

NVIDIA SDK

NVMeshMender Code Sample
User Guide

SDK-01905-001_v01 1
June 05

 Introduction

What Is This?

The NVMeshMender library is designed to prepare meshes for per-pixel lighting, by generating
normals, tangents and binormals.

Some of the issues that the library can address are:

1) Generating Tangents and Binormals for Per-Pixel Lighting
2) Duplicating vertices to avoid needing Cylindrical Texture Wrapping.
3) Intelligently smoothing across texture discontinuities
4) Generating normals, or using existing normals
5) Respecting existing split vertices, or collapsing similar vertices

SDK-01905-001_v01 2
June 05

Using NVMeshMender

Input
NVMeshMender requires 2-manifold triangular geometry, where each edge has one
or two triangle neighbors. Meshes do not need to be closed, although triangles
around a vertex are not smoothed across holes.

NVMeshMender gathers all triangles around a vertex, and tries to walk clockwise,
and then counter-clockwise around the vertex until all triangles are visited.

If a single one of these triangles is missing, all remaining triangles are smoothed,
depending on the angle of each with its neighbor. If two or more disjoint triangles
are present, there will be at least two groups of triangles smoothed.

If geometry is not 2-manifold, then the smoothing operations does not function
properly.

NVMeshMender does not weld vertices. It relies on positions being identical in order
to collapse them for the sake of smoothing. If you have ‘close’ vertex positions, you
should weld them before calling Mend().

Output
NVMeshMender never creates additional triangles, but rather may create new
vertices, and/or change the index list, in order to split edges that are geometrically
shared, but must be split for the sake of a discontinuous tangent space, or to fix
cylindrical wrapping requirements.

 NVMeshMender Demo User Guide

Smoothing Groups
NVMeshMender does not understand pre-defined smoothing groups, although it is
flexible in how it groups neighboring triangles, using user-defined crease angles, and
weighting based on a user-specified lerp factor between area-weighted normals and
non-weighted normals.

If you have a certain part of geometry that you want in its own smoothing group,
pass that in as a separate call to Mend().

Interface
bool Mend(std::vector< Vertex >& theVerts,
 std::vector< unsigned int >& theIndices,
 std::vector< unsigned int >& mappingNewToOldVert,
 const float minNormalsCreaseCosAngle = 0.0f,
 const float minTangentsCreaseCosAngle = 0.0f ,
 const float minBinormalsCreaseCosAngle = 0.0f,
 const float weightNormalsByArea = 1.0f,
 const NormalCalcOption computeNormals =
 CALCULATE_NORMALS,
 const ExistingSplitOption respectExistingSplits =

 DONT_RESPECT_SPLITS,
 const CylindricalFixOption fixCylindricalWrapping =
 DONT_FIX_CYLINDRICAL);

RETURNS true on success, false on failure

Each parameter to the Mend() function is explained in NVMeshMender.h, as well
as below.

theVerts

Should be initialized with your mesh data. Note that when mesh mender is done
with it, the number of vertices may grow and it will be filled with normals, tangents
and binormals in the MeshMender::Vertex format.

theIndices

Should be initialized with your mesh indices will contain the new indices. We are
not adding triangles, so the number of indices passed back should be the same as
the number of indices passed in, but they may point to new vertices now.

SDK-01905-001_v01 3
June 05

 NVMeshMender Demo User Guide

mappingNewToOldVert

This should be passed in as an empty vector. After mending it will contain a
mapping of newvertexindex -> oldvertexindex so it could be used to
map any per vertex data you had in your original mesh to the new mesh like so:
 for each new vertex index
 newVert[index]->myData =
oldVert[mappingNewToOldVert[index]]->myData;

…where myData is some custom vertex data in your original mesh.

minNormalsCreaseCosAngle

The minimum cosine of the angle between normals so that they are allowed to be
smoothed together.

Ranges between -1.0 and +1.0. This is ignored if computeNormals is set to
DONT_CALCULATE_NORMALS

minTangentsCreaseCosAngle

The minimum cosine of the angle between tangents so that they are allowed to be
smoothed together

Ranges between -1.0 and +1.0.

minBinormalsCreaseCosAngle

The minimum cosine of the angle between binormals so that they are allowed to be
smoothed together

Ranges between -1.0 and +1.0.

weightNormalsByArea

An amount to blend the normalized face normal, and the un-normalized face
normal together. Thus weighting the normal by the face area by a given amount.
Ranges between 0.0 and +1.0.

 0.0 means use the normalized face normals (not weighted by area).
 1.0 means use the unnormalized face normal (weighted by area).
 0.5 means average the two resulting normals & re-normalize.

