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Abstract 

This document describes a method to render 
rainbows, coronas, fogbows, and halos realistically 
with a 3D scene in real-time using pre-calculated 
lookup textures.  A summary of the basic physics of 
rainbows and other atmospheric phenomena is also 
provided. 

Rainbows, fogbows, corona (around the sun) and 
halos (around the moon) are each created when 
small water droplets scatter light in a particular way 
as it travels to your eye.   

This whitepaper tells you how to create this effect in a 3D scene without computing 
a complex equation for every pixel on the screen. It explains the basic optics behind 
rainbows, fogbows, coronas and halos and tells you where to find out all the gritty 
details behind the physics.   It lists the steps to render a rainbow using lookup 
textures.  It discusses how to combine these light effects with the rest of your scene 
and describes directions for future work.  After reading this whitepaper you should 
have all the info you need to add a realistic rainbow, fogbow, corona, or halo to 
your game engine. 

 

 

Clint Brewer 
devrelfeedback@nvidia.com 
NVIDIA Corporation 
2701 San Tomas Expressway 
Santa Clara, CA 95050 
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The Optics of Rainbows 

Everyone since Aristotle has been trying to explain how rainbows work.  For recent 
treatments of the topic, look to The Rainbow Bridge, a book that covers just about 
everything known and unknown about rainbows.  This whitepaper concerns itself 
with rendering realistic rainbows in an interactive environment, it does not provide 
all the physical details.  It provides enough information about the optics of rainbows 
to make it possible to add believable-looking rainbow effects to games. 

Rainbows appear when sunlight is separated into its component colors by spherical 
droplets of water.  Different wavelengths of light (red, orange, yellow, green, blue, 
and violet) are refracted by different amounts as they enter and exit the water 
droplet.  Other aspects of rainbows include the following: 

 Rainbows are circles of colored light centered on the anti-solar point.  If you are 
the viewer, then the anti-solar point is the shadow of your own head.   

 Every person sees a unique rainbow.  You can think of it as a cone of light 
focused on your eye. 

 Spherical water droplets refract and reflect light back to your eye 
 Different wavelengths of light are refracted by different amounts 
 Very tiny spherical water droplets reflect and diffract light causing fogbows 
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Figure 1 illustrates how a ray of sunlight is refracted by a water droplet, is reflected 
internally a single time, and is refracted on the way out as it goes to the viewer. The 
figure shows the path of a ray of sunlight as it passes through the water droplet. The 
ray refracts into the droplet at point a, reflects internally at point b, and refracts out 
of the droplet at point c.  Violet rays are not refracted as much as the other colors 
so violet comes out on the bottom of a rainbow, while red is refracted the most and 
comes out on top of a rainbow.  This process shown in Figure 1 causes the bright 
primary rainbow. 

 

Figure 1. Primary Rainbow   
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Figure 2 illustrates how a ray of sunlight is refracted by a water droplet, is reflected internally 
two times, and is refracted on the way out as it goes to the viewer. In the figure, a ray of 
sunlight refracts into the water droplet at point d, reflects internally once at point c and again 
at point b, then finally refracts out of the droplet at point a.  This two-reflection 
phenomenon causes the lighter secondary rainbow which appears above the primary 
rainbow on occasion.  Note that the colors of the secondary rainbow are reversed from 
those of the primary rainbow. That is violet on top and red on the bottom instead of the 
other way around for a primary rainbow (see Figure 8).   

The secondary rainbow is a rare event (even more rare than a primary rainbow). Even 
though this paper does not address how to code the secondary rainbow effect, the 
techniques discussed in this paper could be used to develop code that simulates the 
secondary rainbow as well as the primary rainbow.  

 

 

Figure 2. Secondary Rainbow 
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You can see from the refraction of the sun ray in Figure 1 and Figure 2, the color of 
light the viewer sees will depend on which color gets bent just enough to hit the 
viewer’s eye.  This depends on the viewer’s position, the radius and position of the 
water drop, and the position and angle the sun ray intersects the drop.   

