NVIDIA OpenGL 2.0 Support

Mark J. Kilgard
April 26, 2005

These release notes explain NVIDIA’s support for OpenGL 2.0. These notes are written
mainly for OpenGL programmers writing OpenGL 2.0 applications. These notes may
also be useful for OpenGL-savvy end-users seeking to understand the OpenGL 2.0
capabilities of NVIDIA GPUs.
This document addresses

* What is OpenGL 2.0?

e What NVIDIA Drivers and GPUs support OpenGL 2.0?

* Programmable Shading API Updates for OpenGL 2.0

» Correctly Detecting OpenGL 2.0 in Applications

* Enabling OpenGL 2.0 Emulation on Older GPUs

* Known Issues

e OpenGL 2.0 API Declarations

» Distinguishing NV3xGL-based and NV4xGL-based Quadro FX GPUs by Product
Names

1. Whatis OpenGL 2.0?

OpenGL 2.0 is the latest core revision of the OpenGL graphics system. The OpenGL 2.0
specification was finalized September 17, 2004 by the OpenGL Architectural Review
Board (commonly known as “the ARB”).

OpenGL 2.0 incorporates the following functionality into the core OpenGL standard:

* High-level Programmable Shading. The OpenGL Shading Language
(commonly called GLSL) and the related APIs for creating, managing, and using
shader and program objects defined with GLSL is now a core feature of OpenGL.

This functionality was first added to OpenGL as a collection of ARB extensions,
namely ARB_shader _obj ect s, ARB_vert ex_shader, and
ARB_f ragment _shader. OpenGL 2.0 updated the API from these original ARB

NVIDIA OpenGL 2.0 Support

extensions. These API updates are discussed in section 3.

Multiple Render Targets. Previously core OpenGL supported a single RGBA
color output from fragment processing. OpenGL 2.0 specifies a maximum
number of draw buffers (though the maximum can be 1). When multiple draw
buffers are provided, a low-level assembly fragment program or GLSL fragment
shader can output multiple RGBA color outputs that update a specified set of
draw buffers respectively. This functionality matches the ARB_dr aw buffers
extension.

Non-Power-Of-Two Textures. Previously core OpenGL required texture images
(not including border texels) to be a power-of-two size in width, height, and
depth. OpenGL 2.0 allows arbitrary sizes for width, height, and depth.
Mipmapping of such textures is supported. The functionality matches the

ARB_t ext ure_non_power _of _t wo extension.

Point Sprites. Point sprites override the single uniform texture coordinate set
values for a rasterized point with interpolated 2D texture coordinates that blanket
the point with the full texture image. This allows application to define a texture
pattern for rendered points. The functionality matches the ARB_poi nt _sprite
extension but with additional origin control.

Two-Sided Stencil Testing. Previously core OpenGL provided a single set of
stencil state for both front- and back-facing polygons. OpenGL 2.0 introduces
separate front- and back-facing state. This can improve the performance of
certain shadow volume and Constructive Solid Geometry (CSG) rendering
algorithms. The functionality merges the capabilities of the

EXT_stenci |l _two_si de and ATl _st enci | _separ at e extensions.

Separate RGB and Alpha Blend Equations. Previously core OpenGL provided
a blend equation (add, subtract, reverse subtract, min, or max) that applied to both
the RGB and alpha components of a blended pixel. OpenGL 1.4 allowed separate
RGB and alpha components to support distinct source and destination functions.
OpenGL 2.0 generalizes the control to provide separate RGB and alpha blend
equations.

Other Specification Changes. OpenGL 2.0 includes several minor revisions and
corrections to the specification. These changes are inconsequential to OpenGL
programmers as the changes did not change the understood and implemented
behavior of OpenGL. See appendix 1.6 of the OpenGL 2.0 specification for
details.

2 of 22

NVIDIA OpenGL 2.0 Support

2. What NVIDIA Drivers and GPUs support
OpenGL 2.0?

NVIDIA support for OpenGL 2.0 begins with the Release 75 series of drivers. GeForce
FX (NV3x), GeForce 6 Series (NV4x), NV3xGL-based Quadro FX and NV4xGL-based
Quadro FX GPUs, and all future NVIDIA GPUs support OpenGL 2.0.

Prior to Release 75, drivers for these OpenGL 2.0-capable GPUs advertised OpenGL 1.5
support but also exposed the feature set of OpenGL 2.0 through the corresponding
extensions listed in section 1.

Earlier GPUs (such as GeForce2, GeForce3, and GeForce4) continue to support OpenGL
1.5 with no plans to ever support OpenGL 2.0 because the hardware capabilities of these
GPUs are not sufficient to accelerate the OpenGL 2.0 feature set properly.

However, NVIDIA provides an option with Release 75 drivers to emulate OpenGL 2.0
features on these earlier GPUs. This option is further discussed in section 5. This
emulation option is not recommended for general users because OpenGL 2.0 features
will be emulated in software very, very slowly. OpenGL 2.0 emulation may be useful for
developers and students without access to the latest NVIDIA GPU hardware.

2.1. Acceleration for GeForce 6 Series and
NV4xGL-based Quadro FX

All key OpenGL 2.0 features are hardware-supported by NVIDIA’s GeForce 6 Series and
NV4xGL-based Quadro FX GPUs. These GPUs offer the best OpenGL 2.0 hardware
acceleration available from any vendor today.

2.1.1. Fragment-Level Branching

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs support structured
fragment-level branching. Structured branching allows standard control-flow
mechanisms such as loops, early exit from loops (comparable to a br eak statement in C),
if-then-else decision making, and function calls. Specifically, the hardware can support
data-dependent branching such as a loop where the different fragments early exit the loop
after a varying number of iterations.

Much like compilers for CPUs, NVIDIA’s Cg-based compiler technology decides
automatically whether to use the hardware’s structured branching capabilities or using
simpler techniques such as conditional assignment, unrolling loops, and inlining
functions.

Hardware support for fragment-level branching is not as general as vertex-level

branching. Some flow control constructs are too complicated or cannot be expressed by
the hardware’s structured branching capabilities. A few restrictions of note:

30f22

NVIDIA OpenGL 2.0 Support

» Function calls can be nested at most 4 calls deep.

» If-then-else decision making can be nested at most 47 branches deep.

» Loops cannot be nested more than 4 loops deep.

» Each loop can have at most 255 iterations.
The compiler can often generate code that avoids these restrictions, but if not, the
program object containing such a fragment shader will fail to compile. These restrictions
are also discussed in the NV_f r agment _pr ogr an2 OpenGL extension specification.

2.1.2. Vertex Textures

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs accelerate texture
fetches by GLSL vertex shaders.

The implementation-dependent constant GL_MAX_VERTEX_TEXTURE_| MAGE_UNI TS iS
advertised to be 4 meaning these GPUs provide a maximum of 4 vertex texture image
units.

2.1.2.1. Hardware Constraints
Keep in mind these various hardware constraints for vertex textures:

* While 1D and 2D texture targets for vertex textures are supported, the 3D, cube
map, and rectangle texture targets are not hardware accelerated for vertex
textures.

