

SDK White Paper

Occlusion Query
Checking for Hidden Pixels

WP-01402-001_v01
July 2004

WP-01402-001_v01 1
07/14/04

Abstract

Occlusion Queries
Many graphics engines today waste time by
attempting to draw pixels of objects that do not
appear in a scene. These hidden objects are
occluded from view, but often the engine
rendering a scene does not know which pixels
are occluded and which are visible.

Tracking information about which pixels are
occluded in a scene and which are visible is not a
trivial design problem. Because metadata about
the relation of objects in a scene is not available,
most modern hardware supports the concept of
an “occlusion query.” Occlusions queries ask the hardware to report on whether or
not a selection of the frames rendered were occluded when the buffer is presented
to the screen.

Occlusion queries provide useful information that can be used in a variety of ways
to reduce the load on the graphics card. Strategies for using the information include
not drawing objects that are not visible and reducing other non-graphics related
loads, such as scaling down physics and AI for objects that are not visible.

The demonstration described in this document presents a technique for not drawing
an extremely complex object once it becomes completely occluded.

For more information, contact

Bryan Dudash
bdudash@nvidia.com
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

WP-01402-001_v01 2
07/14/04

D3D IDirect3DQuery9

The D3D API provides an interface, called IDirect3DQuery9, which gives access to
an occlusion query. Each call to IDirect3DQuery9 represents a single outstanding
query. This section briefly describes the IDirect3DQuery9 API. However, please
consult the DirectX9 documentation for more information.

IDirect3DQuery9 API for
Occlusion Queries

HRESULT IDirect3DDevice9::CreateQuery(D3DQUERYTYPE Type,
IDirect3DQuery9** ppQuery);

To make an occlusion query, pass in D3DQUERYTYPE_OCCLUSION as the type,
and a pointer to a query interface object. From then on, the query object interface
is all you’ll use.

HRESULT IDirect3DQuery9::Issue(DWORD dwIssueFlags);

Wrap the render calls that you are interested in monitoring with calls to
Issue(D3DISSUE_BEGIN) and Issue(D3DISSUE_END).

HRESULT IDirect3DQuery9::GetData(void* pData, DWORD dwSize,
DWORD dwGetDataFlags);

When calling GetData() on an occlusion query. The pData pointer should
point to a DWORD. dwSize should be sizeof(DWORD). When called with no
flags, the function will return immediately. It will return S_OK if the query results
have returned. If not, then the query is still outstanding.

Note: You can also call with D3DGETDATA_FLUSH in dwGetDataFlags.
This blocks the return of the GetData call until the occlusion query result
has been returned. However, this approach slows your application
noticeably.

ULONG IDirect3DQuery9::Release(void);

Be sure to free all objects that you create.

WP-01402-001_v01 3
07/14/04

General Occlusion

Query Usage

In general, most graphics cards buffer a few frames to allow some efficiency in the
parallel work between the driver and the card. In order to use a single occlusion
query, you are must frame lock your application to buffer only one frame ahead (for
example, flush). Forcing the driver into lockstep with the card will lower
performance.

Because each occlusion query only represents one test, use multiple queries if you
want to test multiple objects in a scene.

If your simple occlusion hull does not fully cover your complex object, the object
will blink in and out of the complex object.

Steps to Use an
Occlusion Query

The steps to use an occlusion query are as follows:

1. Render the scene
2. Turn off color and z writes
3. Begin the query
4. Render an “invisible” simple hull object that covers complex object
5. End the query
6. Test the results of the occlusion query
7. Turn color and z writes back on
8. If coarse hull is completely occluded, then the query is done
9. If coarse hull is not occluded, then render the complex object

Note: These steps show what needs to happen for a single occlusion query. If
you are testing multiple objects, maintain a queue of queries to avoid
putting the hardware and driver into lock-step.

WP-01402-001_v01 4
07/14/04

LatentOcclusionQueryBank

Included with this demo is a class called LatentOcclusionQueryBank. This class
wraps up a queue of occlusion queries to handle the standard frame queuing that
occurs on most modern graphics hardware

API
HRESULT GetLatestResults(DWORD *count);

Returns S_OK if new results are returned since the last time GetLatestResults
was called. The occlusion query fragment count is passed back in the count
parameter.

HRESULT BeginNextQuery();

Issues the beginning of a new query. Returns S_FALSE if it has run out of queries.

HRESULT EndNextQuery();

Issues the end of a previously begun query. Returns S_FALSE if it has run out of
queries or if it cannot find a previous query.

unsigned int GetNumActiveQueries();

Returns the number of queries that have not yet had results delivered. This number
is updated when GetLatestResults is called.

void Free();

Frees all occlusion queries that have been allocated. Always call free when you are
done.

 Occlusion Query

WP-01400-001_v01 5
07/14/04

API Mapping
LPDIRECT3DQUERY9 LatentOcclusionQueryBank
GetData() GetLatestResults()
Issue(D3DISSUE_BEGIN) BeginNextQuery()
Issue(D3DISSUE_BEGIN) EndNextQuery()
Release() Free()

Note: Replacing all calls to a single IDirect3DQuery9 object with the equivalent
calls into LatentOcclusionQueryBank should work smoothly.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

