:

• While 1D and 2D texture targets for vertex textures are supported, the 3D, cube
map, and rectangle texture targets are not hardware accelerated for vertex
textures.

• Just these formats are accelerated for vertex textures: GL_RGBA_FLOAT32_ARB,
GL_RGB_FLOAT32_ARB, GL_ALPHA_FLOAT32_ARB, GL_LUMINANCE32_ARB,
GL_INTENSITY32_ARB, GL_FLOAT_RGBA32_NV, GL_FLOAT_RGB32_NV,
GL_FLOAT_RG32_NV, or GL_FLOAT_R32_NV.

• Vertex textures with border texels are not hardware accelerated.

• Since no depth texture formats are hardware accelerated, shadow mapping by
vertex textures is not hardware accelerated

The vertex texture functionality precluded from hardware acceleration in the above list
will still operate as specified but it will require the vertex processing be performed on the
CPU rather than the GPU. This will substantially slow vertex processing. However,
rasterization and fragment processing can still be fully hardware accelerated.

NVIDIA OpenGL 2.0 Support

5 of 22

2.1.2.2. Unrestricted Vertex Texture Functionality

These features are supported for hardware-accelerated vertex textures:

• All wrap modes for S and T including all the clamp modes, mirrored repeat, and
the three “mirror once then clamp” modes. Any legal border color is allowed.

• Level-of-detail (LOD) bias and min/max clamping.

• Non-power-of-two sizes for the texture image width and height.

• Mipmapping.

Because vertices are processed as ideal points, vertex textures accesses require an
explicit LOD to be computed; otherwise the base level is sampled. Use the bias
parameter of GLSL’s texture2DLod, texture1DLod, and related functions to specify
an explicit LOD.

2.1.2.3. Linear and Anisotropic Filtering Caveats

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs do not hardware
accelerate linear filtering for vertex textures. If vertex texturing is otherwise hardware
accelerated, GL_LINEAR filtering operates as GL_NEAREST. The mipmap minification
filtering modes (GL_LINEAR_MIPMAP_LINEAR, GL_NEAREST_MIPMAP_LINEAR, or
GL_LINEAR_MIPMAP_NEAREST) operate as if GL_NEAREST_MIPMAP_NEAREST so as not to
involve any linear filtering. Anisotropic filtering is also ignored for hardware-
accelerated vertex textures.

These same rules reflect hardware constraints that apply to vertex textures whether used
through GLSL or NV_vertex_program3 or Cg’s vp40 profile.

2.1.3. Multiple Render Targets

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs support a maximum
of 4 simultaneous draw buffers (indicated by GL_MAX_DRAW_BUFFERS). Typically, you
should request a pixel format for your framebuffer with one or more auxiliary buffers
(commonly called aux buffers) to take advantage of multiple render targets.

Most pixel formats have an option for 4 auxiliary buffers. These buffers are allocated
lazily so configuring with a pixel format supporting 4 auxiliary buffers but using fewer
buffers in your rendering will not require video memory be allocated to never used
buffers.

NVIDIA OpenGL 2.0 Support

6 of 22

2.1.4. Non-Power-Of-Two Textures

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs fully support non-
power-of-two textures at the fragment level. All texture formats (including compressed
formats) and all texture modes such as shadow mapping, all texture filtering modes
(including anisotropic filtering), borders, LOD control, and all clamp modes work as
expected with non-power-of-two texture sizes. Non-power-of-two textures are also
supported for vertex textures but with the limitations discussed in section 2.1.2.

2.1.4.1. Rendering Performance and Texture Memory Usage

For memory layout and caching reasons, uncompressed non-power-of-two textures may
be slightly slower than uncompressed power-of-two textures of comparable size.
However, non-power-of-two textures compressed with S3TC should have very
comparable rendering performance to similarly compressed power-of-two textures.

For non-mipmapped non-power-of-two textures (as well as non-mipmapped power-of-
two textures), the size of the texture in memory is roughly the width × height × depth (if
3D) × bytes-per-texel as you would expect. So in this case, a 640x480 non-power-of-
two-texture without mipmaps, will take just 59% of the memory required if the image
was rounded up to the next power-of-two size (1024×512).

Mipmapped power-of-two sized 2D or 3D textures take up roughly four-thirds times
(1.333x) the memory of a texture’s base level memory size. However, mipmapped non-
power-of-two 2D or 3D textures take up roughly two times (2x) the memory of a
texture’s base level memory size. For these reasons, developers are discouraged from
changing (for example) a 128x128 mipmapped texture into a 125×127 mipmapped
texture hoping the slightly smaller texture size is an advantage.

The compressed S3TC formats are based on 4×4 pixel blocks. This means the width and
height of non-power-of-two textures compressed with S3TC are rounded up to the nearest
multiple of 4. So for example, there is no memory footprint advantage to using a non-
mipmapped 13×61 texture compressed with S3TC compared to a similarly compressed
non-mipmapped 16×64 texture.

2.1.4.2. Mipmap Construction for Non-Power-of-Two-Textures

The size of each smaller non-power-of-two mipmap level is computed by halving the
lower (larger) level’s width, height, and depth and rounding down (flooring) to the next
smaller integer while never reducing a size to less than one. For example, the level above
a 17×10 mipmap level is 8×5. The OpenGL non-power-of-two mipmap reduction
convention is identical to that of DirectX 9.

The standard gluBuild1DMipmaps, gluBuild2DMipmaps, and gluBuild3DMipmaps
routines accept a non-power-of-two image but automatically rescale the image (using a
box filter) to the next largest power-of-two in all dimensions if necessary. If you want to

NVIDIA OpenGL 2.0 Support

7 of 22

specify true non-power-of-two mipmapped texture images, these routines should be
avoided.

