
SDK White Paper

HLSL Blood Shader
Gravity Maps

WP-01389-001_v01
July 2004

SDK-00876-001_v01 2
03/09/04

Preface

Gravity Maps
With the arrival of programmable pixel shaders, it has become possible to render
the world around us in a more convincing and precise manner. A side effect of this
increased aesthetic realism is an increase in the correct nature of the physics
involved in the rendering process. This increase in accuracy is driven by the
demands of techniques such as dot3 bump mapping which require the realistic
behavior of surfaces and light. Borrowing from the same concepts that allow the
evaluation of lighting equations on a per pixel basis, you can compute physical
properties such as gravity at each point. Given this ability to define gravity at each
point you can realistically model the dynamics of a fluid across an arbitrary surface.

Kevin Myers
kmyers@nvidia.com
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

SDK-00876-001_v01 3
03/09/04

Introduction

This white paper describes a method for animating fluids across an arbitrary surface.
It assumes familiarity with dot3 bump mapping techniques (Per Pixel Lighting Intro by
Sim Dietrich). The shader utilizes a normal map to compute a per-pixel gravity
value which is then used to animate a fluid, stored in a height map. The effect is
accomplished using HLSL and PS 2.0.

Creating a Gravity Map
In the preparation of a Gravity Map you must first consider the information that a
normal map already presents. With a normal map consisting of per pixel normals
stored in an RGB texture, you have a description of the direction the surface points
in, at each point. If gravity were defined as being a vector in the negative z
direction, the x and y components of the normal would define the pull of gravity
across texture space. The z component can be ignored since the movement is
about a plane. Therefore if you were to compute gravity in texture space, a normal
map with the z component removed would be sufficient. The remaining x and y
components form a 2-D vector that is a ratio of the force of gravity at that point.

The problems with using normal maps to define gravity are the same as those that
show up in dot3 bump mapping—the information is defined in tangent space. In
reality, gravity direction is a constant vector defined in world space, much like a light
vector. Therefore just as the light vector used in dot3 bump mapping, you need to
move the gravity vector into tangent space. To accomplish this, apply the
WorldTranspose transformation, followed by an ObjectToTangent space
transformation moving gravity into tangent space. Once the gravity is in tangent
space, the x and y components serve as a 2-D directional vector for gravitational
movement.

To determine the final directional vector, take the sum of this 2-D gravity vector
and the x and y components of the pixel’s normal. This final 2-D vector then yields
the direction that an object will move across the surface in tangent space. As shown
in Figure 1, ignore the z value and use the x and y components to dictate direction.
Since gravity and normal vectors are normalized the x and y components can range
from -2 to 2. However, any value outside the range -1 to 1 is indicative of a surface
that has been tilted upside down. In this case the object falls off the surface, it does
not move across the texture.

Apply this process to each point across the surface determining a unique gravity
vector for each point. To create a more viscous fluid that responds in a sharper
manner to surface details, raise the gravity vector to the third power. This creates a
sort of attenuation that ramps the effect of gravity. Finally, write out the x and y
components to r and g respectively. Since our values can range from -1 to 1, you
need to pack the vector applying the equation 1/2 * x + .5.

Blood Shader

SDK-00876-001_v01 4
03/09/04

Animating Blood
At this point, you have defined gravity at every point and saved it out to a texture.
You can now use it to animate fluids. Remember that the shader is a self-feeding
process with the amount of fluid, in this case blood, stored in a height map. The
height map is defined in the unused b component of the gravity map. Every frame
the shader reads the height value of the blood at each texel, as well as the 2-D
gravity vector. It then subtracts from the current texel whatever percentage its
gravity vector states it will lose this frame. Finally, it checks its four neighbors for
any fluid that may be coming into the current texel.

To compute how much blood will fall into the current texel, the shader must sample
the gravity map values of the four neighbors. Each of the four texels left, right,
above, and below is checked for gravity vectors pointing in the direction of the
current texel. For instance, in checking the neighbor above the current texel the
shader looks at the y (green) component. Anything in the range of 0 to -1
(unpacked) gives the fraction of blood that this texel will take. This fraction is then
multiplied by the height of the blood at the neighbor as given in the equation
abs(TexelAbove.y) * TexAbove.b . This value is computed for all four
neighbors and added to the current texels height.

Finally, if the current texels blood height is greater than a predefined minimum, the
generation of the gravity map is again performed for the next frame. This cycle
continues to repeat until there are no longer any texels with blood high enough
(predefined) to move.

Figure 1. Animating Blood

Blood Shader

SDK-00876-001_v01 5
03/09/04

Displaying the Horror
The final product of this shader is a continuously changing height map with a 2-D
gravity induced directional vector defined at each point. Visually, the goal is produce
the effect of a thick fluid oozing across a surface. The height map contains
information regarding the intensity of the color for each point. Take this value and
multiply it by a given blood color. This yields a final blood color contribution
which is added to the color of the surface material. In order to increase the intensity
of the blood color, decrease the color contribution of the surface by a factor of (1
– BloodHeight). For added realism, compute deltas for the blood height of each
texel based on its neighbors. Derive dx = LeftHeight – RightHeight and
dy = BelowHeight – AboveHeight. These values are then added to the
surface normal to give the effect of a thick fluid.

The final product uses a simple moving specular light to show bump mapped
blood, dripping down a wall, animated entirely on the GPU.

SDK-00876-001_v01 6
03/09/04

Bibliography

Per Pixel Lighting Intro
Sim Dietrich

http://developer.nvidia.com/attach/1659

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