We can simplify the problem to be a function of two values: the angle of deviation 
and the radius of the water droplet.  Figure 3 shows the angle of deviation which is the 
total angle that light is bent back to the viewer. 

 

Figure 3. Angle of Deviation 
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Integrating a Rainbow  
into a 3D Scene 

Distinctive shape and color are well-known characteristics of rainbows. However, 
rainbows rarely appear perfectly uniform rainbow in reality. Usually we see half a 
rainbow, or just the top, or see it fade in and out as we watch it.  To create a realistic 
rainbow, these features of rainbows must be included.   

This section describes the following characteristics of rainbows and how to integrate 
them into a scene.  Coronas, rings around the sun, are similar and are described in 
the comments in the sample code found in the section called, “Source Code for  
Rainbow and Corona Effects.”  

 Color 
 Moisture in the air 
 Light added back to the background 
 Light source color 

 

Color  
Rainbow light is caused by water drops in the atmosphere reflecting and refracting 
sunlight in part of the sky.  The previous section explains what causes the color of 
the rainbow in very simple terms, but this section describes how to color a rainbow 
in more detail.   

The Airy light scattering equations in the article by Raymond Lee, “Mie Theory Airy 
Theory and the Natural Rainbow,” and the details provided in the article by Phillip 
Lavin, “The Optics of a Water Drop,” provide helpful models of water drops and 
light form the colors of a rainbow.   
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Texture Lookup 
To create a color lookup texture for a sample rainbow, we will use a freely available 
program Lavin created, called MiePlot. The program calculates the results of the 
Airy light scattering equations that can be used in a graphics application.  

MiePlot generates Lee diagrams. These diagrams show how the color of a rainbow 
changes as the radius of a water droplet changes.  Lee diagrams are 2D images in 
which each pixel represents the color of scattered light corresponding to a given 
angle of deviation on one axis and radius of water droplet on the other axis.   

Figure 4 shows an example of a Lee diagram generated by Mr. Laven’s MiePlot. 

 

Figure 4. Lee Diagram Generated by MiePlot 



 Depth of Field 
    

 

 

WP-01410-001_v01  8 
07/14/04 

In order to add a rainbow in a scene, we need to compute a function of two values:  

 Angle of deviation  
 Radius of a water droplet.   

The Lee diagram gives provides exactly this information when the texture is indexed 
with the coordinates [radius, angle of deviation].  

Some manipulation of the Lee diagram is needed to create a useable lookup texture. 
Since the primary rainbow is caused by an internal reflection, limit the angle of 
deviation to be between 90 degrees and 180 degrees.  If the angle of deviation is less 
than 90 degrees then the light ray would not have reflected internally, but refracted 
out of the water droplet at point b in Figure 1.  If the angle of deviation is greater 
than 180, then it mirrors the colors from 90 to 180.   

The radii of water droplets varies, depending on the phenomenon.  Water droplets 
in rainbows are large compared to the water droplets in fogbows. To build a model 
that can render both rainbows and fogbows, use a range 5 to 800 microns.  

Lee, in his paper on Mie and Airy Theory, shows that the simplified Airy equations 
produce very realistic results, even if they are not as accurate as Mie Theory.  The 
Airy Theory can be calculated relatively quickly in MiePlot.  To get the final lookup 
texture, set up MiePlot to generate a Lee diagram using Airy Theory with the desired 
range of radius and angle of deviation. Since MiePlot does not provide a way to save 
the texture, take a screenshot of the results and save the Lee diagram portion of the 
screen.   

To achieve more distinctive, brighter rainbow colors, make the bands of color 
wider, as shown in Figure 5.      
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In summary, the image in Figure 5, generated by MiePlot, has been hand-modified 
to enhance width of color bands. The vertical axis is the angle of deviation from 180 
to 90.  The horizontal axis is the radius of a water droplet from 5 microns to 800 
microns.  It supplies the rainbow texture lookup. 

 

 

Figure 5. Hand-Modified Lee Diagram 
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Calculate Pixel Values 
The next problem to solve is – given what we know about a 3D scene – how can we 
calculate the color of the rainbow at a pixel on the screen?   