Instead, you can set the GL_GENERATE_MIPMAP texture parameter to GL_TRUE and let the
OpenGL driver generate non-power-of-two mipmaps for you automatically.

NVIDIA’s OpenGL driver today uses a slow-but-correct recursive box filter (each
iteration is equivalent to what gluScaleImage does) when generating non-power-of-two
mipmap chains. Expect driver mipmap generation for non-power-of-two textures to be
measurably slower than driver mipmap generation for non-power-of-two textures. Future
driver releases may optimize non-power-of-two mipmap generation.

Applications using static non-power-of-two textures can reduce time spent generating
non-power-of-two mipmap chains by loading pre-computing mipmap chains.

2.1.5. Point Sprites

OpenGL 2.0 introduces a new point sprite mode called
GL_POINT_SPRITE_COORD_ORIGIN that can be set to GL_UPPER_LEFT (the default) or
GL_LOWER_LEFT. The earlier ARB_point_sprite and NV_point_sprite extensions lack
this mode.

When rendering to windows, leave the GL_POINT_SPRITE_COORD_ORIGIN state set to its
default GL_UPPER_LEFT setting. Using GL_LOWER_LEFT with windowed rendering will
force points to be transformed on the CPU.

When rendering to pixel buffers (commonly called pbuffers) or frame buffer objects
(commonly called FBOs), change the GL_POINT_SPRITE_COORD_ORIGIN state set to
GL_LOWER_LEFT setting for fully hardware accelerated rendering. Using GL_UPPER_LEFT
with pbuffer and FBO rendering will force points to be transformed on the CPU.

NVIDIA supports (on all its GPUs) the NV_point_sprite extension that provides one
additional point sprite control beyond what OpenGL 2.0 provides. This extension
provides an additional GL_POINT_SPRITE_R_MODE_NV that controls how the R texture
coordinate is set for points. You have the choice to zero R (GL_ZERO, the default), use the
vertex’s S coordinate for R prior to S being overridden for the point sprite mode (GL_S),
or the vertex’s R coordinate (GL_R).

2.1.6. Two-Sided Stencil Testing

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs fully support all
OpenGL 2.0 two-sided stencil testing modes.

NVIDIA drivers support both the EXT_stencil_two_side extension and the OpenGL
2.0 functionality. Two sets of back-sided stencil state are maintained. The EXT
extension’s state is set by glStencil* commands when glActiveStencilFaceEXT is set

NVIDIA OpenGL 2.0 Support

8 of 22

to GL_BACK. The 2.0 back-facing state is set by the glStencil*Separate commands
when the face parameter is GL_BACK (or GL_FRONT_AND_BACK). When
GL_STENCIL_TWO_SIDE_EXT is enabled, the EXT back-facing stencil state takes priority.

2.1.7. Separate RGB and Alpha Blend Equations

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs fully support all
OpenGL 2.0 blend modes including separate RGB and alpha blend equations.

2.2. Acceleration for GeForce FX and
NV3xGL-based Quadro FX

2.2.1. Fragment-Level Branching

Unlike NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs, GeForce FX
and NV3xGL-based Quadro FX GPUs do not have hardware support for fragment-level
branching.

Apparent support for flow-control constructs in GLSL (and Cg) is based entirely on
conditional assignment, unrolling loops, and inlining functions.

The compiler can often generate code for programs with flow control that can be
simulated with conditional assignment, unrolling loops, and inlining functions, but for
more complex flow control, the program object containing a fragment shader may simply
fail to compile. The hardware’s branch-free execution model with condition-code
instructions is discussed in the NV_fragment_program OpenGL extension specification.

2.2.2. Vertex Textures

NVIDIA’s GeForce FX and NV3xGL-based Quadro FX GPUs lack hardware support for
vertex fetching. GLSL vertex shaders that perform vertex texture fetches will fail to
compile.

The implementation-dependent constant GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS is
advertised as zero (OpenGL 2.0 allows a minimum of zero to be advertised).

Future driver revisions may successfully compile GLSL vertex shaders with texture
fetches but perform the vertex shader completely or partially with the CPU. In this case,
the GPU can still accelerate rasterization and fragment processing.

2.2.3. Multiple Render Targets

NVIDIA’s GeForce FX and NV3xGL-based Quadro FX GPUs can output only a single
RGBA color per fragment processed so the maximum number of draw buffers (indicated
by GL_MAX_DRAW_BUFFERS) is just one.

NVIDIA OpenGL 2.0 Support

9 of 22

Effectively, this means GeForce FX and NV3xGL-based Quadro FX GPUs do not
support the spirit of multiple render targets. However, OpenGL 2.0 permits an
implementation to advertise support for just one draw buffer (see the 1+ minimum for
GL_MAX_DRAW_BUFFERS in table 6.35 of the OpenGL 2.0 specification).

Applications that desire rendering to multiple rendering targets must resort to multiple
rendering passes using glDrawBuffer to switch to a different buffer for each pass.

2.2.4. Non-Power-Of-Two Textures

GeForce FX and NV3xGL-based Quadro FX GPUs lack hardware support for non-
power-of-two textures (excepting the texture rectangle functionality provided by the
ARB_texture_rectangle extension). If any texture unit could sample a bound 1D, 2D,
3D, or cube map texture object with non-power-of-two size, the driver will automatically
render with software rendering, which is correct but extremely slow.

To determine if non-power-of-two textures are slow, examine the GL_EXTENSIONS string.
If GL_VERSION reports that 2.0 but GL_ARB_texture_non_power_of_two is not listed in
the GL_EXTENSIONS string, assume that using non-power-of-two-textures is slow and
avoid the functionality.

The discussion in section 2.1.4.2 about non-power-of-two mipmap discussion apply to
GeForce FX and NV3xGL-based Quadro FX GPUs too even if these GPUs do not
hardware accelerate non-power-of-two texture rendering.

