

SDK White Paper

Depth of Field
Controlling Camera Parameters

WP-01396-001-v01
July 2004

WP-01396-001_v01 1
07/06/04

Abstract

Depth of Field Example
This document describes an example which allows control over several camera
parameters such as camera position, camera orientation, focal length, focal distance,
and f-stop, and renders the scene according to those parameters. In particular, it
approximates depth of field, which means that objects which are in focus are
rendered sharply while objects which are out of focus are blurred, while running in
real-time.

The example is inspired by an mpeg trailer for a car-racing game. The trailer uses
in-game video footage that is post-processed to add depth-of-field to make the
visuals more dramatic. The technique shown here runs in real-time and applies to
all racing games that have a replay option once the race is over. The many cameras
used in replay mode would become more dramatic if depth of field effects were
applied to them.

The menu options allow rendering in wire-frame, to view the per-pixel distance-to-
camera, or to visualize the amount of blurriness. Left-click-hold and moving the
mouse controls the camera’s view-direction, and the arrow-keys move the camera
forward, backward, left, and right. The keys I and O zoom in and out (i.e., change
focal-length); U and P change the focus-distance, and K and L change the f-stop.

This example is written for DirectX 9.1 and requires PS/VS1.1 support.

Bryan Dudash
bdudash@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

WP-01396-001_v01 2
07/06/04

Depth of Field

Discussion
The effect renders the scene only once. During this rendering, vertex-shaders
compute the per-vertex distance to the camera. This distance gets interpolated on a
per-pixel basis; an associated pixel-shader transforms this distance into a
“blurriness-interpolator” that is stored in the alpha component of the frame buffer.
The frame-buffer is then filter-blitted multiple times to generate blurred versions.
Finally, based on the “blurriness-interpolator” stored in the alpha-component you
can blend between the original in-focus frame-buffer and its various blurred
versions to derive the final result. This technique is very similar to the algorithm
described by M. Potmesil and I. Chakravarty in “A lens and aperture camera model
for synthetic image generation,” Computer Graphics (Proceedings of SIGGRAPH
81), 15 (3), pp. 297-305 (August 1981, Dallas, Texas).
A look-up is performed for the “blurriness-interpolator” in a texture. This texture is
currently parameterized by distance to camera, and focus distance. Hence, when
changing the f-stop, this texture is regenerated. If f-stops change frequently you
could re-parameterize the texture accordingly. Alternatively, you could operate on a
1D texture, parameterized by distance to camera only, and regenerate it every time
any of the other parameters change – since the size of this 1D texture would be 1Kb
approximately in real-time.

Depth of Field Algorithm
1. Render Scene to texture

a) In Vertex Shader, calculate the vertex distance from camera
b) In Pixel Shader, convert distance factor to blurriness factor and store in

alpha channel. Also lookup and store “circle of confusion” interpolant
based on camera distance.

2. Generate Blurred versions (3 filter targets)
Looping for a certain number of filter steps (5 this sample), blur the filter target
using the previous filter target as the initial source texture.

Note: This uses a couple temporary textures, since you can’t source and sink
the same texture in a pixel shader.

3. Source filter targets, and render a full screen quad, interpolating the color
between the three filter targets using the circle of confusion value stored in
alpha.

 Depth of Field

WP-01396-001_v01 3
07/06/04

The Circle of Confusion
The circle of confusion is actually two circles representing the interpolation
endpoints of three filter targets. You can compute the circle of confusion on the
CPU and enter it into a look-up table in a texture. If volume textures are available,
you can enter values in multiple look-up tables based on focus distance into the
volume texture. Otherwise, you have to recalculate the look-up table whenever the
focal length changes.

The x-dimension represents distance to the camera.

The y-dimension represents focus distance. Min and Max are constant

The z-dimension represents focal length. Min and Max are constant, and if not using
volumes, the focal length value used in the circle calculation is set from user input.

()
() ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−=

hFocalLengtFocusDistFStop

hFocalLengtCameraDist
FocusDist

absvalue
*

*1
2

Equation 1. Circle of Confusion Table Equation

Essentially, you have to figure out what the min- and max-distance is for the depth
of field for a circle of confusion of ratio2*c0. Anything blurrier than that cannot be
represented anyway, so there is no need to waste interpolator-range on it. Then you
can iterate from min- to max-distance and compute the circle of confusion for that
particular distance.

The circle of confusion diameter computed above is then mapped into an
interpolator ranging from 0 to 1, with 0 corresponding to circles of diameter c0 or
less, 0.5 corresponding to diameters ratio1*c0, and 1 corresponding to diameters
ratio2*c0 or more.
All formulas are from "Photographic Lenses Tutorial" by David M. Jacobson
(www.graflex.org/lenses/photographic-lenses-tutorial.html).

References
M. Potmesil and I. Chakravarty, “A lens and aperture camera model for synthetic image
generation,” Computer Graphics (Proceedings of SIGGRAPH 81), 15 (3), pp. 297-
305 (August 1981, Dallas, Texas).

David M. Jacobson, "Photographic Lenses Tutorial"
(www.graflex.org/lenses/photographic-lenses-tutorial.html).

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