Because the GPU is set up to access this texture with coordinates in the range 
[0…1], we need to map angle of deviation and radius to these values.  If for each 
pixel on the screen, we know what the view vector is that passes through that pixel 
and what the sun lights direction vector is, then we can use the dot product to get 
the cosine of the angle between the vectors.   The cosine is in the range [1…0] when 
the angle is between 0 and 90 degrees and in the range [0…-1] when the angle is 
between 90 and 180 degrees.   

In all of the previous figures, the sun light vector points at the water droplet and the 
view vector points at the viewer which is common in mathematical models of 
rainbows.  For this calculation, use the computer graphics convention that the light 
vector points away from the water droplet towards the light source and the view 
vector still points towards the viewer.  Instead of the vertical axis ranging from 180 
to 90 degrees, it ranges from 90 to 0 degrees.  This change maps nicely onto the dot 
product which ranges from 0 to 1 for an angle between 90 and 0 degrees. 

To render the rainbow, use a screen-aligned quad and compute the color of 
scattered light at each pixel on the screen.   

Note: The screen-aligned quad view approach is not an efficient way to add 
rainbows to a game. Options to improve the speed are discussed in the 
section called, “Improvements and Other Uses.”  

Given a screen-aligned quad, we need to find a view vector and sun ray vector at 
each pixel.  We know that all sun rays are roughly parallel at the earth’s surface, so 
the direction of the sunlight is constant at each pixel.  Use a vertex shader to 
calculate the view vector at each vertex of the screen aligned quad and let it 
interpolate across the triangles for each pixel.  Then, use a pixel shader to calculate 
the texture coordinates to index into the Lee diagram lookup texture for each pixel 
on the screen.   

To calculate the view vector per vertex, render the screen-aligned quad in 
homogeneous clip space (which is a common way to render a full screen quad).  
First, transform the vertex position by the inverse projection matrix to find the 
position of the quad in eye space.  Once the position of the vertex is in eye space, 
the position of the eye in eye space is <0, 0, 0>. Simply subtract the two points to 
get an unnormalized view vector at each vertex.   

To compute the cosine of the angle of deviation using the dot product, normalize 
the eye vector.  Let the unnormalized vector interpolate.  To get the eye space sun 
ray vector, take the world-space sunlight vector and transform it by the view matrix. 

Note: If you normalize the eye vector at the vertex level, the interpolated 
vector will not be normalized and you will have to renormalize it in the 
pixel shader.   
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Every pixel has an unnormalized view vector and a normalized sun light vector.  To 
get a value in the range [-1…1], normalize the view vector and compute its dot 
product with the sun light vector. For a rainbow, only use the range [0 …1].  Set the 
texturing hardware to CLAMP the coordinate in the range [0....1]. Use the result of 
the dot product as the t texture coordinate.  Specify the radius of water droplets s 
coordinate, then sample the Lee diagram lookup texture. This results in the color of 
a perfect rainbow at each screen pixel.  (See the section called, “Source Code for  
Rainbow and Corona Effects” for a complete listing of vertex and pixel shaders.) 

Moisture in the Air 
The quality of a rainbow also depends on the amount of moisture in the sky. A thick 
sheet of moisture will have more water droplets to refract and reflect more color 
back to the viewer’s eye than a thin sheet of moisture will. More moisture produces 
a brighter rainbow and the less moisture produces a dimmer rainbow.  Use a 
separate moisture texture when rendering the scene. Use the red color component to 
store the amount of moisture in the scene at each pixel.  The rainbow color can be 
multiplied by this moisture factor (which ranges from [0..1] ) to fade the rainbow in 
and out.   

To calculate the moisture factor, render the fog amount to the texture, and then 
rendered the main skybox’s alpha component to represent the moisture/sun 
interaction in the skybox.  Finally, render another skybox with a noise texture 
scrolling downward to simulate the far away sheets of rain and add a little dynamic 
motion to the rainbow.  The better the model the interaction of sunlight and 
moisture in the atmosphere, the better the rainbow will look. 