2.2.5. Point Sprites

GeForce FX and NV3xGL-based Quadro FX GPUs have the identical caveats as the
GeForce 6 Series and NV4xGL-based Quadro FX GPUs discussed in section 2.1.5.

2.2.6. Two-Sided Stencil Testing

GeForce FX and NV3xGL-based Quadro FX GPUs have full hardware acceleration for
two-sided stencil testing just like the GeForce 6 Series and NV4xGL-based Quadro FX
GPUs. The same discussion in section 2.1.6 applies.

2.2.7. Separate RGB and Alpha Blend Equations

GeForce FX and NV3xGL-based Quadro FX GPUs lack hardware support for separate
RGB and alpha blend equations. If the RGB and alpha blend equations are different, the
driver will automatically render with full software rasterization, which is correct but
extremely slow.

To determine if separate blend equations is slow, examine the GL_EXTENSIONS string. If
GL_VERSION reports that 2.0 but GL_EXT_blend_equation_separate is not listed in the

NVIDIA OpenGL 2.0 Support

10 of 22

GL_EXTENSIONS string, assume that using separate distinct blend equations is slow and
avoid the functionality.

3. Programmable Shading API Updates for
OpenGL 2.0

The command and token names in the original ARB extensions for programmable
shading with GLSL are verbose and used an object model inconsistent with other types of
objects (display lists, texture objects, vertex buffer objects, occlusion queries, etc.).

3.1. Type Name Changes

The GLhandleARB type has been deprecated in preference to GLuint for program and
shader object names. The underlying type for the GLhandleARB is a 32-bit unsigned
integer so the two types have compatible representations.

Old ARB extensions type New OpenGL 2.0 type
GLhandleARB GLuint

3.2. Token Name Changes

Old ARB extensions tokens New OpenGL 2.0 tokens
GL_PROGRAM_OBJECT_ARB Unnecessary
GL_SHADER_OBJECT_ARB Unnecessary
GL_OBJECT_TYPE_ARB Instead glIsProgram and

glIsShader
GL_OBJECT_SUBTYPE_ARB GL_SHADER_TYPE
GL_OBJECT_DELETE_STATUS_ARB GL_DELETE_STATUS
GL_OBJECT_COMPILE_STATUS_ARB GL_COMPILE_STATUS
GL_OBJECT_LINK_STATUS_ARB GL_LINK_STATUS
GL_OBJECT_VALIDATE_STATUS_ARB GL_VALIDATE_STATUS
GL_OBJECT_INFO_LOG_LENGTH_ARB GL_INFO_LOG_LENGTH
GL_OBJECT_ATTACHED_OBJECTS_ARB GL_ATTACHED_SHADERS
GL_OBJECT_ACTIVE_UNIFORMS_ARB GL_ACTIVE_UNIFORMS
GL_OBJECT_ACTIVE_UNIFORM_MAX_LENGTH_ARB GL_ACTIVE_UNIFORM_MAX_LENGTH
GL_OBJECT_SHADER_SOURCE_LENGTH_ARB GL_SHADER_SOURCE_LENGTH

No equivalent GL_CURRENT_PROGRAM

For other ARB_shader_objects, ARB_vertex_shader, and ARB_fragment_shader
tokens, the OpenGL 2.0 names are identical to the ARB extension names except without
the ARB suffix.

NVIDIA OpenGL 2.0 Support

11 of 22

3.3. Command Name Changes

Old ARB extensions commands New OpenGL 2.0 commands
glAttachObjectARB glAttachShader
glCreateProgramObjectARB glCreateProgram
glCreateShaderObjectARB glCreateShader
glDeleteObjectARB glDeleteShader for shader objects,

glDeleteProgram for program objects
glDetachObjectARB glDetachShader
glGetAttachedObjectsARB glGetAttachedShaders
glGetHandleARB glGetIntegerv(GL_CURRENT_PROGRAM, &retval)
glGetInfoLogARB glGetShaderInfoLog for shader objects,

glGetProgramInfoLog for program objects
glGetObjectParameterfvARB No equivalent
glGetObjectParameterivARB glGetShaderiv for shader objects,

glGetProgramiv for program objects
No equivalent glIsProgram

No equivalent glIsShader

glUseProgramObjectARB glUseProgram

For other ARB_shader_objects, ARB_vertex_shader, and ARB_fragment_shader
commands, the OpenGL 2.0 names are identical to the ARB extension names except
without the ARB suffix.

4. Correctly Detecting OpenGL 2.0 in Applications

To determine if OpenGL 2.0 or better is supported, an application must parse the
implementation-dependent string returned by calling glGetString(GL_VERSION) .

4.1. Version String Formatting

OpenGL version strings are laid out as follows:

<version number> <space> <vendor-specific information>

The version number is either of the form major_number.minor_number or
major_number.minor_number.release_number, where the numbers all have one or more
digits. The release_number and vendor-specific information, along with its preceding
space, are optional. If present, the interpretation of the release_number and vendor-
specific information depends on the vendor.

NVIDIA does not provide vendor-specific information but uses the release_number to
indicate how many NVIDIA major driver releases (counting from zero) have supported
this particular major and minor revision of OpenGL. For example, the drivers in the
Release 75 series report 2.0.0 indicating Release 75 is the first driver series to support

NVIDIA OpenGL 2.0 Support

12 of 22

OpenGL 2.0. Release 80 will likely advertise 2.0.1 for its GL_VERSION string. Major
NVIDIA graphics driver releases typically increment by 5.

4.2. Proper Version String Parsing

Early application testing by NVIDIA has encountered a few isolated OpenGL
applications that incorrectly parse the GL_VERSION string when the OpenGL version
changed from 1.5 to 2.0.

OpenGL developers are strongly urged to examine their application code that parses the
GL_VERSION string to make sure pairing the application with an OpenGL 2.0
implementation will not confuse or crash the application.

