
 

SDK White Paper 

Cloth 
 

 

 

 

 

 

 

 

 
 

 
 
 
July 4, 2005 



 

 

  1 

Abstract 

The sample demonstrates how to 
use Shader Model 3.0 to simulate 
and render cloth on the GPU. The 
cloth vertex positions are computed 
through several pixel shaders and 
saved into a texture. A vertex 
shader then reads these positions 
using Vertex Texture Fetch (VTF) 
to render the cloth.  

 

 

 

 

 

 

Cyril Zeller 

sdkfeedback@nvidia.com  

NVIDIA Corporation 
2701 San Tomas Expressway 
Santa Clara, CA 95050 

2/11/2005  

mailto:sdkfeedback@nvidia.com


 

 

  2 
2/11/2005  

Simulating Cloth 

A piece of cloth is modeled as an array of particles. 

 

Forces 
Each particle is subject to a force and its equation of motion is integrated using 
Verlet integration. In the case of a constant simulation time step Δt, the new 
position of the particle is thus computed from the old one using the following 
equation: 

P(t + Δt) = P(t) + k (P(t) – P(t - Δt)) + Δt2 F(t) / m (1) 

where: 

� P(t) is the position of the particle at time t, 

� F(t) is the force at time t, 

� m is the mass of the particle, 

� k is an arbitrary damping coefficient, usually very close to 1. 

This equation is derived by approximating P(t + Δt) and P(t - Δt) by the first terms 
of their Taylor expansion: 

P(t + Δt) ~ P(t) + Δt P’(t) + Δt2 P’’(t) / 2 

P(t - Δt) ~ P(t) - Δt P’(t) + Δt2 P’’(t) / 2 

adding these two equations, and noting that P’’(t) is equal to m F(t). 

Note that no force is applied to the particles that have been selected by the user to 
be either fixed (“nailed”) or moved by user interaction. 



 Cloth 
    

 

 

Constraints 
The particles are also linked to each other by structural and shear springs: 

Shear springs Structural springs 
 

The springs are assumed to have infinite stiffness, which is to say that two particles 
P1 and P2 linked by a spring are constrained by: 

Dist(P1, P2) = d 

where d is a constant equal to the spring length at rest. 

For a flat rectangular piece of cloth of size (ex, ey) and modeled by an array of (W x 
H) particles: 

dstructural, x = ex / (W – 1) 

dstructural, y = ey / (H – 1) 

dshear = sqrt(d2structural, x + d2structural, y) 

For a non-rectangular or non-flat piece of cloth, every spring has a specific length at 
rest. 

Each particle is also constrained to stay out of any collision object – plane, sphere, 
box, ellipsoid - present in the environment. 

A relaxation technique is used to converge towards a state where all these 
constraints are simultaneously satisfied. This consists in iteratively enforcing one 
after the other until it is deemed sufficient. See [Jakobsen 2001] for more details. 

A distance constraint between P1 and P2 is enforced by displacing: 

P1 by s1 (1 - d / Dist(P1, P2)) * (P2 – P1)  (2a) 

P2 by   -  s2 (1 - d / Dist(P1, P2)) * (P2 – P1)  (2b) 

 

2/11/2005  3 
 



 Cloth 
    

 

 

2/11/2005  4 
 

with (s1, s2) being the responsivenesses of P1 and P2. The responsivenesses are equal 
to: 

(0.5, 0.5) if both particles are moving freely 

(0, 1) or (1, 0) if P1 or P2 is fixed 

A collision constraint between a particle and a collision object is enforced by 
checking whether the particle is inside the object or not, and if it is inside, by 
moving the particle to the position at the surface of the object that is the closest to 
the particle’s current position. Note that in the case of the ellipsoid, computing the 
closest position requires an iterative calculation, so for simplicity and speed, the 
particle is moved to the intersection of the ellipsoid with the line that goes from the 
ellipsoid’s center to the particle’s current position. 

A piece of cloth with holes is handled by computing a geometry image of the 
original cloth mesh [Gu et al. 2002] and using the initial distances between the 
particles as the springs’ lengths at rest. A geometry image is created from a given 
mesh by cutting it along a network of edge paths such that it becomes topologically 
equivalent to a disk and then sampling the result over a grid to get the positions of 
the vertices at each pixel of the image. The particles located along the cut – or seam 
– are duplicated at different locations on the boundary of the geometry image. The 
duplicates corresponding to such a particle are simulated independently during the 
motion integration and distance constraint steps and their positions are reconciled 
just before the collision step by averaging them. 

 

Algorithm 
Here is the algorithm’s outline: 

� For every simulation time step: 

o Step 1: For every particle that isn’t fixed or user-moved: 

 Apply force through equation (1) 

o Step 2: For every relaxation step: 

 Step 2a: For every distance constraint: 

• Apply equations (2a) and (2b) 

 Step 2b: For every particle: 

• If the particle is part of the seam: 

o Replace its position with the average of the 
positions of all the corresponding duplicates 

• For every collision object: 

o If the particle is inside 

 Move the particle out of the object 



 Cloth 
    

 

GPU Implementation 

The particles’ positions of a piece of cloth made of (W x H) particles are stored in 
three rotating (W x H) floating-point textures and processed by several pixel shaders 
successively. One texture holds the old positions; another one holds the current 
positions and the third one is used to store the results of each pixel shader pass. A 
pixel shader pass is done by setting this third texture as a render target and by 
rendering a quad of (W x H) pixels. 

The w-component of the 4-component floating-point vector that represents a 
particle in the particle textures is used to encode: 

- Whether the particle is fixed or not, 

- Whether the particle is a seam particle, 

- If the particle is a seam particle, the texture address of the first of its duplicates 
along the seam. 