» Just these formats are accelerated for vertex textures: G._ RGBA FLOAT32_ARB,
GL_RGB_FLOAT32_ARB, GL_ALPHA FLOAT32_ ARB, GL_LUM NANCE32_ARB,
GL_| NTENSI TY32_ARB, GL_FLOAT_RGBA32_NV, GL_FLOAT_RGB32_NV,
GL_FLOAT_RG32_NV, Or GL_FLOAT_R32_NV.

* Vertex textures with border texels are not hardware accelerated.

» Since no depth texture formats are hardware accelerated, shadow mapping by
vertex textures is not hardware accelerated

The vertex texture functionality precluded from hardware acceleration in the above list
will still operate as specified but it will require the vertex processing be performed on the
CPU rather than the GPU. This will substantially slow vertex processing. However,
rasterization and fragment processing can still be fully hardware accelerated.

4 of 22

NVIDIA OpenGL 2.0 Support

2.1.2.2. Unrestricted Vertex Texture Functionality
These features are supported for hardware-accelerated vertex textures:

» All wrap modes for S and T including all the clamp modes, mirrored repeat, and
the three “mirror once then clamp” modes. Any legal border color is allowed.

* Level-of-detail (LOD) bias and min/max clamping.
* Non-power-of-two sizes for the texture image width and height.
* Mipmapping.

Because vertices are processed as ideal points, vertex textures accesses require an
explicit LOD to be computed; otherwise the base level is sampled. Use the bias
parameter of GLSL’s t ext ur e2DLod, t ext ur e1DLod, and related functions to specify
an explicit LOD.

2.1.2.3. Linear and Anisotropic Filtering Caveats

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs do not hardware
accelerate linear filtering for vertex textures. If vertex texturing is otherwise hardware
accelerated, GL_LI NEAR filtering operates as G._NEAREST. The mipmap minification
filtering modes (GL_LI NEAR_M PMAP_LI NEAR, G._NEAREST_M PMAP_LI NEAR, Or

GL_LI NEAR_M PVAP_NEAREST) operate as if G._NEAREST_M PMAP_NEAREST S0 as not to
involve any linear filtering. Anisotropic filtering is also ignored for hardware-
accelerated vertex textures.

These same rules reflect hardware constraints that apply to vertex textures whether used
through GLSL or Nv_ver t ex_pr ogr an8 or Cg’s vp40 profile.

2.1.3. Multiple Render Targets

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs support a maximum
of 4 simultaneous draw buffers (indicated by G._MAX_DRAW BUFFERS). Typically, you
should request a pixel format for your framebuffer with one or more auxiliary buffers
(commonly called aux buffers) to take advantage of multiple render targets.

Most pixel formats have an option for 4 auxiliary buffers. These buffers are allocated
lazily so configuring with a pixel format supporting 4 auxiliary buffers but using fewer
buffers in your rendering will not require video memory be allocated to never used
buffers.

5of 22

NVIDIA OpenGL 2.0 Support

2.1.4. Non-Power-Of-Two Textures

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs fully support non-
power-of-two textures at the fragment level. All texture formats (including compressed
formats) and all texture modes such as shadow mapping, all texture filtering modes
(including anisotropic filtering), borders, LOD control, and all clamp modes work as
expected with non-power-of-two texture sizes. Non-power-of-two textures are also
supported for vertex textures but with the limitations discussed in section 2.1.2.

2.1.4.1. Rendering Performance and Texture Memory Usage

For memory layout and caching reasons, uncompressed non-power-of-two textures may
be slightly slower than uncompressed power-of-two textures of comparable size.
However, non-power-of-two textures compressed with S3TC should have very
comparable rendering performance to similarly compressed power-of-two textures.

For non-mipmapped non-power-of-two textures (as well as non-mipmapped power-of-
two textures), the size of the texture in memory is roughly the width x height x depth (if
3D) x bytes-per-texel as you would expect. So in this case, a 640x480 non-power-of-
two-texture without mipmaps, will take just 59% of the memory required if the image
was rounded up to the next power-of-two size (1024x512).

Mipmapped power-of-two sized 2D or 3D textures take up roughly four-thirds times
(1.333x) the memory of a texture’s base level memory size. However, mipmapped non-
power-of-two 2D or 3D textures take up roughly two times (2x) the memory of a
texture’s base level memory size. For these reasons, developers are discouraged from
changing (for example) a 128x128 mipmapped texture into a 125x127 mipmapped
texture hoping the slightly smaller texture size is an advantage.

The compressed S3TC formats are based on 4x4 pixel blocks. This means the width and
height of non-power-of-two textures compressed with S3TC are rounded up to the nearest
multiple of 4. So for example, there is no memory footprint advantage to using a non-
mipmapped 13x61 texture compressed with S3TC compared to a similarly compressed
non-mipmapped 16x64 texture.

2.1.4.2. Mipmap Construction for Non-Power-of-Two-Textures

The size of each smaller non-power-of-two mipmap level is computed by halving the
lower (larger) level’s width, height, and depth and rounding down (flooring) to the next
smaller integer while never reducing a size to less than one. For example, the level above
a 17x10 mipmap level is 8x5. The OpenGL non-power-of-two mipmap reduction
convention is identical to that of DirectX 9.

The standard gl uBui | d1DM pmaps, gl uBui | d2DM pmaps, and gl uBui | d3DM prmaps
routines accept a non-power-of-two image but automatically rescale the image (using a
box filter) to the next largest power-of-two in all dimensions if necessary. If you want to

6 of 22

NVIDIA OpenGL 2.0 Support

specify true non-power-of-two mipmapped texture images, these routines should be
avoided.

Instead, you can set the GL_GENERATE_M PMAP texture parameter to GL_TRUE and let the
OpenGL driver generate non-power-of-two mipmaps for you automatically.

NVIDIA’s OpenGL driver today uses a slow-but-correct recursive box filter (each
iteration is equivalent to what gl uScal el mage does) when generating non-power-of-two
mipmap chains. Expect driver mipmap generation for non-power-of-two textures to be
measurably slower than driver mipmap generation for non-power-of-two textures. Future
driver releases may optimize non-power-of-two mipmap generation.

Applications using static non-power-of-two textures can reduce time spent generating
non-power-of-two mipmap chains by loading pre-computing mipmap chains.

2.1.5. Point Sprites

OpenGL 2.0 introduces a new point sprite mode called

GL_PO NT_SPRI TE_COORD_ORI G Nthat can be set to G._UPPER_LEFT (the default) or
GL_LOWER_LEFT. The earlier ARB_poi nt _sprite and NV_poi nt _spri t e extensions lack
this mode.

When rendering to windows, leave the GL_PQO NT_SPRI TE_COORD_ORI G N state set to its
default G._UPPER_LEFT setting. Using GL_LOWER_LEFT with windowed rendering will
force points to be transformed on the CPU.