Use the routine below to correctly test if at least a particular major and minor version of
OpenGL is available.

static int
supportsOpenGLVersion(int atLeastMajor, int atLeastMinor)
{

const char *version;
int major, minor;

version = (const char *) glGetString(GL_VERSION);
if (sscanf(version, "%d.%d", &major, &minor) == 2) {

if (major > atLeastMajor)
return 1;

if (major == atLeastMajor && minor >= atLeastMinor)
return 1;

} else {
/* OpenGL version string malformed! */

}
return 0;

}

For example, the above routine returns true if OpenGL 2.0 or better is supported (and
false otherwise) when the routine is called like this:

int hasOpenGL20 = supportsOpenGLVersion(2, 0);

Be sure your OpenGL applications behave correctly with OpenGL 2.0 when the
GL_VERSION string changes.

4.2.1. Warning about Proper Extensions String Parsing Too

This is also a good opportunity for OpenGL developers to re-examine the code they use
to detect OpenGL extensions. Be sure your code makes no assumption about the length
of the string returned by glGetString(GL_EXTENSIONS). Almost every major OpenGL
driver release adds new OpenGL extensions as does every major hardware generation so
you can expect this string to grow in length over time. If you strcpy the
GL_EXTENSIONS string into static buffer with only 8192 bytes, you will get burned
eventually.

NVIDIA OpenGL 2.0 Support

13 of 22

One recurring mistake is passing the string returned by glGetString(GL_EXTENSIONS) to a
printf-like or GUI routine that has an internal buffer of a limited size. For example, an
application might display the OpenGL extensions string in an “About Renderer…” dialog
box. The routine to set the dialog box string may assume that no one would ever specify
a string longer than 1,000 characters.

5. Enabling OpenGL 2.0 Emulation on Older GPUs

Developers and students using Microsoft Windows wishing to work with OpenGL 2.0 on
pre-NV3x GPUs can use a utility called nvemulate.exe to force these older drivers to
expose the feature sets of newer GPUs. When forcing emulation of an NV3x or NV4x
GPU with a Release 75-based driver, you can expose OpenGL 2.0.

OpenGL features the GPU can support natively will be hardware accelerated as usual.
But GPU features not natively supported will be slowly emulated by the OpenGL driver.
OpenGL extensions, implementation-dependent limits, and core OpenGL version for the
GPU being emulated will be advertised.

So if you enable “NV40 (GeForce 6800)” emulation, as shown in the image below, on a
old GeForce3 GPU, you will see OpenGL 2.0 advertised by the GL_VERSION string along
with all the NV40 OpenGL extensions listed in the GL_EXTENSIONS string and
implementation-dependent limits returned by glGetIntegerv.

5.1. Programmable Shading Debug Options

Additional check boxes can be enabled and disabled to aid in debugging GLSL
applications. The “Shader Objects” check box determines whether the ARB extensions
for programmable shading (ARB_shader_objects, etc.) are advertised or not.

NVIDIA OpenGL 2.0 Support

14 of 22

The “Write Program Object Source” check box causes vsrc_%u.txt and fsrc_%u.txt
files containing the concatenated source string for GLSL shaders to be written to the
application’s current directory where the %u is GLuint value for the shader name.

The “Write Program Object Assembly” check box causes vasm_%u.txt and
fasm_%u.txt files containing the compiled assembly text for linked GLSL program
objects to be written to the application’s current directory where the %u is GLuint value
for the program name.

The “Write Info Log” check box causes ilog_%u.txt files containing the info log
contents for linked GLSL program objects to be written to the application’s current
directory where the %u is GLuint value for the program name.

The “Strict Shader Portability Warnings” causes the compiler to generate portability
warnings in the info log output. These warnings are not particularly thorough yet.

5.2. Forcing the Software Rasterizer

With the “Force Software Rasterizer” check box set, the driver does all OpenGL
rendering in software. If you suspect a driver bug resulting in incorrect rendering, you
might try this option and see if the rendering anomaly manifests itself in the software
rasterizer. This information is helpful when reporting bugs to NVIDIA.

If the hardware and software rendering paths behave more-or-less identically, it may be
an indication that the rendering anomaly is due to your application mis-programming
OpenGL state or incorrect expectations about how OpenGL should behave.

6. Known Issues

6.1. OpenGL Shading Language Issues

NVIDIA’s GLSL implementation is a work-in-progress and still improving. Various
limitations and known bugs are discussed in the Release Notes for NVIDIA OpenGL
Shading Language Support.

6.1.1. Noise Functions Always Return Zero

The GLSL standard library contains several noise functions of differing dimensions:
noise1, noise2, noise3, and noise4.

NVIDIA’s implementation of these functions (currently) always returns zero results.

NVIDIA OpenGL 2.0 Support

15 of 22

6.1.2. Vertex Attribute Aliasing

GLSL attempts to eliminate aliasing of vertex attributes but this is integral to NVIDIA’s
hardware approach and necessary for maintaining compatibility with existing OpenGL
applications that NVIDIA customers rely on.

NVIDIA’s GLSL implementation therefore does not allow built-in vertex attributes to
collide with a generic vertex attributes that is assigned to a particular vertex attribute
index with glBindAttribLocation. For example, you should not use gl_Normal (a
built-in vertex attribute) and also use glBindAttribLocation to bind a generic vertex
attribute named “whatever” to vertex attribute index 2 because gl_Normal aliases to
index 2.

This table below summarizes NVIDIA’s vertex attribute aliasing behavior:

Built-in vertex attribute name Incompatible aliased
vertex attribute index

gl_Vertex 0
gl_Normal 2
gl_Color 3
gl_SecondaryColor 4
gl_FogCoord 5
gl_MultiTexCoord0 8
gl_MultiTexCoord1 9
gl_MultiTexCoord2 10
gl_MultiTexCoord3 11
gl_MultiTexCoord4 12
gl_MultiTexCoord5 13
gl_MultiTexCoord6 14
gl_MultiTexCoord7 15

Vertex attribute aliasing is also explained in the ARB_vertex_program and
NV_vertex_program specifications.