All the pixel shaders used for the simulation are in ClothSim.fx. 

Step 1 is performed by ApplyForces. ApplyForces moves every particle that is 
not fixed or user-moved. The position of the fixed or user-moved particles is set by 
SetPosition and TransformPosition. 

Step 2a is performed by a series of pixel shaders dealing with separate rows or 
columns of springs: 

� SatisfySpringConstraintXSpringEven: 

2 i 2 i + 1 2 i + 2 2 i - 1 

 

 

2/11/2005  5 
 



 Cloth 
    

 

 

� SatisfySpringConstraintXSpringOdd: 

2 i 2 i + 1 2 i + 2 2 i - 1 

 
 

� SatisfySpringConstraintYSpringEven: 

2 i 

2 i + 1 

2 i + 2 

2 i - 1 

 
� SatisfySpringConstraintYSpringOdd: 

2 i 

2 i + 1 

2 i + 2 

2 i - 1 

 

 

2/11/2005  6 
 



 Cloth 
    

 

 

� SatisfySpringConstraintXYSpringDownEven: 

2 i 2 i + 1 2 i + 2 2 i - 1 

 
 

� SatisfySpringConstraintXYSpringDownOdd: 

2 i 2 i + 1 2 i + 2 2 i - 1 

 

 

2/11/2005  7 
 



 Cloth 
    

 

 

� SatisfySpringConstraintXYSpringUpEven: 

2 i 2 i + 1 2 i + 2 2 i - 1 

 
 

� SatisfySpringConstraintXYSpringUpOdd: 

2 i 2 i + 1 2 i + 2 2 i - 1 

 

 

2/11/2005  8 
 



 Cloth 
    

 

 

2/11/2005  9 
 

The responsivenesses are stored into eight textures that get used once respectively 
during the execution of the eight pixel shaders above. These textures are updated each 
time the user selects or unselects a particle, or cuts into the cloth. When a spring 
between P1 and P2 is cut, the responsivenesses are set to zero for both positions. 

The springs’ lengths at rest are specified, either as constants in the case where they are 
the same for all the springs updated by one pixel shader call, or, like for the 
responsivenesses, as eight textures in the case where they differ from one spring to the 
other. 

Note that these eight pixel shader passes can be applied in any order. 

Step 2b is performed by SatisfySeamAndCollisionConstraints. Collision 
objects are stored into textures that get updated each time a new object is added or an 
existing object is removed or moved. There is one texture per type of collision object. 

Once the simulation is done, the texture containing the final particle positions is looked 
up by vertex shader SimulatedVS - from Scene.fx - to set the vertex positions of a 
vertex buffer of (W x H) vertices. This vertex buffer is rendered with pixel shader 
SimulatedPS to display the piece of cloth. 

 

Cloth cutting is done by: 

• Determining which ones of the cloth triangles the user cuts when dragging the 
mouse from one window point A to another point B, 

• Updating the corresponding responsivenesses, 

• Removing these triangles from the cloth index buffer. 

The first step above is performed by the Cut technique (in ClothSim.fx, as well) and 
consists in intersecting every cloth triangle with the triangle formed by the camera 
position and the two points of the scene that project to A and B. 



 Cloth 
    

 

 

2/11/2005  10 
 

 

 

 

 

 

 

 

Source Code Organization 

The source code is divided into four cpp files: 

• ClothSim.cpp: This file contains the implementation of the ClothSim 
class and this is where the simulation takes place. The ClothSim class 
takes as input a gravity force, a wind force, a distance constraint, a list of 
planes, spheres, boxes and ellipsoids as textures, and a list of anchor points 
as a vertex buffer – the fixed or user-moved particles -, and computes the 
new cloth vertex positions and normals every frame. 

• Scene.cpp: This file contains the definition of the Scene name space and 
depends on the ClothSim class. The Scene name space gathers all the 
scene management functions, including editing, simulation and rendering. It 
exposes an Object class and the list of all the objects contained in the 
scene. There is one Object instantiation per collision object and cloth. 
Each object can be dimensioned, positioned, oriented, rendered, selected, 
targeted and cut. An object is targeted when the mouse is located on top of 
it. Cutting only applies to clothes. Internally, the Object class is derived 
into two classes: CollisionObject, Cloth. The CollisionObject 
class is in turn derived into four classes: Plane, Sphere, Box, and 
Ellipsoid. 

The character isn’t implemented as an Object, but as a D3DXFRAME. 

• GUI.cpp: This file contains the definition of the GUI name space and 
depends on the Scene name space. The GUI name space implements the 
graphical user interface and exposes all the event callbacks setup in 
Main.cpp. 

• Main.cpp: This file contains the executable’s entry point and depends on 
the GUI name space. 

 

 



 Cloth 
    

 

 

2/11/2005  11 
 

 

Bibliography 

[Jakobsen 2001] Jakobsen, T. Advanced character physics. Game Developer's 
Conference 2001  
www.gdconf.com/archives/2001/jakobsent.doc

[Gu et al. 2002] Gu, X., Gortler, S., and Hoppe, H. “Geometry Images.” ACM 
SIGGRAPH 2002, 355-361.

http://www.gdconf.com/archives/2001/jakobsent.doc


 

NVIDIA Corporation 
2701 San Tomas Expressway 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND 
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA 
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE 
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, 
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under any 
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

 

Trademarks 

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United 
States and other countries. Other company and product names may be trademarks of the respective 
companies with which they are associated. 

 

Copyright 

© 2005 NVIDIA Corporation. All rights reserved  

Santa Clara, CA 95050 
www.nvidia.com 


	Abstract 
	Simulating Cloth 
	 GPU Implementation 
	Source Code Organization 
	Bibliography 
	 
	 