When rendering to pixel buffers (commonly called pbuffers) or frame buffer objects
(commonly called FBOs), change the GL_PQO NT_SPRI TE_COORD_ORI Gl N state set to
GL_LOWER_LEFT setting for fully hardware accelerated rendering. Using G._UPPER_LEFT
with pbuffer and FBO rendering will force points to be transformed on the CPU.

NVIDIA supports (on all its GPUS) the NV_poi nt _spri t e extension that provides one
additional point sprite control beyond what OpenGL 2.0 provides. This extension
provides an additional GL_PQO NT_SPRI TE_R_MODE_NV that controls how the R texture
coordinate is set for points. You have the choice to zero R (GL_zEROQ, the default), use the
vertex’s S coordinate for R prior to S being overridden for the point sprite mode (G._S),
or the vertex’s R coordinate (G._R).

2.1.6. Two-Sided Stencil Testing

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs fully support all
OpenGL 2.0 two-sided stencil testing modes.

NVIDIA drivers support both the EXT_st enci | _t wo_si de extension and the OpenGL
2.0 functionality. Two sets of back-sided stencil state are maintained. The EXT
extension’s state is set by gl St enci | * commands when gl Act i veSt enci | FaceEXT is set

7 of 22

NVIDIA OpenGL 2.0 Support

to GL_BACK. The 2.0 back-facing state is set by the gl St enci | * Separ at e commands
when the f ace parameter is GL_BACK (or GL_FRONT_AND BACK). When
GL_STENCI L_TWO _SI DE_EXT is enabled, the EXT back-facing stencil state takes priority.

2.1.7. Separate RGB and Alpha Blend Equations

NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs fully support all
OpenGL 2.0 blend modes including separate RGB and alpha blend equations.

2.2. Acceleration for GeForce FX and
NV3xGL-based Quadro FX

2.2.1. Fragment-Level Branching

Unlike NVIDIA’s GeForce 6 Series and NV4xGL-based Quadro FX GPUs, GeForce FX
and NV3xGL-based Quadro FX GPUs do not have hardware support for fragment-level
branching.

Apparent support for flow-control constructs in GLSL (and Cg) is based entirely on
conditional assignment, unrolling loops, and inlining functions.

The compiler can often generate code for programs with flow control that can be
simulated with conditional assignment, unrolling loops, and inlining functions, but for
more complex flow control, the program object containing a fragment shader may simply
fail to compile. The hardware’s branch-free execution model with condition-code
instructions is discussed in the Nv_f r agnent _pr ogr amOpenGL extension specification.

2.2.2. Vertex Textures
NVIDIA’s GeForce FX and NV3xGL-based Quadro FX GPUs lack hardware support for
vertex fetching. GLSL vertex shaders that perform vertex texture fetches will fail to

compile.

The implementation-dependent constant GL_MAX_VERTEX_TEXTURE_| MAGE_UNI TS iS
advertised as zero (OpenGL 2.0 allows a minimum of zero to be advertised).

Future driver revisions may successfully compile GLSL vertex shaders with texture

fetches but perform the vertex shader completely or partially with the CPU. In this case,
the GPU can still accelerate rasterization and fragment processing.

2.2.3. Multiple Render Targets
NVIDIA’s GeForce FX and NV3xGL-based Quadro FX GPUs can output only a single

RGBA color per fragment processed so the maximum number of draw buffers (indicated
by GL_MAX_DRAW BUFFERS) is just one.

8 of 22

NVIDIA OpenGL 2.0 Support

Effectively, this means GeForce FX and NV3xGL-based Quadro FX GPUs do not
support the spirit of multiple render targets. However, OpenGL 2.0 permits an
implementation to advertise support for just one draw buffer (see the 1+ minimum for
GL_MAX_DRAW BUFFERS in table 6.35 of the OpenGL 2.0 specification).

Applications that desire rendering to multiple rendering targets must resort to multiple
rendering passes using gl Dr awBuf f er to switch to a different buffer for each pass.

2.2.4. Non-Power-Of-Two Textures

GeForce FX and NV3xGL-based Quadro FX GPUs lack hardware support for non-
power-of-two textures (excepting the texture rectangle functionality provided by the
ARB_t ext ur e_r ect angl e extension). If any texture unit could sample a bound 1D, 2D,
3D, or cube map texture object with non-power-of-two size, the driver will automatically
render with software rendering, which is correct but extremely slow.

To determine if non-power-of-two textures are slow, examine the GL_EXTENSI ONS string.
If GL_VERSI ON reports that 2.0 but GL_ARB_t ext ur e_non_power _of _t wo is not listed in
the GL_EXTENSI ONS string, assume that using non-power-of-two-textures is slow and
avoid the functionality.

The discussion in section 2.1.4.2 about non-power-of-two mipmap discussion apply to

GeForce FX and NV3xGL-based Quadro FX GPUs too even if these GPUs do not
hardware accelerate non-power-of-two texture rendering.

2.2.5. Point Sprites

GeForce FX and NV3xGL-based Quadro FX GPUs have the identical caveats as the
GeForce 6 Series and NV4xGL-based Quadro FX GPUs discussed in section 2.1.5.

2.2.6. Two-Sided Stencil Testing

GeForce FX and NV3xGL-based Quadro FX GPUs have full hardware acceleration for
two-sided stencil testing just like the GeForce 6 Series and NV4xGL-based Quadro FX
GPUs. The same discussion in section 2.1.6 applies.

2.2.7. Separate RGB and Alpha Blend Equations

GeForce FX and NV3xGL-based Quadro FX GPUs lack hardware support for separate
RGB and alpha blend equations. If the RGB and alpha blend equations are different, the
driver will automatically render with full software rasterization, which is correct but
extremely slow.

To determine if separate blend equations is slow, examine the GL_EXTENSI ONS string. If
GL_VERSI ONreports that 2.0 but GL_EXT_bl end_equat i on_separ at e is not listed in the

9 of 22

NVIDIA OpenGL 2.0 Support

GL_EXTENSI ONS string, assume that using separate distinct blend equations is slow and
avoid the functionality.

3. Programmable Shading API Updates for
OpenGL 2.0

The command and token names in the original ARB extensions for programmable
shading with GLSL are verbose and used an object model inconsistent with other types of
objects (display lists, texture objects, vertex buffer objects, occlusion queries, etc.).

3.1. Type Name Changes

The GLhand! eARB type has been deprecated in preference to GLui nt for program and
shader object names. The underlying type for the GLhand| eARB is a 32-bit unsigned
integer so the two types have compatible representations.