6.1.3. gl_FrontFacing Is Not Available to Fragment Shaders

The built-in fragment shader varying parameter gl_FrontFacing is supported by
GeForce 6 Series and NV4xGL-based Quadro FX GPUs but not GeForce FX and
NV3xGL-based Quadro FX GPUs.

As a workaround, enable with glEnable the GL_VERTEX_PROGRAM_TWO_SIDE mode and,
in your vertex shader, write a 1 to the alpha component of the front-facing primary color
(gl_FrontColor) and 0 to the alpha component of the back-facing primary color
(gl_BackColor). Then, read alpha component of the built-in fragment shader varying

NVIDIA OpenGL 2.0 Support

16 of 22

parameter gl_Color. Just like gl_FrontFacing, 1 means front-facing; 0 means back-
facing.

6.1.4. Reporting GLSL Issues and Bugs

NVIDIA welcomes email pertaining to GLSL. Send suggestions, feedback, and bug
reports to glsl-support@nvidia.com

7. OpenGL 2.0 API Declarations

NVIDIA provides <GL/gl.h> and <GL/glext.h> header files with the necessary
OpenGL 2.0 API declarations on the OpenGL 2.0 page in NVIDIA’s Developer web site,
developer.nvidia.com

Your OpenGL 2.0 application will need to call wglGetProcAddress (Windows) or
glXGetProcAddress (Linux) to obtain function pointers to the new OpenGL 2.0
commands just as is necessary for other OpenGL extensions.

7.1. Programmable Shading

7.1.1. New Token Defines

7.1.1.1. Program and Shader Object Management

#define GL_CURRENT_PROGRAM 0x8B8D
#define GL_SHADER_TYPE 0x8B4E
#define GL_DELETE_STATUS 0x8B80
#define GL_COMPILE_STATUS 0x8B81
#define GL_LINK_STATUS 0x8B82
#define GL_VALIDATE_STATUS 0x8B83
#define GL_INFO_LOG_LENGTH 0x8B84
#define GL_ATTACHED_SHADERS 0x8B85
#define GL_ACTIVE_UNIFORMS 0x8B86
#define GL_ACTIVE_UNIFORM_MAX_LENGTH 0x8B87
#define GL_SHADER_SOURCE_LENGTH 0x8B88
#define GL_VERTEX_SHADER 0x8B31
#define GL_ACTIVE_ATTRIBUTES 0x8B89
#define GL_ACTIVE_ATTRIBUTE_MAX_LENGTH 0x8B8A
#define GL_FRAGMENT_SHADER 0x8B30

7.1.1.2. Uniform Types

#define GL_FLOAT_VEC2 0x8B50
#define GL_FLOAT_VEC3 0x8B51
#define GL_FLOAT_VEC4 0x8B52
#define GL_INT_VEC2 0x8B53
#define GL_INT_VEC3 0x8B54
#define GL_INT_VEC4 0x8B55
#define GL_BOOL 0x8B56
#define GL_BOOL_VEC2 0x8B57
#define GL_BOOL_VEC3 0x8B58
#define GL_BOOL_VEC4 0x8B59
#define GL_FLOAT_MAT2 0x8B5A

NVIDIA OpenGL 2.0 Support

17 of 22

#define GL_FLOAT_MAT3 0x8B5B
#define GL_FLOAT_MAT4 0x8B5C
#define GL_SAMPLER_1D 0x8B5D
#define GL_SAMPLER_2D 0x8B5E
#define GL_SAMPLER_3D 0x8B5F
#define GL_SAMPLER_CUBE 0x8B60
#define GL_SAMPLER_1D_SHADOW 0x8B61
#define GL_SAMPLER_2D_SHADOW 0x8B62

7.1.1.3. Vertex Attrib Arrays

#define GL_VERTEX_ATTRIB_ARRAY_ENABLED 0x8622
#define GL_VERTEX_ATTRIB_ARRAY_SIZE 0x8623
#define GL_VERTEX_ATTRIB_ARRAY_STRIDE 0x8624
#define GL_VERTEX_ATTRIB_ARRAY_TYPE 0x8625
#define GL_VERTEX_ATTRIB_ARRAY_NORMALIZED 0x886A
#define GL_CURRENT_VERTEX_ATTRIB 0x8626
#define GL_VERTEX_ATTRIB_ARRAY_POINTER 0x8645
#define GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING 0x889F

7.1.1.4. Hints

#define GL_FRAGMENT_SHADER_DERIVATIVE_HINT 0x8B8B

7.1.1.5. Enables for Rasterization Control

#define GL_VERTEX_PROGRAM_POINT_SIZE 0x8642
#define GL_VERTEX_PROGRAM_TWO_SIDE 0x8643

7.1.1.6. Implementation Dependent Strings and Limits

#define GL_SHADING_LANGUAGE_VERSION 0x8B8C
#define GL_MAX_VERTEX_ATTRIBS 0x8869
#define GL_MAX_FRAGMENT_UNIFORM_COMPONENTS 0x8B49
#define GL_MAX_VERTEX_UNIFORM_COMPONENTS 0x8B4A
#define GL_MAX_VARYING_FLOATS 0x8B4B
#define GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 0x8B4C
#define GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 0x8B4D
#define GL_MAX_TEXTURE_COORDS 0x8871
#define GL_MAX_TEXTURE_IMAGE_UNITS 0x8872

