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Abstract 

This document describes a method to 
simulate and render small to medium 
bodies of water on the GPU. The 
simulation involves integrating the 2D 
wave equation with a pixel shader. The 
simulation result is converted into 
geometry using Vertex Texture 
Fetch(VTF) in a vertex shader. Screen-
space reflection and refraction maps are 
combined using a Fresnel reflection term 
to give the water a realistic appearance. 
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Simulating Water 

The goal of the water simulation is to produce a realistic looking water surface with 
reasonable computation time. One potential way to simulate water would involve 
solving the Navier-Stokes equations for incompressible fluids. This would provide 
very realistic fluid mechanics for the water. Unfortunately, it is a fairly heavy-weight 
computation. A simpler and less costly way to simulate water is to solve the 2D 
Wave Equation on a uniform grid of points. This trades some realism for simplicity 
and speed. This paper describes the 2D Wave Equation technique. 

 

 

 

Equation 1: 2D Wave Equation 
 

 

The 2D Wave Equation is listed as Equation 1. The equation as written dictates that 
points will undulate up and down in the y-dimension. The c term is the speed that 
the wave travels. For a little intuition, the equation basically says that the 
acceleration of a point up and down is proportional to how quickly the steepness of 
the surface is changing. 

 

At this point, you might be asking, “how does one solve such an equation?” The 
GPU doesn’t really have a good understanding of what a partial derivative is; it really 
only directly understands spatial positions. If we integrate the left side of the 2D 
Wave Equation twice with respect to t, we end up with y (Equation 2). If we 
combine the computed y for a point with the known x and z positions of the point, 
we end up with a 3D position; this is something the GPU can understand. 

 

 

 

 

Equation 2: Integrating the 2D Wave Equation 
 

The next stumbling block is figuring out how to integrate the right hand side of the 
equation. There are many numerical integration techniques to choose from. Each 
has its advantages and disadvantages. For our application, we want stability and 
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speed. Stability is important because this differential equation is fairly stiff. The c2 
term on the right hand side of the equation lends itself to large values on the left 
hand side. This rules out simple integration techniques like Euler because of its 
instability. One could use a more robust integration technique like Runge-Kutta 
integration. Runge-Kutta has the draw-back that it involves computing intermediate 
terms and requires explicit storage of velocity. This is too expensive and complex 
for this application. Verlet integration is computationally inexpensive, stable and 
does not require the explicit storage of velocity. Unfortunately, I forgot the Verlet 
equation and couldn’t find a reference after 30 seconds of searching, so I recreated 
something similar to Verlet. 

 

If the only information you have about a particle is its position at t=0 [p(t0)], 
position at t=1 [p(t1)], acceleration at t=1 [a(t1)], some basic high school physics 
knowledge and a desire to compute the position at t=2 [p(t2)]  you can arrive at 
Equation 3. The derivation assumes that a constant step size is used; thus t1 – t0 = t2 
– t1 = tn+1 – tn. A non-constant step size could be used, but it muddies the algebra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation 3: Integration Derivation 
 

Equation 3 is very similar to the actual Verlet integration technique (Equation 4). It 
differs by a factor of 2 on the acceleration term. In the hacky world of game 
development, what’s a factor of 2 between friends? Especially considering that 
there’s always going to be some tweaking to make things look “right”. 

 

 

Equation 4: Verlet Integration Equation 
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So Equation 3 describes a technique for numerical integration. There’s one problem 
with it, it’s not as stable as it could be and it’s jittery (nothing ever comes to a rest). 
It needs a little bit of dampening to absorb some excess energy that results from the 
inexact numerical integration. This can be accomplished by reducing the inferred 
velocity by a constant factor (Equation 5). 

 

 

 

 

 

 

 

 

 

Equation 5: Integration with Dampening 
 

Now that we have an integration technique, we can almost integrate the right hand 
side of the 2D wave equation. There’s the final remaining problem of figuring out 
how to compute the partial derivatives on the right hand side of the wave equation. 
One way can do this is by fitting a surface to the simulation points. With a fitted 
surface, we can analytically derive an expression for the partial derivatives.  