Old ARB extensions type New OpenGL 2.0 type
GLhandl eARB GLui nt

3.2. Token Name Changes

Old ARB extensions tokens New OpenGL 2.0 tokens
GL_PROGRAM OBJECT_ARB Unnecessary
GL_SHADER _OBJECT_ARB Unnecessary
GL_OBJECT_TYPE_ARB I nstead gl | sProgram and

gl | sShader
GL_OBJECT_SUBTYPE_ARB GL_SHADER_TYPE
G._OBJECT _DELETE STATUS ARB G._DELETE _STATUS
G._OBJECT_COWPI LE_STATUS_ARB GL_COWPI LE_STATUS
GL_OBJECT_LI NK_STATUS_ARB GL_LI NK_STATUS
GL_OBJECT_VALI DATE_STATUS ARB GL_VALI DATE_STATUS
GL_OBJECT I NFO_LOG LENGTH _ARB GL_I NFO LOG LENGTH
GL_OBJECT_ATTACHED OBJECTS_ARB GL_ATTACHED SHADERS
GL_OBJECT_ACTI VE_UNI FORVS_ARB GL_ACTI VE_UNI FORNVS
GL_OBJECT_ACTI VE_UNI FORM_MAX_LENGTH ARB G._ACTI VE_UNI FORM MAX_LENGTH
GL_OBJECT_SHADER SOURCE_LENGTH_ARB GL_SHADER SOURCE_LENGTH
No equivalent GL_CURRENT_PROGRAM

For other ARB_shader _obj ect's, ARB_vertex_shader, and ARB_f ragnent _shader
tokens, the OpenGL 2.0 names are identical to the ARB extension names except without
the ARB suffix.

10 of 22

NVIDIA OpenGL 2.0 Support

3.3. Command Name Changes

Old ARB extensions commands New OpenGL 2.0 commands
gl Att achCbj ect ARB gl At t achShader

gl Cr eat ePr ogr antObj ect ARB gl Creat eProgr am
gl Cr eat eShader Obj ect ARB gl Cr eat eShader

gl Del et eCbj ect ARB gl Del et eShader for shader objects,
gl Del et ePr ogr amfor program objects
gl Det achCbj ect ARB gl Det achShader
gl Get Att achedhj ect sARB gl Get Att achedShader s
gl Get Handl eARB gl Get | nt eger v(G._CURRENT _PROGRAM &r et val)
gl Get I nf oLogARB gl Get Shader I nf oLog for shader objects,

gl Get Progr ani nf oLog for program objects
gl Get Obj ect Paraneterf VARB No equivalent

gl Get Qbj ect Paraneteri VARB g Get Shader i v for shader objects,
gl Get Proogr ami v for program objects

No equivalent gl I sProgram
No equivalent gl I sShader
gl UsePr ogr amObj ect ARB gl UsePr ogr am

For other ARB_shader obj ect's, ARB vertex_shader, and ARB_f ragnent _shader
commands, the OpenGL 2.0 names are identical to the ARB extension names except
without the ARB suffix.

4. Correctly Detecting OpenGL 2.0 in Applications

To determine if OpenGL 2.0 or better is supported, an application must parse the
implementation-dependent string returned by calling gl Get Stri ng(GL_VERSI ON) .

4.1. Version String Formatting
OpenGL version strings are laid out as follows:
<version number> <space> <vendor-specific information>

The version number is either of the form major_number.minor_number or
major_number.minor_number.release_number, where the numbers all have one or more
digits. The release_number and vendor-specific information, along with its preceding
space, are optional. If present, the interpretation of the release_number and vendor-
specific information depends on the vendor.

NVIDIA does not provide vendor-specific information but uses the release_number to
indicate how many NVIDIA major driver releases (counting from zero) have supported
this particular major and minor revision of OpenGL. For example, the drivers in the
Release 75 series report 2. 0. 0 indicating Release 75 is the first driver series to support

11 of 22

NVIDIA OpenGL 2.0 Support

OpenGL 2.0. Release 80 will likely advertise 2. 0. 1 for its G_._VERSI ON string. Major
NVIDIA graphics driver releases typically increment by 5.

4.2. Proper Version String Parsing

Early application testing by NVIDIA has encountered a few isolated OpenGL
applications that incorrectly parse the GL_VERSI ON string when the OpenGL version
changed from 1.5 to 2.0.

OpenGL developers are strongly urged to examine their application code that parses the
GL_VERSI ON string to make sure pairing the application with an OpenGL 2.0
implementation will not confuse or crash the application.

Use the routine below to correctly test if at least a particular major and minor version of
OpenGL is available.

static int
supportsOpenG.Version(int atlLeastMjor, int atlLeastM nor)

const char *version;
int maj or, mnor;

version = (const char *) gl GetString(G._VERSION);

if (sscanf(version, "%. %", &major, &mnor) == 2) {
if (major > atlLeastMjor)
return 1;
if (major == atlLeastMajor & ninor >= atlLeastM nor)
return 1;
} else {

/* Open@ version string nalforned! */

return O;

}

For example, the above routine returns true if OpenGL 2.0 or better is supported (and
false otherwise) when the routine is called like this:

i nt hasOpenG.20 = supportsQpenG.Version(2, 0);

Be sure your OpenGL applications behave correctly with OpenGL 2.0 when the
GL_VERSI ON string changes.

4.2.1. Warning about Proper Extensions String Parsing Too

This is also a good opportunity for OpenGL developers to re-examine the code they use
to detect OpenGL extensions. Be sure your code makes no assumption about the length
of the string returned by gl Get St ri ng(GL_EXTENSI ONS) . Almost every major OpenGL
driver release adds new OpenGL extensions as does every major hardware generation so
you can expect this string to grow in length over time. If you st r cpy the

GL_EXTENSI ONS string into static buffer with only 8192 bytes, you will get burned
eventually.

12 of 22

NVIDIA OpenGL 2.0 Support

One recurring mistake is passing the string returned by gl Get St ri ng(GL_EXTENSI ONS) t0 a
pri nt f -like or GUI routine that has an internal buffer of a limited size. For example, an
application might display the OpenGL extensions string in an “About Renderer...” dialog
box. The routine to set the dialog box string may assume that no one would ever specify
a string longer than 1,000 characters.

5. Enabling OpenGL 2.0 Emulation on Older GPUs

Developers and students using Microsoft Windows wishing to work with OpenGL 2.0 on
pre-NV3x GPUs can use a utility called nvenul at e. exe to force these older drivers to
expose the feature sets of newer GPUs. When forcing emulation of an NV3x or NV4x
GPU with a Release 75-based driver, you can expose OpenGL 2.0.

OpenGL features the GPU can support natively will be hardware accelerated as usual.
But GPU features not natively supported will be slowly emulated by the OpenGL driver.
OpenGL extensions, implementation-dependent limits, and core OpenGL version for the
GPU being emulated will be advertised.

So if you enable “NV40 (GeForce 6800)” emulation, as shown in the image below, on a
old GeForce3 GPU, you will see OpenGL 2.0 advertised by the GL_VERSI ONstring along
with all the NV40 OpenGL extensions listed in the GL_EXTENSI ONS string and
implementation-dependent limits returned by gl Get I nt eger v.

NVIDIA OpenGL Emulation Tool M=

Feature Set Emulation

¥ Shader Objects
[Write Program Object Sournce
[“write Program Object Assembly
[“rite Info Log
[Strict Shader Portability * amings

[Force Software Rasterization MWD L2, Propristary

Buil: Sep 24 2004
Restore | Apply |

5.1. Programmable Shading Debug Options
Additional check boxes can be enabled and disabled to aid in debugging GLSL

applications. The “Shader Objects” check box determines whether the ARB extensions
for programmable shading (ARB_shader _obj ect s, etc.) are advertised or not.