7.1.2. New Command Prototypes

7.1.2.1. Shader Objects

void GLAPI glDeleteShader (GLuint shader);
void GLAPI glDetachShader (GLuint program, GLuint shader);
GLuint GLAPI glCreateShader (GLenum type);
void GLAPI glShaderSource (GLuint shader, GLsizei count, const GLchar* *string, const
GLint *length);
void GLAPI glCompileShader (GLuint shader);

7.1.2.2. Program Objects

GLuint GLAPI glCreateProgram (void);
void GLAPI glAttachShader (GLuint program, GLuint shader);

NVIDIA OpenGL 2.0 Support

18 of 22

void GLAPI glLinkProgram (GLuint program);
void GLAPI glUseProgram (GLuint program);
void GLAPI glDeleteProgram (GLuint program);
void GLAPI glValidateProgram (GLuint program);

7.1.2.3. Uniforms

void GLAPI glUniform1f (GLint location, GLfloat v0);
void GLAPI glUniform2f (GLint location, GLfloat v0, GLfloat v1);
void GLAPI glUniform3f (GLint location, GLfloat v0, GLfloat v1, GLfloat v2);
void GLAPI glUniform4f (GLint location, GLfloat v0, GLfloat v1, GLfloat v2, GLfloat
v3);
void GLAPI glUniform1i (GLint location, GLint v0);
void GLAPI glUniform2i (GLint location, GLint v0, GLint v1);
void GLAPI glUniform3i (GLint location, GLint v0, GLint v1, GLint v2);
void GLAPI glUniform4i (GLint location, GLint v0, GLint v1, GLint v2, GLint v3);
void GLAPI glUniform1fv (GLint location, GLsizei count, const GLfloat *value);
void GLAPI glUniform2fv (GLint location, GLsizei count, const GLfloat *value);
void GLAPI glUniform3fv (GLint location, GLsizei count, const GLfloat *value);
void GLAPI glUniform4fv (GLint location, GLsizei count, const GLfloat *value);
void GLAPI glUniform1iv (GLint location, GLsizei count, const GLint *value);
void GLAPI glUniform2iv (GLint location, GLsizei count, const GLint *value);
void GLAPI glUniform3iv (GLint location, GLsizei count, const GLint *value);
void GLAPI glUniform4iv (GLint location, GLsizei count, const GLint *value);
void GLAPI glUniformMatrix2fv (GLint location, GLsizei count, GLboolean transpose,
const GLfloat *value);
void GLAPI glUniformMatrix3fv (GLint location, GLsizei count, GLboolean transpose,
const GLfloat *value);
void GLAPI glUniformMatrix4fv (GLint location, GLsizei count, GLboolean transpose,
const GLfloat *value);

7.1.2.4. Attribute Locations

void GLAPI glBindAttribLocation (GLuint program, GLuint index, const GLchar *name);
GLint GLAPI glGetAttribLocation (GLuint program, const GLchar *name);

7.1.2.5. Vertex Attributes

void GLAPI glVertexAttrib1d (GLuint index, GLdouble x);
void GLAPI glVertexAttrib1dv (GLuint index, const GLdouble *v);
void GLAPI glVertexAttrib1f (GLuint index, GLfloat x);
void GLAPI glVertexAttrib1fv (GLuint index, const GLfloat *v);
void GLAPI glVertexAttrib1s (GLuint index, GLshort x);
void GLAPI glVertexAttrib1sv (GLuint index, const GLshort *v);
void GLAPI glVertexAttrib2d (GLuint index, GLdouble x, GLdouble y);
void GLAPI glVertexAttrib2dv (GLuint index, const GLdouble *v);
void GLAPI glVertexAttrib2f (GLuint index, GLfloat x, GLfloat y);
void GLAPI glVertexAttrib2fv (GLuint index, const GLfloat *v);
void GLAPI glVertexAttrib2s (GLuint index, GLshort x, GLshort y);
void GLAPI glVertexAttrib2sv (GLuint index, const GLshort *v);
void GLAPI glVertexAttrib3d (GLuint index, GLdouble x, GLdouble y, GLdouble z);
void GLAPI glVertexAttrib3dv (GLuint index, const GLdouble *v);
void GLAPI glVertexAttrib3f (GLuint index, GLfloat x, GLfloat y, GLfloat z);
void GLAPI glVertexAttrib3fv (GLuint index, const GLfloat *v);
void GLAPI glVertexAttrib3s (GLuint index, GLshort x, GLshort y, GLshort z);
void GLAPI glVertexAttrib3sv (GLuint index, const GLshort *v);
void GLAPI glVertexAttrib4Nbv (GLuint index, const GLbyte *v);
void GLAPI glVertexAttrib4Niv (GLuint index, const GLint *v);
void GLAPI glVertexAttrib4Nsv (GLuint index, const GLshort *v);