A model that encodes the water droplet radius into the moisture texture to simulate 
clouds and rain in the scene that may cause different types of rainbows at the same 
time is not effective.  It does not work because, when the radius smoothly fades 
from one value to another, the rainbow colors curve unrealistically.  To achieve this 
effect, it would be necessary to render the rainbow in multiple passes once for each 
possible water droplet radius. 

Light Added to the Background  
Rainbows add to the light in the background. To computer added rainbow light, set 
the source blend factor to one and use alpha blending, and set the destination blend 
factor to invSrcColor.  With a true high-dynamic range lighting engine, both blend 
factors could be merged. However, a destination blend factor of invSrcColor 
handles over-saturation better and the resulting rainbow looks appealing.   

Light Source Color 
Finally, apply the rainbow color from the Lee diagram lookup texture by the 
sunlight color, since that light effects the possible rainbow color.   
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Render the Rainbow 
Figure 6 shows the important parts of rendering the rainbow.  

 The top left shows the plain rainbow color as rendered on a full-screen quad.   
 The top middle shows the moisture texture. Objects in the world are black and 

the clouds in the sky are rendered in greyscale.   
 The top right shows the moisture texture multiplied by the rainbow color.   
 The bottom shows the 3D scene rendered normally without any rainbow  
 The bottom middle, finally, combines of the 3D scene with the rainbow. 

 

Figure 6. Integrate the Rainbow into a 3D Scene 
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Improvements and Other Uses 

This section covers the following topics:  

 Optimizations and improvements to the rainbow demonstration 
 Additional atmospheric water and light-based phenomena 
 Other applications 

 

Optimizations and 
Improvements 

Before using rainbows in a game, the technique described needs to become less 
expensive to execute. The dependant texture cannot be read in real-time for every 
single pixel of a 1600 x 1200 resolution screen. To use rainbows, fogbows, coronas 
and halos in a game, we need an optimized version.  

One optimization is to design the rainbow texture beforehand, then render it into a 
cube-map texture.  At runtime, simply render another skybox using this rainbow 
cube-map and combine the rainbow color with the moisture texture as described.   
As long as the water drop radius does not change, this base rainbow color cube-map 
need not change.  When the sun direction changes, you can rotate the rainbow 
skybox so that the rainbow remains centered on the anti-solar point. 

Another optimization is to render a half dome facing away from the sun with the 
top of the dome at the anti-solar point.  Then, map the texture coordinates to a 1D 
slice of the Lee diagram lookup texture that corresponds to water drop radius. This 
technique uses normal texture wrapping to smear the 1D slice in a circle.  The angle 
of deviation would not need to be computed at runtime and you could still change 
the radius of water droplets causing the rainbow.  The dome would need to be well-
tessellated in order to look good, but thanks to vertex processing, it would not 
create a bottleneck. 

The technique presented to add rainbows to 3D scenes uses simplified model of  a 
rainbow that has a constant intensity. In reality, the intensity varies greatly.  MiePlot 
graphs the intensity data in addition to the color. To add greater realism, this high-
dynamic range lighting data should be included in the model.   

Another interesting improvement would be to port the Mie and Airy Theory 
simulation onto the GPU to generate the Lee diagram lookup texture. This would 
help it generate plots more quickly. 
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Other Water- and  
Light-Based Phenomena 

The technique for rendering a rainbow can be used to render a corona around the 
sun, a halo around a moon, and some of the halos caused by ice crystals around the 
sun.  The sample application included in this document implements both rainbows 
and sun coronas.  Coronas are based on the same optical effects effect as rainbows. 
The difference is that, instead of being interested in the [0…1] range of the dot 
product result, the corona is interested in the [0…-1] range that is around the sun.  
Unfortunately Airy Theory could not be used to create a corona Lee diagram lookup 
texture because it does not take that effect into account. However, Mie does include 
that case. Use MiePlot to render a 1D lookup texture for the Corona. 

