
User Guide

07/15/04 1

Advanced Shadow Mapping

This code sample is an implementation of several techniques for handling wide-area
fullscene directional light shadow mapping, including: simple orthographic
projection, Perspective Shadow Maps (using the improvements described in Simon
Kozlov's article in NVIDIA’s GPU Gems, “Perspective Shadow Maps: Care and
Feeding”), Light-Space Perspective Shadow Maps, and a variant of Trapezoidal
Shadow Maps.

Perspective shadow mapping (Stamminger & Drettakis, SIGGRAPH 2002) is
similar to Lance Williams' original shadow mapping; however, all objects rendered
into the shadow map are first transformed through the eye's view and projection
matrices, bringing them into post-projective space. This way, objects closer to the
viewer are larger than objects far away, so more texel resolution is given to them,
reducing perspective aliasing. Also, by operating in post-projective space,
directional lights can be handled in the same manner as spot lights (as directional
lights become point lights on the infinity plane in post-projective space).

Unfortunately, perspective shadow maps as originally presented had a number of
shortcomings, severely limiting their utility for interactive scenes:

 Lights from behind the viewer were handled by "virtually" shifting the shadow
camera (causing severe, instantaneous changes in effective shadow map
resolution)

 Shadow quality was dependent on the relative positions and directions of the
viewer and the light sources, creating temporal artifacts when anything in the
scene moves.

 Shadow quality was fantastic near the viewer (when a "virtual" shift wasn't
required), but severely degrades further away

 Obtaining optimal results for any light/viewer combination required substantial
CPU interaction.

Simon Kozlov's article introduces many improvements to the original perspective
shadow mapping algorithm (including an inverted projection matrix), that makes
perspective shadow maps quite a bit more practical for use in interactive situations.

Light-Space Perspective Shadow Maps (Wimmer, Eurographics 2004) are another
way to reformulate the original PSM projection, to avoid many of the singularity
artifacts that afflict post-projective space, as well as providing a better balance
between near and far shadow quality.

Hardware Practical Perspective Shadow Maps

07/15/04 2

Trapezoidal Shadow Maps (Martin, Eurographics 2004) are a third alternative, that
rely on 2D homogeneous operations that optimize the shadow map resolution
based on the shadow of the view frustum. Note that this code sample does not
implement TSMs exactly as described in the original paper; instead of finding the
actual trapezoid vertices, the algorithm in the code sample operates directly on the
edges. The resulting quality should be similar (if not identical).

This code sample was written using Microsoft DirectX™ 9 API, and requires a
GPU with hardware shadow map support (a.k.a., depth/stencil textures), and at
least pixel shader 1.1 support, or a GPU with R32F texture and pixel shader 2.0
support (GeForce 3+, Radeon 9500+).

Code Sample Features
 Low-angle viewer, with Znear=1m, Zfar=800m, approximating a generic

outdoor FPS-style scenario.
 Single directional lightsource, traveling in a line across the upper hemisphere
 40 shadow-casting objects located over a 2.56km^2 terrain, consisting of >2m

triangles
 All shadowing handled with a single 1536x1536 (code-changeable) shadow map

(note: on ps 1.x hardware, the shadowmap resolution is 1024x1024)
 View-box clipping and virtual-slideback implemented, to improve effective

shadowmap resolution
 User controls over a variety of PSM, LSPSM, and TSM-quality parameters.
 Ability to toggle between PSMs, LSPSMs, TSMs, and orthographic shadow

maps.

Shortcomings:
 Some fudge factors are used for the shadow camera's near and far clip planes in

the PSM code.
 Shadow acne problems are not handled when run on hardware that does not

support depth/stencil textures.
 Trapezoid space causes some extreme skewing of the Z axis, such that the

original authors suggest using pixel shader 2.0 depth replace to avoid shadow
acne artifacts. This code sample does not implement this.

Controls
Movement is performed using the standard right-handed FPS key bindings (WASD
+ mouse). To change the view direction, hold the left mouse button while moving
the mouse. Various rendering options are available via buttons and sliders in the
GUI.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