NVIDIA OpenGL 2.0 Support

19 of 22

void GLAPI glVertexAttrib4Nub (GLuint index, GLubyte x, GLubyte y, GLubyte z, GLubyte
w);
void GLAPI glVertexAttrib4Nubv (GLuint index, const GLubyte *v);
void GLAPI glVertexAttrib4Nuiv (GLuint index, const GLuint *v);
void GLAPI glVertexAttrib4Nusv (GLuint index, const GLushort *v);
void GLAPI glVertexAttrib4bv (GLuint index, const GLbyte *v);
void GLAPI glVertexAttrib4d (GLuint index, GLdouble x, GLdouble y, GLdouble z,
GLdouble w);
void GLAPI glVertexAttrib4dv (GLuint index, const GLdouble *v);
void GLAPI glVertexAttrib4f (GLuint index, GLfloat x, GLfloat y, GLfloat z, GLfloat
w);
void GLAPI glVertexAttrib4fv (GLuint index, const GLfloat *v);
void GLAPI glVertexAttrib4iv (GLuint index, const GLint *v);
void GLAPI glVertexAttrib4s (GLuint index, GLshort x, GLshort y, GLshort z, GLshort
w);
void GLAPI glVertexAttrib4sv (GLuint index, const GLshort *v);
void GLAPI glVertexAttrib4ubv (GLuint index, const GLubyte *v);
void GLAPI glVertexAttrib4uiv (GLuint index, const GLuint *v);
void GLAPI glVertexAttrib4usv (GLuint index, const GLushort *v);
void GLAPI glVertexAttribPointer (GLuint index, GLint size, GLenum type, GLboolean
normalized, GLsizei stride, const GLvoid *pointer);
void GLAPI glEnableVertexAttribArray (GLuint index);
void GLAPI glDisableVertexAttribArray (GLuint index);
void GLAPI glGetVertexAttribdv (GLuint index, GLenum pname, GLdouble *params);
void GLAPI glGetVertexAttribfv (GLuint index, GLenum pname, GLfloat *params);
void GLAPI glGetVertexAttribiv (GLuint index, GLenum pname, GLint *params);
void GLAPI glGetVertexAttribPointerv (GLuint index, GLenum pname, GLvoid* *pointer);

7.1.2.6. Queries

GLboolean GLAPI glIsShader (GLuint shader);
GLboolean GLAPI glIsProgram (GLuint program);
void GLAPI glGetShaderiv (GLuint program, GLenum pname, GLint *params);
void GLAPI glGetProgramiv (GLuint program, GLenum pname, GLint *params);
void GLAPI glGetAttachedShaders (GLuint program, GLsizei maxCount, GLsizei *count,
GLuint *shaders);
void GLAPI glGetShaderInfoLog (GLuint shader, GLsizei bufSize, GLsizei *length, GLchar
*infoLog);
void GLAPI glGetProgramInfoLog (GLuint program, GLsizei bufSize, GLsizei *length,
GLchar *infoLog);
GLint GLAPI glGetUniformLocation (GLuint program, const GLchar *name);
void GLAPI glGetActiveUniform (GLuint program, GLuint index, GLsizei bufSize, GLsizei
*length, GLsizei *size, GLenum *type, GLchar *name);
void GLAPI glGetUniformfv (GLuint program, GLint location, GLfloat *params);
void GLAPI glGetUniformiv (GLuint program, GLint location, GLint *params);
void GLAPI glGetShaderSource (GLuint shader, GLsizei bufSize, GLsizei *length, GLchar
*source);
void GLAPI glGetActiveAttrib (GLuint program, GLuint index, GLsizei bufSize, GLsizei
*length, GLsizei *size, GLenum *type, GLchar *name);

7.2. Non-Power-Of-Two Textures

Support for non-power-of-two textures introduces no new tokens or commands. Rather
the error conditions that previously restricted the width, height, and depth (excluding the
border) to be power-of-two values is eliminated.

The relaxation of errors to allow non-power-of-two texture sizes affects the following
commands: glTexImage1D, glCopyTexImage1D, glTexImage2D, glCopyTexImage2D,

NVIDIA OpenGL 2.0 Support

20 of 22

and glTexImage3D. You can also render to non-power-of-two pixel buffers (pbuffers)
using the WGL_ARB_render_texture extension.

7.3. Multiple Render Targets

7.3.1. New Token Defines

#define GL_MAX_DRAW_BUFFERS 0x8824
#define GL_DRAW_BUFFER0 0x8825
#define GL_DRAW_BUFFER1 0x8826
#define GL_DRAW_BUFFER2 0x8827
#define GL_DRAW_BUFFER3 0x8828
#define GL_DRAW_BUFFER4 0x8829
#define GL_DRAW_BUFFER5 0x882A
#define GL_DRAW_BUFFER6 0x882B
#define GL_DRAW_BUFFER7 0x882C
#define GL_DRAW_BUFFER8 0x882D
#define GL_DRAW_BUFFER9 0x882E
#define GL_DRAW_BUFFER10 0x882F
#define GL_DRAW_BUFFER11 0x8830
#define GL_DRAW_BUFFER12 0x8831
#define GL_DRAW_BUFFER13 0x8832
#define GL_DRAW_BUFFER14 0x8833
#define GL_DRAW_BUFFER15 0x8834

7.3.2. New Command Prototypes

void GLAPI glDrawBuffers (GLsizei n, const GLenum *bufs);

7.4. Point Sprite

7.4.1. New Token Defines

#define GL_POINT_SPRITE 0x8861
#define GL_COORD_REPLACE 0x8862
#define GL_POINT_SPRITE_COORD_ORIGIN 0x8CA0
#define GL_LOWER_LEFT 0x8CA1
#define GL_UPPER_LEFT 0x8CA2

7.4.2. Usage

Point sprite state is set with the glPointParameteri, glPointParameteriv,
glPointParameterf, glPointParameterfv API originally introduced by OpenGL 1.4
to control point size attenuation.

7.5. Two-Sided Stencil Testing

7.5.1. New Token Defines

These tokens can be used with glGetIntegerv to query back-facing stencil state.

#define GL_STENCIL_BACK_FUNC 0x8800

NVIDIA OpenGL 2.0 Support

21 of 22

#define GL_STENCIL_BACK_VALUE_MASK 0x8CA4
#define GL_STENCIL_BACK_REF 0x8CA3
#define GL_STENCIL_BACK_FAIL 0x8801
#define GL_STENCIL_BACK_PASS_DEPTH_FAIL 0x8802
#define GL_STENCIL_BACK_PASS_DEPTH_PASS 0x8803
#define GL_STENCIL_BACK_WRITEMASK 0x8CA5

7.5.2. New Command Prototypes

void GLAPI glStencilFuncSeparate (GLenum face, GLenum func, GLint ref, GLuint mask);
void GLAPI glStencilOpSeparate (GLenum face, GLenum fail, GLenum zfail, GLenum zpass);
void GLAPI glStencilMaskSeparate (GLenum face, GLuint mask);

7.6. Separate RGB and Alpha Blend Equations

7.6.1. New Token Defines

These tokens can be used with glGetIntegerv to query blend equation state. The
GL_BLEND_EQUATION token has the same value as the new GL_BLEND_EQUATION_RGB.