13 of 22

NVIDIA OpenGL 2.0 Support

The “Write Program Object Source” check box causes vsrc_%. t xt and f src_%u. t xt
files containing the concatenated source string for GLSL shaders to be written to the
application’s current directory where the %u is GLui nt value for the shader name.

The “Write Program Object Assembly” check box causes vasm %u. t xt and

fasm %. t xt files containing the compiled assembly text for linked GLSL program
objects to be written to the application’s current directory where the %u is GLui nt value
for the program name.

The “Write Info Log” check box causesi | og_%u. t xt files containing the info log
contents for linked GLSL program objects to be written to the application’s current
directory where the %u is GLui nt value for the program name.

The “Strict Shader Portability Warnings” causes the compiler to generate portability
warnings in the info log output. These warnings are not particularly thorough yet.

5.2. Forcing the Software Rasterizer

With the “Force Software Rasterizer” check box set, the driver does all OpenGL
rendering in software. If you suspect a driver bug resulting in incorrect rendering, you
might try this option and see if the rendering anomaly manifests itself in the software
rasterizer. This information is helpful when reporting bugs to NVIDIA.

If the hardware and software rendering paths behave more-or-less identically, it may be

an indication that the rendering anomaly is due to your application mis-programming
OpenGL state or incorrect expectations about how OpenGL should behave.

6. Known Issues

6.1. OpenGL Shading Language Issues

NVIDIA’s GLSL implementation is a work-in-progress and still improving. Various
limitations and known bugs are discussed in the Release Notes for NVIDIA OpenGL
Shading Language Support.

6.1.1. Noise Functions Always Return Zero

The GLSL standard library contains several noise functions of differing dimensions:
noi sel, noi se2, noi se3, and noi se4.

NVIDIA’s implementation of these functions (currently) always returns zero results.

14 of 22

NVIDIA OpenGL 2.0 Support

6.1.2. Vertex Attribute Aliasing

GLSL attempts to eliminate aliasing of vertex attributes but this is integral to NVIDIA’s
hardware approach and necessary for maintaining compatibility with existing OpenGL
applications that NVIDIA customers rely on.

NVIDIA’s GLSL implementation therefore does not allow built-in vertex attributes to
collide with a generic vertex attributes that is assigned to a particular vertex attribute
index with gl Bi ndAt t ri bLocat i on. For example, you should not use gl _Nor mal (a
built-in vertex attribute) and also use gl Bi ndAtt ri bLocat i on to bind a generic vertex
attribute named “whatever” to vertex attribute index 2 because gl _Nor nal aliases to
index 2.

This table below summarizes NVIDIA’s vertex attribute aliasing behavior:

Built-in vertex attribute name Incompatible aliased
vertex attribute index

gl _Vertex 0

gl _Nor nal 2

gl _Col or 3

gl _Secondar yCol or 4

gl _FogCoord 5

gl _Mul ti TexCoor dO 8

gl _Mul ti TexCoordl 9

gl _Mul ti TexCoor d2 10

gl _Mul ti TexCoord3 11

gl _Mul ti TexCoor d4 12

gl _Mul ti TexCoor d5 13

gl _Mul ti TexCoor d6 14

gl _Mul ti TexCoor d7 15

Vertex attribute aliasing is also explained in the ARB_vert ex_pr ogr amand
NV_vert ex_pr ogr amspecifications.

6.1.3. gl_FrontFacing Is Not Available to Fragment Shaders

The built-in fragment shader varying parameter gl _Fr ont Faci ng is supported by
GeForce 6 Series and NV4xGL-based Quadro FX GPUs but not GeForce FX and
NV3xGL-based Quadro FX GPUs.

As a workaround, enable with gl Enabl e the GL_VERTEX_PROGRAM TWO_SI DE mode and,
in your vertex shader, write a 1 to the alpha component of the front-facing primary color
(gl _Front Col or) and O to the alpha component of the back-facing primary color

(gl _BackCol or). Then, read alpha component of the built-in fragment shader varying

15 of 22

NVIDIA OpenGL 2.0 Support

parameter gl _Col or. Just like gl _Fr ont Faci ng, 1 means front-facing; 0 means back-
facing.

6.1.4. Reporting GLSL Issues and Bugs

NVIDIA welcomes email pertaining to GLSL. Send suggestions, feedback, and bug
reports to glsl-support@nvidia.com

7. OpenGL 2.0 API Declarations

NVIDIA provides <G/ gl . h> and <G/ gl ext . h> header files with the necessary

OpenGL 2.0 API declarations on the OpenGL 2.0 page in NVIDIA’s Developer web site,
devel oper. nvi di a. com

Your OpenGL 2.0 application will need to call wgl Get Pr ocAddr ess (Windows) or

gl XGet Pr ocAddr ess (Linux) to obtain function pointers to the new OpenGL 2.0
commands just as is necessary for other OpenGL extensions.

7.1. Programmable Shading
7.1.1. New Token Defines

7.1.1.1. Program and Shader Object Management

#def i ne GL_CURRENT_PROGRAM 0x8B8D
#defi ne GL_SHADER TYPE 0Xx8B4E
#defi ne GL_DELETE_STATUS 0x8B80
#defi ne GL_COMVPI LE_STATUS 0x8B81
#define GL_LI NK_STATUS 0x8B82
#defi ne GL_VALI DATE_STATUS 0x8B83
#define GL_I NFO LOG_LENGTH 0x8B84
#defi ne GL_ATTACHED_SHADERS 0x8B85
#defi ne GL_ACTI VE_UNI FORVG 0x8B86
#defi ne GL_ACTI VE_UNI FORM MAX_LENGTH 0x8B87
#def i ne GL_SHADER SOURCE_LENGTH 0x8B88
#def i ne GL_VERTEX_SHADER 0x8B31
#defi ne GL_ACTI VE_ATTRI BUTES 0x8B89
#define GL_ACTI VE_ATTRI BUTE_MAX_LENGTH Ox8BSA
#defi ne GL_FRAGVENT _SHADER 0x8B30

7.1.1.2. Uniform Types

#define GL_FLOAT_VEC2 0x8B50
#define GL_FLOAT_VEC3 0x8B51
#define GL_FLOAT_VEC4 0x8B52
#define G_I NT_VEC2 0x8B53
#define GL_I NT_VEC3 0x8B54
#define GL_I NT_VEC4 0x8B55
#define G._BOCL 0x8B56
#defi ne GL_BOOL_VEC2 0x8B57
#define GL_BOOL_VEC3 0x8B58
#defi ne GL_BOOL_VEC4 0x8B59
#define GL_FLOAT_MAT2 0x8B5A