This is ignored if computeNormals is set to DONT_CALCULATE_NORMALS.

computeNormals

Should mesh mender calculate normals?
If this is set to DONT_CALCULATE_NORMALS. Then the vertex normals after
meshmender is called will be the same ones you pass in. If you are automatically
calculating normals yourself, you may find that meshmender provides greater
control over how normals are smoothed together. We've been able to get better
results using the crease angle with meshmender's smoothing groups than other
popular methods.

SDK-01905-001_v01 4
June 05

 NVMeshMender Demo User Guide

respectExistingSplits

DONT_RESPECT_SPLITS means that neighboring triangles for smoothing will be
determined based on position and not on indices.

RESPECT_SPLITS means that neighboring triangles will be determined based on
the indices of the triangle and not the positions of the vertices. You can usually get
better smoothing by not respecting existing splits.
Only respect them if you know they should be respected.

fixCylindricalWrapping

DONT_FIX_CYLINDRICAL means take the texture coordinates as they come in.

FIX_CYLINDRICAL means we might need to split the verts at that point and
generate the proper texture coordinates. For instance, if we have texcoords
0.9 -> 0.0 -> 0.2 we would need to add a new vert so that we have 0.9 ->
1.0 < split > 0.0-> 0.2. This is only supported for texture coordinates in
the range

[0.0f , 1.0f]

Note: Do not leave this on for all meshes, only use it when you know you need it.
If you have polygons that map to a large area in texture space, this option
could distort the texture coordinates.

Following is an example piece of code that uses the nvmeshmender to generate
tangents & collapse some non-shared triangles into indexed lists.

 std::vector< uint32 > indices;

 std::vector< uint32 > remap;

 std::vector< MeshMender::Vertex > verts;

 for (size_t t = 0; t < mTriVector.size(); ++t)
 {
 indices.push_back(mTriVector[t].a);
 indices.push_back(mTriVector[t].b);
 indices.push_back(mTriVector[t].c);
 }

 MeshMender::Vertex inv;

 for (size_t t = 0; t < mVertexVector.size(); ++t)
 {
 const WorldVertex& wv = mVertexVector[t];

 inv.pos = wv.pos;

SDK-01905-001_v01 5
June 05

 NVMeshMender Demo User Guide

 inv.s = wv.s;
 inv.t = wv.t;
 verts.push_back(inv);
 }

 const float32 minNormalCreaseCos = 0.2f;
 const float32 minTangentCreaseCos = 0.2f;
 const float32 minBinormalCreaseCos = 0.2f;
 const float32 weightNormalsByArea = 0.5f;

 MeshMender mender;

 mender.Mend(verts,
 indices,
 remap,
 minNormalCreaseCos,
 minTangentCreaseCos,
 minBinormalCreaseCos,
 weightNormalsByArea,
 MeshMender::CALCULATE_NORMALS,
 MeshMender::DONT_RESPECT_SPLITS,
 MeshMender::FIX_CYLINDRICAL);

 for (size_t t = 0; t < mTriVector.size(); ++t)
 {
 Tri32& aTri = mTriVector[t];
 aTri.a = remap[indices[t * 3 + 0]];
 aTri.b = remap[indices[t * 3 + 1]];
 aTri.c = remap[indices[t * 3 + 2]];
 }

 mVertexVector.resize(0);

 WorldVertex wv;

 for (size_t t = 0; t < verts.size(); ++t)
 {
 const MeshMender::Vertex& ov = verts[t];

 wv.position = ov.pos;
 wv.normal = -ov.normal;
 wv.s = ov.s;
 wv.t = ov.t;
 wv.tangent = ov.tangent;
 wv.binormal = ov.binormal;

SDK-01905-001_v01 6
June 05

 NVMeshMender Demo User Guide

 if (wv.tangent == ZeroVector)
 {
 wv.tangent = XAxis;
 }
 if (wv.binormal == ZeroVector)
 {
 wv.binormal = ZAxis;
 }

 mVertexVector.push_back(wv);
 }

SDK-01905-001_v01 7
June 05

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2005 by NVIDIA Corporation. All rights reserved

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

	 Introduction
	What Is This?
	Using NVMeshMender
	Input
	Output
	 Smoothing Groups
	Interface
	theVerts
	theIndices
	 mappingNewToOldVert
	minNormalsCreaseCosAngle
	minTangentsCreaseCosAngle
	minBinormalsCreaseCosAngle
	weightNormalsByArea
	computeNormals
	respectExistingSplits
	fixCylindricalWrapping