#define GL_BLEND_EQUATION_RGB 0x8009
#define GL_BLEND_EQUATION_ALPHA 0x883D

7.6.2. New Command Prototypes

void GLAPI glBlendEquationSeparate (GLenum modeRGB, GLenum modeAlpha);

A. Distinguishing NV3xGL-based and NV4xGL-based
Quadro FX GPUs by Product Names

As discussed in section 2, while NV3x- and NV3xGL-based GPUs support OpenGL 2.0,
the NV4x- and NV4xGL-based GPUs have the best industry-wide hardware-acceleration
and support for OpenGL 2.0.

For the consumer GeForce product lines, GeForce FX and GeForce 6 Series GPUs are
easily distinguished based on their product names and numbering. Any NVIDIA GPU
product beginning with GeForce FX is NV3x-based. Such GPUs also typically have a
5000-based product number, such as 5200 or 5950. GeForce GPUs with a 6000-based
product name, such as 6600 or 6800, are NV4x-based.

However, the Quadro FX product name applies to both NV3xGL-based and NV4xGL-
based GPUs and there is no simple rule to differentiate NV3xGL-based and NV4xGL-
based using the product name. The lists below will help OpenGL 2.0 developers
correctly distinguish the two NV3xGL- and NV4xGL-based Quadro FX product lines.

NVIDIA OpenGL 2.0 Support

22 of 22

A.1. NV3xGL-based Quadro FX GPUs

Quadro FX 330 (PCI Express)
Quadro FX 500 (AGP)
Quadro FX 600 (PCI)
Quadro FX 700 (AGP)
Quadro FX 1000 (AGP)
Quadro FX 1100 (AGP)
Quadro FX 1300 (PCI)
Quadro FX 2000 (AGP)
Quadro FX 3000 (AGP)

A.2. NV4xGL-based Quadro FX GPUs

Quadro FX 540 (PCI Express)
Quadro FX 1400 (PCI Express)
Quadro FX Go1400 (PCI Express)
Quadro FX 3400 (PCI Express)
Quadro FX 4000 (AGP)
Quadro FX 4400 (PCI Express)
Quadro FX 3450 (PCI Express)
Quadro FX 4450 (PCI Express)

A.3. How to Use and How to Not Use These Lists

These lists are for informational purposes to help OpenGL 2.0 developers instruct end-
users as to which NVIDIA products will support OpenGL 2.0 and accelerate the OpenGL
2.0 feature set the best. These lists are not complete and are subject to change.

OpenGL developers should not query and parse the GL_RENDERER string returned by
glGetString to determine if a given GPU supports NV3x-based or NV4x-based
functionality and performance.

Instead, query the GL_EXTENSIONS string and look for the GL_NV_fragment_program2
and/or GL_NV_vertex_program3 substrings. These extensions imply the functional
feature set of NV4x-based GPUs.

	NVIDIA OpenGL 2.0 Support
	What is OpenGL 2.0
	What NVIDIA Drivers and GPUs support OpenGL 2.0?
	Acceleration for GeForce 6 Series and NV4xGL-based Quadro FX
	Fragment-Level Branching
	Vertex Textures
	Hardware Constraints
	Unrestricted Vertex Texture Functionality
	Linear and Anisotropic Filtering Caveats
	Multiple Render Targets
	Non-Power-Of-Two Textures
	Rendering Performance and Texture Memory Usage
	Mipmap Construction for Non-Power-Of-Two Textures

	Point Sprites
	Two-Sided Stencil Testing
	Separate RGB and Alpha Blend Equations

	Acceleration for GeForce FX and NV3xGL-based Quadro FX
	Fragment-Level Branching
	Vertex Textures
	Multiple Render Targets
	Non-Power-Of-Two Textures
	Point Sprites
	Two-Sided Stencil Testing
	Separate RGB and Alpha Blend Equations

	Programmable Shading API Updates for OpenGL 2.0
	Type Name Changes
	Token Name Changes
	Command Name Changes

	Correctly Detecting OpenGL 2.0 in Applications
	Version String Formatting
	Proper Version String Parsing
	Warning about Proper Extensions String Parsing Too

	Enabling OpenGL 2.0 Emulation on Older GPUs
	Programmable Shading Debug Options
	Forcing the Software Rasterizer

	Known Issues
	OpenGL Shading Language Issues
	Noise Functions Always Return Zero
	Vertex Attribute Aliasing
	gl_FrontFacing Is Not Available to Fragment Shaders
	Reporting GLSL Issues and Bugs

	OpenGL 2.0 API Declarations
	Programmable Shading
	New Token Defines
	Program and Shader Object Management
	Uniform Types
	Vertex Attrib Arrays
	Hints
	Enables for Rasterization Control
	Implementation Dependent Strings and Limits

	New Command Prototypes
	Shader Objects
	Program Objects
	Uniforms
	Attribute Locations
	Vertex Attributes
	Queries

	Non-Power-Of-Two Textures
	Multiple Render Targets
	New Token Defines
	New Command Prototypes

	Point Sprite
	New Token Defines
	Usage

	Two-Sided Stencil Testing
	New Token Defines
	New Command Prototypes

	Separate RGB and Alpha Blend Equations
	New Token Defines
	New Command Prototypes

	Distinguishing NV3xGL-based and NV4xGL-based Quadro FX GPUs by Product Names
	NV3xGL-based Quadro FX GPUs
	NV4xGL-based Quadro FX GPUs
	How to Use and How to Not Use These Lists

