

SDK White Paper

Vertex Texture Fetch Water

October 19, 2004

WP 1
11/17/2004

Abstract

This document describes a method to
simulate and render small to medium
bodies of water on the GPU. The
simulation involves integrating the 2D
wave equation with a pixel shader. The
simulation result is converted into
geometry using Vertex Texture
Fetch(VTF) in a vertex shader. Screen-
space reflection and refraction maps are
combined using a Fresnel reflection term
to give the water a realistic appearance.

Jeremy Zelsnack

sdkfeedback@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

WP 2
11/17/2004

Simulating Water

The goal of the water simulation is to produce a realistic looking water surface with
reasonable computation time. One potential way to simulate water would involve
solving the Navier-Stokes equations for incompressible fluids. This would provide
very realistic fluid mechanics for the water. Unfortunately, it is a fairly heavy-weight
computation. A simpler and less costly way to simulate water is to solve the 2D
Wave Equation on a uniform grid of points. This trades some realism for simplicity
and speed. This paper describes the 2D Wave Equation technique.

Equation 1: 2D Wave Equation

The 2D Wave Equation is listed as Equation 1. The equation as written dictates that
points will undulate up and down in the y-dimension. The c term is the speed that
the wave travels. For a little intuition, the equation basically says that the
acceleration of a point up and down is proportional to how quickly the steepness of
the surface is changing.

At this point, you might be asking, “how does one solve such an equation?” The
GPU doesn’t really have a good understanding of what a partial derivative is; it really
only directly understands spatial positions. If we integrate the left side of the 2D
Wave Equation twice with respect to t, we end up with y (Equation 2). If we
combine the computed y for a point with the known x and z positions of the point,
we end up with a 3D position; this is something the GPU can understand.

Equation 2: Integrating the 2D Wave Equation

The next stumbling block is figuring out how to integrate the right hand side of the
equation. There are many numerical integration techniques to choose from. Each
has its advantages and disadvantages. For our application, we want stability and

)(2

2

2

2
2

2

2

z
y

x
yc

t
y

∂
∂

+
∂
∂

=
∂
∂

∫

∫

=
∂
∂

∂
∂

=
∂
∂

ydt
t
y

t
ydt

t
y
2

2

 Vertex Texture Fetch Water

11/17/2004 3

speed. Stability is important because this differential equation is fairly stiff. The c2
term on the right hand side of the equation lends itself to large values on the left
hand side. This rules out simple integration techniques like Euler because of its
instability. One could use a more robust integration technique like Runge-Kutta
integration. Runge-Kutta has the draw-back that it involves computing intermediate
terms and requires explicit storage of velocity. This is too expensive and complex
for this application. Verlet integration is computationally inexpensive, stable and
does not require the explicit storage of velocity. Unfortunately, I forgot the Verlet
equation and couldn’t find a reference after 30 seconds of searching, so I recreated
something similar to Verlet.

If the only information you have about a particle is its position at t=0 [p(t0)],
position at t=1 [p(t1)], acceleration at t=1 [a(t1)], some basic high school physics
knowledge and a desire to compute the position at t=2 [p(t2)] you can arrive at
Equation 3. The derivation assumes that a constant step size is used; thus t1 – t0 = t2
– t1 = tn+1 – tn. A non-constant step size could be used, but it muddies the algebra.

Equation 3: Integration Derivation

Equation 3 is very similar to the actual Verlet integration technique (Equation 4). It
differs by a factor of 2 on the acceleration term. In the hacky world of game
development, what’s a factor of 2 between friends? Especially considering that
there’s always going to be some tweaking to make things look “right”.

Equation 4: Verlet Integration Equation

2
112

2
1112

2
1112

2
1

1
12

0112

2
12112

01

1
12

2
12112112

01

1
1

)(
2
1)()(2)(

)(
2
1)()()()(

)(
2
1)()()()(

)(
2
1)()()()(

)()(

)()(
2
1)()()()()(

)()(
2
1)()()()(

)()()(

htatptptp

htatptptptp

htatptptptp

htah
h

tptptptp

tttth

tttatt
tt
tptptptp

tttatttvtptp

tt
tptptv

o

o

o

o

o

o

⋅⋅+−⋅=

⋅⋅+−+=

⋅⋅+−+=

⋅⋅+⋅
−

+=

−=−=

−⋅⋅+−⋅
−
−

+=

−⋅⋅+−⋅+=

−
−

=

2
112)()()(2)(htatptptp o ⋅+−⋅=

 Vertex Texture Fetch Water

11/17/2004 4

So Equation 3 describes a technique for numerical integration. There’s one problem
with it, it’s not as stable as it could be and it’s jittery (nothing ever comes to a rest).
It needs a little bit of dampening to absorb some excess energy that results from the
inexact numerical integration. This can be accomplished by reducing the inferred
velocity by a constant factor (Equation 5).