 

So what kind of surface should we fit to the simulation grid points? We want 
something that is fast, simple and reasonably accurate. A collection of cubic splines 
meets our needs. We will simplify things by separating the problem into two 2D 
cubic splines. This leads us to Equation 6. With a cubic equation, we have to specify 
four constraints. Three obvious constraints are the position of the point and the 
positions of the neighboring points. The fourth constraint will come from forcing 
the derivative at the point to be parallel to the neighboring points. Figure 1 depicts 
the situation. Assuming that the derivative is parallel to the neighbor points and that 
we’re on a uniform unit grid, we can derive an equation for the 2nd partial derivatives 
(Equation 7). Using this partial derivative, the right hand side of the 2D wave 
equation becomes Equation 8. 
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Equation 6: Cubic Equation and Derivatives 
 

 

Figure 1: 2D Cubic Representation 
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Equation 7: Computing the 2nd Derivative 
 

 

 

 

 

 

 

 

 

Now that we have a simple analytical technique for calculating the right hand side of 
the wave equation and an integration technique, we can compute the actual y values 
for the grid points. Since we’ve made the assumption that the grid points are spaced 
at unit intervals (which probably isn’t the case in world space), we need to adjust the 
speed of the wave so it looks “right”. 
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Now that we have a simple iterative technique to solve the wave equation, we can 
have the GPU solve it for us. We store the heights of a uniform grid as a texture. 
We also keep track of the previous set of heights from the previous time step (also a 
texture). With our solving method and the height textures, we can compute the next 
value for the height textures. A simplified HLSL pixel shader code snippet that 
solves the wave equation is included below. 

 
  // Look up all the neighbor heights 
  height_x1y1 = tex2D(heightSampler, i.texCoord); 
  height_x0y1 = tex2D(heightSampler, i.texCoord + half2(-1/w, 0)); 
  height_x2y1 = tex2D(heightSampler, i.texCoord + half2( 1/w, 0)); 
  height_x1y0 = tex2D(heightSampler, i.texCoord + half2( 0,-1/h)); 
  height_x1y2 = tex2D(heightSampler, i.texCoord + half2( 0, 1/h)); 
 
  // Look up the height from the previous time step    
  previousHeight_x1y1 = tex2D(previousHeightSampler, i.texCoord); 
 
 
  // Compute the acceleration 
  acceleration = cSquared * (height_x0y1 + height_x2y1 + 
                             height_x1y0 + height_x1y2 – 
                             4.0 * height_x1y1); 
 
  // Do Verlet integration 
  newHeight = 2 * height_x1y1 – previousHeight_x1y1 + 
              0.5 * acceleration * dt * dt; 
 
 

The height textures are stored as 16 bit floating point (fp16) textures. 8 bit integer is 
inadequate. 16 bit integer precision might suffice, but it’s easier and better to use 
floating point. The VertexTextureFetchWater SDK sample stores a combined 
height / normal texture in a D3DFMT_A16B16G16R16 texture. The textures are 
combined to reduce the number of texture fetches in the vertex shader (which are 
relatively costly instructions). 

 

So now that have a height texture for the simulated water surface, what do we do 
with it? Shader Model 3.0 hardware supports texture fetches in the vertex shader (in 
VS 3.0). To render the water, we pass in a grid mesh for the water with valid x and z 
values. A texture fetch in the vertex shader looks up the y value and the normal. 
The vertex texture fetch effectively allows us to convert a texture into geometry 
(Illustrated in Figure 2). See our whitepaper on vertex textures for more details 
(ftp://download.nvidia.com/developer/Papers/2004/Vertex_Textures/Vertex_Te
xtures.pdf).  
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Figure 2 : Simulation Texture to Geometry 
 

It should be noted that GeForce 6 series hardware does not support the 
D3DFMT_A16B16G16R16 format in vertex shaders. This requires the program to 
blit the fp16 wave equation solution to an fp32 texture. You might ask, why not just 
render the wave equation solution to an fp32 texture in the first place? The answer 
is that it would be slower to render and fp32 render targets do not support blending 
or texture filtering. The lack of fp32 blending would make the control of the water 
more cumbersome. The lack of fp32 texture filtering would reduce the caustic 
rendering quality (discussed later). 