Other Phenomena 
Some odd results show up in the rainbow technique when the angle of deviation 
used is less than 90 degrees and the rainbow light bends around as it goes from one 
radius to another.  The result looks surprisingly similar to the effect caused by 
abalone and oyster shells.   The internal lining of these shells is made up of tiny 
crystals of calcite that reflect and refract light.  Because the layers of calcite have 
varying thickness, you could correlate the thickness to water droplet radius thus 
using the same lookup textures to render various pearlescent materials.  

Conclusion 
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Source Code for  
Rainbow and Corona Effects 

 
/* 
Rainbow.fx 
 
rainbow simulation using precomputed light scattering and 
interference. 
 
*/ 
 
texture tRainbowLookup : DiffuseMap 
< 
 string name = "rainbow_Scatter_FakeWidet.tga";  
 //I've manually tweaked this texture to widen the color bands,  
 //not perfectly realistic, but looked better to me. 
>; 
 
 
texture tCoronaLookup : DiffuseMap 
< 
 string name = "rainbow_plot_i_vs_a_diffract_0_90_1024.tga"; 
>; 
 
 
texture tMoisture : DiffuseMap 
< 
 string name = "env3_rainbow.bmp"; 
>; 
 
 
float4x4 View : View; 
float4x4 ProjInv: ProjectionInverse; 
 
float3 LightVec : Direction 
< 
 string UIObject = "DirectionalLight"; 
    string Space = "World"; 
> = {1.0f, -1.0f, 1.0f}; 
 
half dropletRadius : Radius 
< 
    string UIType = "slider"; 
    float UIMin = 0.01; 
    float UIMax = 0.99; 
    float UIStep = 0.01; 
    string UIName = "rainbow: droplet radius"; 
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> = 0.81; 
 
 
half  rainbowIntensity : Intensity 
< 
    string UIType = "slider"; 
    float UIMin = 0.0; 
    float UIMax = 5.0; 
    float UIStep = 0.1; 
    string UIName = "rainbow: intensity"; 
> = 1.3; 
 
 
struct VS_INPUT {  
    float3 Position : POSITION; 
    float4 vTexCoord   : TEXCOORD0; 
}; 
 
struct VS_OUTPUT { 
    float4 vPosition  : POSITION; 
    half4 vTexCoord : TEXCOORD0;// quad texture coordinates 
    float3 vEyeVec : TEXCOORD1;// eye vector 
    float3 vLightVec: TEXCOORD2;// light vector 
}; 
 
VS_OUTPUT VS_rainbow(VS_INPUT IN) 
{ 
    VS_OUTPUT OUT; 
 
 OUT.vTexCoord = IN.vTexCoord; 
 // our input is a full screen quad in homogeneous-clip space 
    OUT.vPosition = float4(IN.Position,1.0); 
     
    //we need to unproject the position 
    half4 tempPos = float4(IN.Position,1.0); 
    tempPos = mul(tempPos, ProjInv); 
 
 //while in homognenous clip space, the eye is at 0,0,0 
    //vector from vertex to eye, no need to normalize here since we 
    //will be normalizing in the pixel shader 
     
    OUT.vEyeVec =  float3(0.0, 0.0, 0.0 ) - tempPos; 
 
 //transform light into eyespace 
 float4 tempLightDir; 
 tempLightDir = float4(-LightVec , 0.0); 
 OUT.vLightVec = normalize(mul(tempLightDir, View ).xyz); 
  
 
    return OUT; 
} 
 
sampler LookupMap = sampler_state 
{ 
 Texture   = <tRainbowLookup>; 
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 MinFilter = LINEAR; 
 MagFilter = LINEAR; 
    MipFilter = NONE; 
 AddressU = CLAMP; 
 AddressV = CLAMP; 
}; 
 
 
sampler CoronaLookupMap = sampler_state 
{ 
 Texture   = <tCoronaLookup>; 
 MinFilter = LINEAR; 
 MagFilter = LINEAR; 
    MipFilter = NONE; 
 AddressU = CLAMP; 
 AddressV = CLAMP; 
}; 
 
 
sampler MoistureMap = sampler_state 
{ 
 Texture   = <tMoisture>; 
 MinFilter = LINEAR; 
 MagFilter = LINEAR; 
    MipFilter = NONE; 
    AddressU = CLAMP; 
 AddressV = CLAMP; 
}; 
 
 
void CalculateRainbowColor(VS_OUTPUT IN, out float d, out half4 
scattered, out half4 moisture ) 
{ 
/* 
  notes about rainbows 
 