Equation 5: Integration with Dampening

Now that we have an integration technique, we can almost integrate the right hand
side of the 2D wave equation. There’s the final remaining problem of figuring out
how to compute the partial derivatives on the right hand side of the wave equation.
One way can do this is by fitting a surface to the simulation points. With a fitted
surface, we can analytically derive an expression for the partial derivatives.

So what kind of surface should we fit to the simulation grid points? We want
something that is fast, simple and reasonably accurate. A collection of cubic splines
meets our needs. We will simplify things by separating the problem into two 2D
cubic splines. This leads us to Equation 6. With a cubic equation, we have to specify
four constraints. Three obvious constraints are the position of the point and the
positions of the neighboring points. The fourth constraint will come from forcing
the derivative at the point to be parallel to the neighboring points. Figure 1 depicts
the situation. Assuming that the derivative is parallel to the neighbor points and that
we’re on a uniform unit grid, we can derive an equation for the 2nd partial derivatives
(Equation 7). Using this partial derivative, the right hand side of the 2D wave
equation becomes Equation 8.

2
112

2
112

2
1112

2
1112

)(
2
1)(99.0)(99.1)(

99.0

)(
2
1)()()1()(

)(
2
1)]()([)()(

)(
2
1)()()(

htatptptp

htatptptp

htatptptptp

htahtvtptp

o

o

o

⋅⋅+⋅+⋅=

=

⋅⋅+⋅+⋅+=

⋅⋅+−⋅+=

⋅⋅+⋅⋅+=

α

αα

α

α

 Vertex Texture Fetch Water

11/17/2004 5

Equation 6: Cubic Equation and Derivatives

Figure 1: 2D Cubic Representation

10

21
2

0

32
2

1
3

0

26)(''
23)('

)(

cxcxf
cxcxcxf
cxcxcxcxf

⋅+⋅⋅=
+⋅⋅+⋅⋅=

+⋅+⋅+⋅=

 Vertex Texture Fetch Water

11/17/2004 6

Equation 7: Computing the 2nd Derivative

Now that we have a simple analytical technique for calculating the right hand side of
the wave equation and an integration technique, we can compute the actual y values
for the grid points. Since we’ve made the assumption that the grid points are spaced
at unit intervals (which probably isn’t the case in world space), we need to adjust the
speed of the wave so it looks “right”.

0111

0111

3111

3111

1

02

13210

03

13210

11

1

0

1

10

21
2

0

32
2

1
3

0

22)0(''

)(
2
1

)(
2
1

22
2)0(''

')0('
)1(
)0(
)1(

)(
2
1)0('

)1(
)0(
)1(

26)(''
23)('

)(

fffcf

fffc

cffc

ccff
cf
fcf

fccccf
fcf

fccccf

fff

ff
ff
ff

cxcxf
cxcxcxf
cxcxcxcxf

⋅−+=⋅=

−+⋅=

−+⋅=

⋅+⋅=+
⋅=
==

=+++=
==

=+−+−=−

−⋅=

=
=
=−

⋅+⋅⋅=
+⋅⋅+⋅⋅=

+⋅+⋅+⋅=

−

−

−

−

−

−

−

)4()(

])2[]2([)(

0,01,01,00,10,1
2

2

2

2

2
2

1,01,00,00,10,1
2

2

2

2

2
2

yyyyyc
z
y

x
yc

yyyyyc
z
y

x
yc

⋅−+++=
∂
∂

+
∂
∂

−++⋅−+=
∂
∂

+
∂
∂

−−

−−

Equation 8: Computing the Right Hand Side

 Vertex Texture Fetch Water

11/17/2004 7

Now that we have a simple iterative technique to solve the wave equation, we can
have the GPU solve it for us. We store the heights of a uniform grid as a texture.
We also keep track of the previous set of heights from the previous time step (also a
texture). With our solving method and the height textures, we can compute the next
value for the height textures. A simplified HLSL pixel shader code snippet that
solves the wave equation is included below.

 // Look up all the neighbor heights
 height_x1y1 = tex2D(heightSampler, i.texCoord);
 height_x0y1 = tex2D(heightSampler, i.texCoord + half2(-1/w, 0));
 height_x2y1 = tex2D(heightSampler, i.texCoord + half2(1/w, 0));
 height_x1y0 = tex2D(heightSampler, i.texCoord + half2(0,-1/h));
 height_x1y2 = tex2D(heightSampler, i.texCoord + half2(0, 1/h));

 // Look up the height from the previous time step
 previousHeight_x1y1 = tex2D(previousHeightSampler, i.texCoord);

 // Compute the acceleration
 acceleration = cSquared * (height_x0y1 + height_x2y1 +
 height_x1y0 + height_x1y2 –
 4.0 * height_x1y1);

 // Do Verlet integration
 newHeight = 2 * height_x1y1 – previousHeight_x1y1 +
 0.5 * acceleration * dt * dt;

The height textures are stored as 16 bit floating point (fp16) textures. 8 bit integer is
inadequate. 16 bit integer precision might suffice, but it’s easier and better to use
floating point. The VertexTextureFetchWater SDK sample stores a combined
height / normal texture in a D3DFMT_A16B16G16R16 texture. The textures are
combined to reduce the number of texture fetches in the vertex shader (which are
relatively costly instructions).