16 of 22

NVIDIA OpenGL 2.0 Support

#define GL_FLOAT MAT3 0x8B5B
#defi ne GL_FLOAT MAT4 0x8B5C
#defi ne GL_SAVPLER 1D 0x8B5D
#defi ne GL_SAVPLER 2D 0Xx8B5E
#defi ne GL_SAVPLER 3D 0x8B5F
#defi ne GL_SAVPLER_CUBE 0x8B60
#defi ne GL_SAVPLER 1D_SHADOW 0x8B61
#defi ne GL_SAVPLER 2D_SHADOW 0x8B62

7.1.1.3. Vertex Attrib Arrays

#defi ne GL_VERTEX_ATTRI B_ARRAY ENABLED 0x8622

#def i ne GL_VERTEX_ATTRI B_ARRAY_SI| ZE 0x8623
#def i ne GL_VERTEX_ATTRI B_ARRAY_STRI DE 0x8624
#defi ne GL_VERTEX_ATTRI B_ARRAY_TYPE 0x8625
#defi ne GL_VERTEX_ATTRI B_ARRAY_NORMAL| ZED Ox886A
#def i ne GL_CURRENT_VERTEX_ATTR B 0x8626

#defi ne GL_VERTEX_ATTRI B_ARRAY PO NTER 0x8645
#def i ne GL_VERTEX_ATTRI B_ARRAY BUFFER BI NDI NG 0x889F

7.1.1.4. Hints

#defi ne GL_FRAGVENT_SHADER DERI VATI VE_HI NT 0x8BSB

7.1.1.5. Enables for Rasterization Control

#define GL_VERTEX_PROGRAM PO NT_SI| ZE 0x8642
#define GL_VERTEX_PROGRAM TVO S| DE 0x8643

7.1.1.6. Implementation Dependent Strings and Limits

#defi ne GL_SHADI NG LANGUAGE_VERSI ON 0x8B8C
#defi ne GL_MAX_VERTEX_ATTRI BS 0x8869
#defi ne GL_MAX_FRAGVENT _UNI FORM COVPONENTS 0x8B49
#defi ne GL_MAX_VERTEX_UNI FORM COVPONENTS Ox8B4A
#defi ne GL_MAX_VARYI NG FLOATS 0x8B4B
#def i ne GL_MAX_VERTEX_TEXTURE_| MAGE_UNI TS 0x8B4C
#defi ne GL_MAX_COVBI NED_TEXTURE_| MAGE_UNI TS 0x8B4D
#def i ne GL_MAX_TEXTURE_COORDS 0x8871
#def i ne GL_MAX_TEXTURE_| MAGE_UNI TS 0x8872

7.1.2. New Command Prototypes

7.1.2.1. Shader Objects

voi d GLAPI gl Del et eShader (G.ui nt shader);

voi d GLAPI gl Det achShader (G.uint program GLuint shader);

GLui nt GLAPI gl Creat eShader (GLenumtype);

voi d GLAPI gl Shader Source (G.ui nt shader, GLsizei count, const G.char* *string, const
GLint *length);

voi d GLAPI gl Conpi | eShader (GLui nt shader);

7.1.2.2. Program Objects
\%%nb_ﬂ?ﬁp!ql gl %8%%%5&89?&&?’% d?:).fogram GLui nt shader);

17 of 22

voi d GAPI
voi d GLAPI
voi d GAPI
voi d GLAPI

NVIDIA OpenGL 2.0 Support

gl Li nkProgram (GLui nt progran;

gl UseProgram (GLui nt progran;

gl Del et eProgram (GLui nt progranj;
gl Val i dat eProgram (GLui nt program;

7.1.2.3. Uniforms

voi d GLAPI gl Unifornlf (GLint location, G.float v0);

void GAPI gl Unifornm2f (GLint |ocation, G.float vO, G.float vl);

void GAPI gl UnifornBf (Gint location, Gfloat vO, G.float vl, G.float v2);

void GAPI gl Uniformdf (CGLint l|ocation, G.float v0O, G.float vl, Gfloat v2, G.float
v3);

void GLAPI gl Uniformli (CGLint location, G.int vO0);

void GAPI gl UnifornRi (GLint location, Gint v0O, Gint vl);

void GAPI gl UnifornBi (Gint location, Gint vO, Gint vl, Gint v2);

void GLAPI gl Uniformdi (CGLint location, Gint vO, Gint vl, Gint v2, Gint v3);
void GLAPI gl Unifornilfv (CGLint |ocation, Gsizei count, const G.float *val ue);
void GLAPI gl Unifornm2fv (GLint |ocation, G.sizei count, const G.float *val ue);
void GAPI gl UnifornBfv (GLint |ocation, G.sizei count, const G.float *val ue);
void GLAPI gl Uniformdfv (GLint |ocation, G.sizei count, const G.float *val ue);
void GAPI gl Unifornliv (GLint |ocation, Gsizei count, const Gint *value);

void GAPI gl UnifornmRiv (Gint |ocation, Gsizei count, const GLint *val ue);

void GAPI gl UnifornBiv (GLint |ocation, Gsizei count, const Gint *value);

void GLAPI gl Uniformdiv (Gint |ocation, Gsizei count, const Gint *val ue);

voi d GLAPI gl Unifornmvatrix2fv (GLint location, Gsizei count, G.bool ean transpose,
const G.float *val ue);

voi d GLAPI gl Unifornmvatri x3fv (Gint location, Gsizei count, G.bool ean transpose,
const G.float *val ue);

voi d GLAPI gl Unifornmvatrix4fv (Gint location, Gsizei count, G.bool ean transpose,
const G.float *val ue);

7.1.2.4. Attribute Locations

voi d GLAPI gl BindAttriblLocation (G.uint program GLuint index, const G.char *nane);

GLint GLAPI gl GetAttribLocation (CGLuint program const G.char *nane);
7.1.2.5. Vertex Attributes

void GLAPI gl VertexAttribld (G.uint index, G.double x);

void GLAPI gl VertexAttribldv (G.uint index, const G.double *v);

void GLAPI gl VertexAttriblf (Guint index, Gfloat Xx);

voi d GLAPI gl VertexAttriblfv (Guint index, const G.float *v);

void GLAPI gl VertexAttribls (Guint index, Gshort x);

voi d GLAPI gl VertexAttriblsv (Guint index, const GLshort *v);

void GLAPI gl VertexAttrib2d (Guint index, G.double x, G.double y);

voi d GLAPI gl VertexAttrib2dv (G.uint index, const G.double *v);

void GLAPI gl VertexAttrib2f (Guint index, Gfloat x, Gfloat y);

voi d GLAPI gl VertexAttrib2fv (Guint index, const G.float *v);

void GLAPI gl VertexAttrib2s (Guint index, Gshort x, Gshort y);

voi d GLAPI gl VertexAttrib2sv (Guint index, const GLshort *v);

void GLAPI gl VertexAttrib3d (Guint index, G.double x, G.double y, G.double z);
voi d GLAPI gl VertexAttrib3dv (G.uint index, const G.double *v);

void GLAPI gl VertexAttrib3f (Guint index, Gfloat x, Gfloat y, Gfloat z);
voi d GLAPI gl VertexAttrib3fv (Guint index, const G.float *v);

void GLAPI gl VertexAttrib3s (Guint index, Gshort x, Gshort y, Gshort z);
voi d GLAPI gl VertexAttrib3sv (Guint index, const G.short *v);

void GLAPI gl VertexAttri b4Nov (CGLuint index, const G.byte *v);

voi d GLAPI gl VertexAttri b4Niv (GLuint index, const Gint *v);

void GLAPI gl VertexAttri b4Nsv (CGLuint index, const G.short *v);