  -the lookuptexture should be blurred by the suns angular size 0.5 
degrees. 
   this should be baked into the texture 
 
  -rainbow light blends additively to existing light in the scene. 
    aka current scene color + rainbow color 
    aka alpha blend, one, one 
     
  -horizontal thickness of moisture,  
   a thin sheet of rain will produce less bright rainbows than a 
thick sheet 
   aka rainbow color  * water ammount, where water ammount ranges 
from 0 to 1 
   
  -rainbow light can be scattered and absorbed by other atmospheric 
particles. 
    aka simplified..rainbow color * light color 
     
*/ 
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 d =  dot(  
    IN.vLightVec,   //this can be 
normalized per vertex   
            normalize(IN.vEyeVec )  //this must be normalized 
per pixel to prevent banding 
          ); 
  
 //d will be clamped between 0 and 1 by the texture sampler 
 // this gives up the dot product result in the range of [0 to 1] 
 // that is to say, an angle of 0 to 90 degrees 
  scattered = tex2D(LookupMap, float2( dropletRadius, d)); 
  moisture = tex2D(MoistureMap,IN.vTexCoord.xy); 
 
} 
 
float4 PS_rainbowOnly(VS_OUTPUT IN) : COLOR 
{ 
 //note: I can use a half for d here, since there are no 
corruptions 
 half d; 
  half4 scattered; 
  half4 moisture;  
 CalculateRainbowColor(IN, d, scattered, moisture );  
 return scattered*rainbowIntensity*moisture.x; 
  
} 
 
 
half4 PS_rainbowAndCorona(VS_OUTPUT IN) : COLOR 
{ 
/* 
    Same as rainbow shader, but adds corona arround sun. 
*/ 
 
 float d; //note: I use a float for d here, since a half corrupts 
the corona 
 half4 scattered; 
 half4 moisture; 
 
 CalculateRainbowColor(IN, d, scattered, moisture );  
 
 //(1 + d) will be clamped between 0 and 1 by the texture sampler 
 // this gives up the dot product result in the range of [-1 to 
0] 
 // that is to say, an angle of 90 to 180 degrees 
 half4 coronaDiffracted = tex2D(CoronaLookupMap, 
float2(dropletRadius, 1 + d)); 
 
 return (coronaDiffracted + 
scattered)*rainbowIntensity*moisture.x; 
} 
 
 
technique Rainbow 
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{ 
 
    pass P0    
    < 
  string geometry = "fullscreenquad"; 
 > 
    { 
        // Shaders 
        VertexShader = compile vs_1_1 VS_rainbow(); 
        PixelShader  = compile ps_2_0 PS_rainbowOnly();   
        
        // Render states: 
        lighting  = false; 
  zenable = false; 
  alphablendenable = true;  
  srcblend = one;  
  destblend = invsrccolor; 
    } 
  
     
} 
 
technique RainbowAndCorona 
{ 
 
    pass P0    
    < 
  string geometry = "fullscreenquad"; 
 > 
    { 
        // Shaders 
        VertexShader = compile vs_1_1 VS_rainbow(); 
        PixelShader  = compile ps_2_0 PS_rainbowAndCorona();   
        
        // Render states: 
        lighting  = false; 
  zenable = false; 
  alphablendenable = true;  
  srcblend = one;  
  destblend = invsrccolor; 
    } 
  
     
} 
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Figure 7 shows a fogbow composed of large white bands.  Fogbows are sometimes 
also called cloudbows. 

 

Figure 7. Simulation of Fogbow 
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The photograph in Figure 8 shows primary and secondary rainbows in waterfall mist 
in Iceland. Note the inversed colors of the secondary rainbow. Thanks to Orion 
Elenzil who provided the photograph. 

 

Figure 8. Primary and Secondary Rainbows in Waterfall Mist 
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