So now that have a height texture for the simulated water surface, what do we do
with it? Shader Model 3.0 hardware supports texture fetches in the vertex shader (in
VS 3.0). To render the water, we pass in a grid mesh for the water with valid x and z
values. A texture fetch in the vertex shader looks up the y value and the normal.
The vertex texture fetch effectively allows us to convert a texture into geometry
(Illustrated in Figure 2). See our whitepaper on vertex textures for more details
(ftp://download.nvidia.com/developer/Papers/2004/Vertex_Textures/Vertex_Te
xtures.pdf).

 Vertex Texture Fetch Water

11/17/2004 8

Figure 2 : Simulation Texture to Geometry

It should be noted that GeForce 6 series hardware does not support the
D3DFMT_A16B16G16R16 format in vertex shaders. This requires the program to
blit the fp16 wave equation solution to an fp32 texture. You might ask, why not just
render the wave equation solution to an fp32 texture in the first place? The answer
is that it would be slower to render and fp32 render targets do not support blending
or texture filtering. The lack of fp32 blending would make the control of the water
more cumbersome. The lack of fp32 texture filtering would reduce the caustic
rendering quality (discussed later).

Now that we have a way to simulate the water surface, we need some way to control
it. Luckily, this is very easy with Verlet integration. To make the water move, we
simply have to render height displacements into the water height texture. The Verlet
integration implicitly understands a velocity from the height displacement and reacts
accordingly. On GeForce 6 series hardware, the height displacement is rendered
directly into the height texture using fp16 blending. This is the natural and efficient
way to do this. On hardware prior to the GeForce 6 series, this would not be
possible due to the lack of support for fp16 alpha blending. Without blending, you
would have to render height displacements to a secondary non fp16 render target.
Then you would have to render a quad over the height texture to add the
displacements in. This is less efficient and can suffer from precision problems.

Moving onto performance, how fast is the water simulation? It seems like a lot of
work. Fortunately, for the GPU it’s not much work at all. You’re basically rendering
to a small (let’s say 128x128) render target with a simple pixel shader that does
highly localized texture accesses. Intuitively, this doesn’t seem like much work for a
modern GPU. A little bit of benchmarking “science” reveals that the frame rate on a
GeForce 6800 GT changes from 263fps to 268fps after disabling the simulation.
Disregarding the poor benchmarking technique, this implies that the simulation
takes .07 milliseconds; that’s not long. You’re more limited by the vertex texture
fetch performance than the actual simulation.

 Vertex Texture Fetch Water

11/17/2004 9

Rendering

Now we have the ability to simulate the motion of the water. The next step is
rendering it in a realistic manner. The simplest way to render water would be to
render the surface as tinted alpha-blended geometry. This is very easy to do and very
fast. Unfortunately, it looks a little too 1996.

We’re going to use screen-space reflection and refraction maps to get a more
realistic result. For the refraction map, assuming that the viewer is above water, we
render everything that is under water in the scene. A user clip plane is used to
roughly prevent geometry above the water’s surface from getting rendered into the
refraction map (Oblique frustum clipping can be used in place of clip planes
http://download.nvidia.com/developer/SDK/Individual_Samples/DEMOS/Direc
t3D9/NearClipPlane.zip). For the reflection map, assuming that we’re above water,
we render everything above water after reflecting the viewer’s position under the
water. If the viewer is under water, the refraction map contains the above water
geometry and the reflection map contains the underwater geometry. An example of
these maps is included Figure 3 assuming the viewer is above the water. The astute
reader will notice that the skybox is not clipped with the water surface plane. This is
done to avoid unsightly artifacts introduced by the fact that the water’s surface is
not actually a plane.

Figure 3 : Refraction and Reflection Maps

After we have rendered reflection and refraction maps, how do we use them? The
first thing we need to compute are texture coordinates for the water vertices. If we

 Refraction Map Reflection Map

 Vertex Texture Fetch Water

11/17/2004 10

just directly take the screen spaces positions of the vertices and use them as texture
coordinates (with a little scaling and biasing), we get something that just looks like
we rendered the scene directly (if we just use the refraction map). We need to take
into account that when light goes from one medium to another medium it refracts.