 

Now that we have a way to simulate the water surface, we need some way to control 
it. Luckily, this is very easy with Verlet integration. To make the water move, we 
simply have to render height displacements into the water height texture. The Verlet 
integration implicitly understands a velocity from the height displacement and reacts 
accordingly. On GeForce 6 series hardware, the height displacement is rendered 
directly into the height texture using fp16 blending. This is the natural and efficient 
way to do this. On hardware prior to the GeForce 6 series, this would not be 
possible due to the lack of support for fp16 alpha blending. Without blending, you 
would have to render height displacements to a secondary non fp16 render target. 
Then you would have to render a quad over the height texture to add the 
displacements in. This is less efficient and can suffer from precision problems. 

 

Moving onto performance, how fast is the water simulation? It seems like a lot of 
work. Fortunately, for the GPU it’s not much work at all. You’re basically rendering 
to a small (let’s say 128x128) render target with a simple pixel shader that does 
highly localized texture accesses. Intuitively, this doesn’t seem like much work for a 
modern GPU. A little bit of benchmarking “science” reveals that the frame rate on a 
GeForce 6800 GT changes from 263fps to 268fps after disabling the simulation. 
Disregarding the poor benchmarking technique, this implies that the simulation 
takes .07 milliseconds; that’s not long. You’re more limited by the vertex texture 
fetch performance than the actual simulation.  
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Rendering 

Now we have the ability to simulate the motion of the water. The next step is 
rendering it in a realistic manner. The simplest way to render water would be to 
render the surface as tinted alpha-blended geometry. This is very easy to do and very 
fast. Unfortunately, it looks a little too 1996. 

 

We’re going to use screen-space reflection and refraction maps to get a more 
realistic result. For the refraction map, assuming that the viewer is above water, we 
render everything that is under water in the scene. A user clip plane is used to 
roughly prevent geometry above the water’s surface from getting rendered into the 
refraction map (Oblique frustum clipping can be used in place of clip planes 
http://download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/Direc
t3D9/NearClipPlane.zip ). For the reflection map, assuming that we’re above water, 
we render everything above water after reflecting the viewer’s position under the 
water. If the viewer is under water, the refraction map contains the above water 
geometry and the reflection map contains the underwater geometry. An example of 
these maps is included Figure 3 assuming the viewer is above the water. The astute 
reader will notice that the skybox is not clipped with the water surface plane. This is 
done to avoid unsightly artifacts introduced by the fact that the water’s surface is 
not actually a plane. 

 

Figure 3 : Refraction and Reflection Maps 
 

After we have rendered reflection and refraction maps, how do we use them? The 
first thing we need to compute are texture coordinates for the water vertices. If we 

 Refraction Map                               Reflection Map 
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just directly take the screen spaces positions of the vertices and use them as texture 
coordinates (with a little scaling and biasing), we get something that just looks like 
we rendered the scene directly (if we just use the refraction map). We need to take 
into account that when light goes from one medium to another medium it refracts. 

 

Based upon the view vector, the surface normal of the water, some shaky 
assumptions about the geometry below the water and the indices of refraction for 
water and air, we can compute refraction map texture coordinates (Figure 4). 
Plugging in the view vector, normal and index of refraction ratios into the HLSL 
refract() function we get the refraction vector. Assuming that we know next to 
nothing about the geometry below the water’s surface, we can just walk a fixed 
length along the refraction vector. We compute our refraction map texture 
coordinate by projecting this point back into screenspace.  

 

 

 

 

 

 

 

 

 

 

 

The reflection map texture coordinates are computed in a similar manner.  The view 
space position is walked along the reflected ray by a constant amount and then re-
projected back into screen space. 

 

As just discussed, underwater and above water geometry are rendered to the 
refraction and reflection maps (respectively assuming an above water viewer). We 
run into problems with geometry that is inter-penetrating the water’s surface. If we 
use perturbed texture coordinate for this geometry, we see unsightly discontinuities 
at the water’s surface. To deal with this, geometry that inter-penetrates the water is 
rendered to a separate refraction map. In this demo the inter-penetrating geometry 
doesn’t have reflections; this was done as an aesthetic choice.  