18 of 22

NVIDIA OpenGL 2.0 Support

voi d GLAPI gl VertexAttri b4Nub (G.ui nt index, G.ubyte x, G.ubyte y, G.ubyte z, GLubyte
W ;

voi d GLAPI gl VertexAttri b4Nubv (CGLui nt index, const G.ubyte *v);

void GLAPI gl VertexAttrib4Nuiv (CGLuint index, const G.uint *v);

voi d GLAPI gl VertexAttri b4Nusv (CGLuint index, const G.ushort *v);

void GLAPI gl VertexAttrib4bv (GLuint index, const Gbyte *v);

void GLAPI gl VertexAttribdd (Guint index, G.double x, G.double y, G.double z,
GLdoubl e w);

voi d GLAPI gl VertexAttribddv (G.uint index, const G.double *v);

void GLAPI gl VertexAttrib4f (Guint index, Gfloat x, Gfloat y, Gfloat z, G.float
W) ;

void GLAPI gl VertexAttrib4fv (GLuint index, const Gfloat *v);

voi d GLAPI gl VertexAttribdiv (G.uint index, const G.int *v);

voi d GLAPI gl VertexAttribds (Guint index, Gshort x, Gshort y, Gshort z, Gshort
W ;

voi d GLAPI gl VertexAttribdsv (Guint index, const GLshort *v);

void GLAPI gl VertexAttrib4ubv (CGLuint index, const GLubyte *v);

voi d GLAPI gl VertexAttribduiv (G.uint index, const Guint *v);

void GLAPI gl VertexAttrib4usv (CGLuint index, const G.ushort *v);

voi d GLAPI gl VertexAttri bPointer (G.uint index, Gint size, G.enumtype, G.bool ean
nornmal i zed, GLsizei stride, const GLvoid *pointer);

voi d GLAPI gl Enabl eVertexAttri bArray (GLuint index);

void GLAPI gl Di sabl eVertexAttri bArray (GLuint index);

voi d GLAPI gl GetVertexAttribdv (CGLuint index, GLenum pnane, GLdoubl e *parans);

void GLAPI gl GetVertexAttribfv (GLuint index, GLenum pnane, GLfloat *parans);

voi d GLAPI gl GetVertexAttribiv (GLuint index, G.enum pnane, GLint *parans);

void GLAPI gl GetVertexAttribPointerv (GLuint index, G.enum pnane, GLvoi d* *pointer);

7.1.2.6. Queries

GLbool ean GLAPI
GLbool ean GLAPI

gl | sShader (GLui nt shader);
gl I sProgram (GLui nt program;

voi d GLAPI gl Get Shaderiv (G.uint program G.enum pnane, GLint *parans);

void GLAPI gl GetProgramiv (GLuint program GLenum pnane, GLint *parans);

voi d GLAPI gl Get AttachedShaders (GLuint program GLsizei maxCount, GLsizei *count,
GLui nt *shaders);

voi d GLAPI gl Get Shader | nfoLog (G.ui nt shader, GLsizei bufSize, Gsizei *length, G.char
*infolLog);

voi d GLAPI gl Get Program nfolLog (CGLuint program GL.sizei bufSize, Gsizei *length,
G.char *infolLog);

GLint GLAPI gl Get Uni forniLocation (GLuint program const G.char *nane);

voi d GLAPI gl Get ActiveUniform (GLuint program GLuint index, GLsizei bufSize, G.sizei
*| ength, G.sizei *size, G.enum *type, G.char *nane);

void GLAPI gl GetUnifornfv (Guint program GLint |ocation, G.float *parans);

void GLAPI gl GetUniformiv (Guint program GLint |ocation, Gint *parans);

voi d GLAPI gl Get Shader Source (G.uint shader, G.sizei bufSize, Gsizei *length, G.char
*source);

voi d GLAPI gl Get ActiveAttrib (Guint program GCLuint index, GLsizei bufSize, Gsizei

*| ength, G.sizei *size, G.enum *type,

7.2. Non-Power-Of-Two Textures

Support for non-power-of-two textures introduces

GL.char *nane) ;

no new tokens or commands. Rather

the error conditions that previously restricted the width, height, and depth (excluding the

border) to be power-of-two values is eliminated.

The relaxation of errors to allow non-power-of-two texture sizes affects the following
commands: gl Texl magelD, gl CopyTex| magelD, gl Tex| mage2D, gl CopyTex| mage2D,

19 of 22

NVIDIA OpenGL 2.0 Support

and gl Tex! mage3D. You can also render to non-power-of-two pixel buffers (pbuffers)
using the WGL_ARB_r ender _t ext ur e extension.

7.3. Multiple Render Targets

7.3.1. New Token Defines

#def i ne GL_MAX_DRAW BUFFERS 0x8824
#def i ne GL_DRAW BUFFERO 0x8825
#def i ne GL_DRAW BUFFERL 0x8826
#def i ne GL_DRAW BUFFER2 0x8827
#def i ne GL_DRAW BUFFER3 0x8828
#def i ne GL_DRAW BUFFER4 0x8829
#def i ne GL_DRAW BUFFERS 0x882A
#def i ne GL_DRAW BUFFER6 0x882B
#def i ne GL_DRAW BUFFER7 0x882C
#def i ne GL_DRAW BUFFERS 0x882D
#def i ne GL_DRAW BUFFER9 0x882E
#def i ne GL_DRAW BUFFERLO 0x882F
#def i ne GL_DRAW BUFFERL1 0x8830
#def i ne GL_DRAW BUFFERL2 0x8831
#def i ne GL_DRAW BUFFERL3 0x8832
#def i ne GL_DRAW BUFFERL4 0x8833
#def i ne GL_DRAW BUFFERL5 0x8834

7.3.2. New Command Prototypes

voi d GLAPI gl DrawBuffers (G.sizei n, const G.enum *bufs);
7.4. Point Sprite

7.4.1. New Token Defines

#define GL_PO NT_SPRI TE 0x8861
#def i ne GL_COORD_REPLACE 0x8862
#define GL_PO NT_SPRI TE_COORD ORI G N 0x8CA0
#define GL_LONER _LEFT 0Ox8CA1l
#define GL_UPPER _LEFT 0x8CA2
7.4.2. Usage

Point sprite state is set with the gl Poi nt Par anet eri , gl Poi nt Par aneteri v,
gl Poi nt Par arret er f, gl Poi nt Par anet er f v APl originally introduced by OpenGL 1.4
to control point size attenuation.

7.5. Two-Sided Stencil Testing
7.5.1. New Token Defines

These tokens can be used with gl Get I nt eger v to query back-facing stencil state.

#define GL_STENCI L_BACK_FUNC 0x8800

20 of 22

NVIDIA OpenGL 2.0 Support

#defi ne GL_STENCI L_BACK_VALUE_MASK 0x8CA4
#define GL_STENCI L_BACK_REF 0x8CA3
#define GL_STENCI L_BACK_FAI L 0x8801

#defi ne GL_STENCI L_BACK_PASS_DEPTH PASS 0x8803

#define GL_STENCI L_BACK_PASS DEPTH FAIL 0x8802
#define GL_STENCI L_BACK WRI TEMASK 0x8CA5

7.5.2. New Command Prototypes

voi d GLAPI gl Stencil FuncSeparate (G.enum face, G.enum func, GLint ref, CGLuint mask);
void GLAPI gl Stencil OpSeparate (G.enum face, Genumfail, G.enum zfail, G.enum zpass);
voi d GLAPI gl Stencil MaskSeparate (G.enum face, GLuint nask);

7.6. Separate RGB and Alpha Blend Equations
7.6.1. New Token Defines

These tokens can be used with gl Get I nt eger v to query blend equation state. The
GL_BLEND_EQUATI ON token has the same value as the new GL_BLEND EQUATI ON_RGB.

#defi ne GL_BLEND EQUATI ON_RGB 0x8009
#defi ne GL_BLEND EQUATI ON_ALPHA 0x883D

7.6.2. New Command Prototypes

voi d GLAPI gl Bl endEquati onSeparate (G.enum nodeRGB, G.enum nodeAl pha);

A. Distinguishing NV3xGL-based and NV4xGL-based
Quadro FX GPUs by Product Names

As discussed in section 2, while NV3x- and NV3xGL-based GPUs support OpenGL 2.0,
the NV4x- and NV4xGL-based GPUs have the best industry-wide hardware-acceleration
and support for OpenGL 2.0.

For the consumer GeForce product lines, GeForce FX and GeForce 6 Series GPUs are
easily distinguished based on their product names and numbering. Any NVIDIA GPU
product beginning with GeForce FX is NV3x-based. Such GPUs also typically have a
5000-based product number, such as 5200 or 5950. GeForce GPUs with a 6000-based
product name, such as 6600 or 6800, are NV4x-based.

However, the Quadro FX product name applies to both NV3xGL-based and NV4xGL-
based GPUs and there is no simple rule to differentiate NV3xGL-based and NV4xGL-
based using the product name. The lists below will help OpenGL 2.0 developers

correctly distinguish the two NV3xGL- and NV4xGL-based Quadro FX product lines.

21 of 22

NVIDIA OpenGL 2.0 Support

A.1. NV3xGL-based Quadro FX GPUs

Quadro FX 330 (PCI Express)
Quadro FX 500 (AGP)
Quadro FX 600 (PCI)

Quadro FX 700 (AGP)
Quadro FX 1000 (AGP)
Quadro FX 1100 (AGP)
Quadro FX 1300 (PCI)
Quadro FX 2000 (AGP)
Quadro FX 3000 (AGP)

A.2. NV4xGL-based Quadro FX GPUs

Quadro FX 540 (PCI Express)
Quadro FX 1400 (PCI Express)
Quadro FX Go01400 (PCI Express)
Quadro FX 3400 (PCI Express)
Quadro FX 4000 (AGP)

Quadro FX 4400 (PCI Express)
Quadro FX 3450 (PCI Express)
Quadro FX 4450 (PCI Express)

A.3. How to Use and How to Not Use These Lists

These lists are for informational purposes to help OpenGL 2.0 developers instruct end-
users as to which NVIDIA products will support OpenGL 2.0 and accelerate the OpenGL
2.0 feature set the best. These lists are not complete and are subject to change.

OpenGL developers should not query and parse the GL_RENDERER string returned by
gl Get St ri ng to determine if a given GPU supports NV3x-based or NV4x-based

functionality and performance.

Instead, query the GL_EXTENSI ONS string and look for the G._Nv_f r agnent _pr ogr an®
and/or GL_NV_ver t ex_pr ogr an8 substrings. These extensions imply the functional

feature set of NV4x-based GPUEs.

22 of 22

	NVIDIA OpenGL 2.0 Support
	What is OpenGL 2.0
	What NVIDIA Drivers and GPUs support OpenGL 2.0?
	Acceleration for GeForce 6 Series and NV4xGL-based Quadro FX
	Fragment-Level Branching
	Vertex Textures
	Hardware Constraints
	Unrestricted Vertex Texture Functionality
	Linear and Anisotropic Filtering Caveats
	Multiple Render Targets
	Non-Power-Of-Two Textures
	Rendering Performance and Texture Memory Usage
	Mipmap Construction for Non-Power-Of-Two Textures

	Point Sprites
	Two-Sided Stencil Testing
	Separate RGB and Alpha Blend Equations

	Acceleration for GeForce FX and NV3xGL-based Quadro FX
	Fragment-Level Branching
	Vertex Textures
	Multiple Render Targets
	Non-Power-Of-Two Textures
	Point Sprites
	Two-Sided Stencil Testing
	Separate RGB and Alpha Blend Equations

	Programmable Shading API Updates for OpenGL 2.0
	Type Name Changes
	Token Name Changes
	Command Name Changes

	Correctly Detecting OpenGL 2.0 in Applications
	Version String Formatting
	Proper Version String Parsing
	Warning about Proper Extensions String Parsing Too

	Enabling OpenGL 2.0 Emulation on Older GPUs
	Programmable Shading Debug Options
	Forcing the Software Rasterizer

	Known Issues
	OpenGL Shading Language Issues
	Noise Functions Always Return Zero
	Vertex Attribute Aliasing
	gl_FrontFacing Is Not Available to Fragment Shaders
	Reporting GLSL Issues and Bugs

	OpenGL 2.0 API Declarations
	Programmable Shading
	New Token Defines
	Program and Shader Object Management
	Uniform Types
	Vertex Attrib Arrays
	Hints
	Enables for Rasterization Control
	Implementation Dependent Strings and Limits

	New Command Prototypes
	Shader Objects
	Program Objects
	Uniforms
	Attribute Locations
	Vertex Attributes
	Queries

	Non-Power-Of-Two Textures
	Multiple Render Targets
	New Token Defines
	New Command Prototypes

	Point Sprite
	New Token Defines
	Usage

	Two-Sided Stencil Testing
	New Token Defines
	New Command Prototypes

	Separate RGB and Alpha Blend Equations
	New Token Defines
	New Command Prototypes

	Distinguishing NV3xGL-based and NV4xGL-based Quadro FX GPUs by Product Names
	NV3xGL-based Quadro FX GPUs
	NV4xGL-based Quadro FX GPUs
	How to Use and How to Not Use These Lists