 

Using perturbed texture coordinates, you can run into situations where more 
geometry is visible in the reflection or refraction than what was rendered to their 
respective maps. To compensate for this problem, the reflection maps and 
refraction maps are drawn with a larger field of view than normal. The texture 
coordinates are scaled down to reflect this overdraw. Sometimes, even with the 

TT’

Figure 4 : Texture Coordinate Generation 
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overdraw, there isn’t enough geometry in the refraction and reflection maps. To deal 
with this, the maps are faded out on the edges to eliminate very unsightly artifacts. 

 

Now that we have nice refraction and reflection terms, how do we combine them? 
Do we just add them together? No, that doesn’t look very natural. A better solution 
is to combine them using a simplified Fresnel Reflection Term 
(http://developer.nvidia.com/object/fresnel_wp.html ). The Fresnel Reflection 
term describes how reflection and refraction are combined for a material. Basically, 
the more directly you look at a material, the more refraction you see. At glancing 
angles, you see more reflection. Figure 5 demonstrates the Fresnel Reflection Term. 
On the left hand side, the viewer is at a glancing angle to the surface so the viewer 
will see a lot of reflection (white is 1). On the right hand side, the viewer is looking 
more directly through the water surface so she will mostly see refraction (black is 0). 

 

Figure 5 : Fresnel Reflection Term 
 

 

To enhance the underwater rendering, a simple caustics approximation was used. 
Anybody who has been underwater in a pool has noticed the undulating light on the 
bottom and sides of the pool. The correct simulation of caustics would be very 
difficult and slow on the GPU. We use a very rough approximation that gets a 
reasonable result. We assume that all the light hitting the bottom is directly refracted 
through the surface of the water. We use the water surface normal to look at how 
much sun we can see. On the GeForce 6 series GPUs we can do fp16 texture 
filtering so the caustics look smooth. Without fp16 texture filtering, the caustics 
look blocky (Figure 6).  
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Figure 6 : Caustics Rendering Quality 
 

Another phenomenon that anybody who has been underwater has experienced is 
total internal reflection.  At a certain critical angle when going from a material with a 
higher to lower index of refraction (from water to air), the solution to Snell’s Law 
(Equation 9) has no real solution. Since imaginary light is fairly difficult to see, you 
no longer see any refraction; hence you have total internal reflection. Total internal 
reflection is approximated by blending out the refraction term based upon the angle 
between the viewer and the water’s surface. 

 

 

 

 

Filtered Unfiltered

)cos()sin( irii nn θθ ⋅=⋅

Equation 9 : Snell's Law 
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Improvements 

The Verlet integration in this sample was implemented for clarity. A more realistic 
integrator would probably have to take into account variable time steps (unless you 
have a constant physics frequency). A variable time step involves re-solving the 
integration equation (Equation 3) without the assumption that the time steps are the 
same size. 

 

As for performance improvement suggestions, you could elect to only render 
refraction and reflection maps when the viewer moves. You could also render lower 
resolution reflection and refraction maps when the viewer is moving; when the 
viewer stops you can render the full resolution maps. It would also be an option to 
render only important geometry at low resolution LODs to the refraction and 
reflection maps when the viewer is moving. When running at a high frame rate, you 
have the option to render the refraction and reflection maps every N frames. This 
will result in objectionable tearing at lower frame rates or when very rapid viewer 
movement is occurring. 

 

This technique could be extended to larger bodies of water. You could keep a few 
water simulations active depending on the viewer’s position. When the viewer 
moves beyond a certain distance from a patch of water, the water could reduce its 
simulation frequency or stop simulation entirely. The technique could also extend to 
large bodies by using a non-uniform simulation grid. Suppose you are on an island, 
you could use high grid detail near the shore. Farther away from the shore, you 
could use a lower density mesh. This would require revisiting the Verlet integration 
equations (Equation 3) and throwing away the assumptions about the uniform grid. 

 

The technique could have a fallback for non Shader Model 3.0 hardware by simply 
not doing the vertex texture fetch; the water’s surface would remain flat. The texture 
coordinate generation is similar to virtual displacement mapping or offset mapping 
or parallax mapping or whatever you want to call it, so it would probably still have a 
reasonable appearance.
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