Based upon the view vector, the surface normal of the water, some shaky
assumptions about the geometry below the water and the indices of refraction for
water and air, we can compute refraction map texture coordinates (Figure 4).
Plugging in the view vector, normal and index of refraction ratios into the HLSL
refract() function we get the refraction vector. Assuming that we know next to
nothing about the geometry below the water’s surface, we can just walk a fixed
length along the refraction vector. We compute our refraction map texture
coordinate by projecting this point back into screenspace.

The reflection map texture coordinates are computed in a similar manner. The view
space position is walked along the reflected ray by a constant amount and then re-
projected back into screen space.

As just discussed, underwater and above water geometry are rendered to the
refraction and reflection maps (respectively assuming an above water viewer). We
run into problems with geometry that is inter-penetrating the water’s surface. If we
use perturbed texture coordinate for this geometry, we see unsightly discontinuities
at the water’s surface. To deal with this, geometry that inter-penetrates the water is
rendered to a separate refraction map. In this demo the inter-penetrating geometry
doesn’t have reflections; this was done as an aesthetic choice.

Using perturbed texture coordinates, you can run into situations where more
geometry is visible in the reflection or refraction than what was rendered to their
respective maps. To compensate for this problem, the reflection maps and
refraction maps are drawn with a larger field of view than normal. The texture
coordinates are scaled down to reflect this overdraw. Sometimes, even with the

TT’

Figure 4 : Texture Coordinate Generation

 Vertex Texture Fetch Water

11/17/2004 11

overdraw, there isn’t enough geometry in the refraction and reflection maps. To deal
with this, the maps are faded out on the edges to eliminate very unsightly artifacts.

Now that we have nice refraction and reflection terms, how do we combine them?
Do we just add them together? No, that doesn’t look very natural. A better solution
is to combine them using a simplified Fresnel Reflection Term
(http://developer.nvidia.com/object/fresnel_wp.html). The Fresnel Reflection
term describes how reflection and refraction are combined for a material. Basically,
the more directly you look at a material, the more refraction you see. At glancing
angles, you see more reflection. Figure 5 demonstrates the Fresnel Reflection Term.
On the left hand side, the viewer is at a glancing angle to the surface so the viewer
will see a lot of reflection (white is 1). On the right hand side, the viewer is looking
more directly through the water surface so she will mostly see refraction (black is 0).

Figure 5 : Fresnel Reflection Term

To enhance the underwater rendering, a simple caustics approximation was used.
Anybody who has been underwater in a pool has noticed the undulating light on the
bottom and sides of the pool. The correct simulation of caustics would be very
difficult and slow on the GPU. We use a very rough approximation that gets a
reasonable result. We assume that all the light hitting the bottom is directly refracted
through the surface of the water. We use the water surface normal to look at how
much sun we can see. On the GeForce 6 series GPUs we can do fp16 texture
filtering so the caustics look smooth. Without fp16 texture filtering, the caustics
look blocky (Figure 6).

 Vertex Texture Fetch Water

11/17/2004 12

Figure 6 : Caustics Rendering Quality

Another phenomenon that anybody who has been underwater has experienced is
total internal reflection. At a certain critical angle when going from a material with a
higher to lower index of refraction (from water to air), the solution to Snell’s Law
(Equation 9) has no real solution. Since imaginary light is fairly difficult to see, you
no longer see any refraction; hence you have total internal reflection. Total internal
reflection is approximated by blending out the refraction term based upon the angle
between the viewer and the water’s surface.

Filtered Unfiltered

)cos()sin(irii nn θθ ⋅=⋅

Equation 9 : Snell's Law

 Vertex Texture Fetch Water

11/17/2004 13

Improvements

The Verlet integration in this sample was implemented for clarity. A more realistic
integrator would probably have to take into account variable time steps (unless you
have a constant physics frequency). A variable time step involves re-solving the
integration equation (Equation 3) without the assumption that the time steps are the
same size.

As for performance improvement suggestions, you could elect to only render
refraction and reflection maps when the viewer moves. You could also render lower
resolution reflection and refraction maps when the viewer is moving; when the
viewer stops you can render the full resolution maps. It would also be an option to
render only important geometry at low resolution LODs to the refraction and
reflection maps when the viewer is moving. When running at a high frame rate, you
have the option to render the refraction and reflection maps every N frames. This
will result in objectionable tearing at lower frame rates or when very rapid viewer
movement is occurring.

This technique could be extended to larger bodies of water. You could keep a few
water simulations active depending on the viewer’s position. When the viewer
moves beyond a certain distance from a patch of water, the water could reduce its
simulation frequency or stop simulation entirely. The technique could also extend to
large bodies by using a non-uniform simulation grid. Suppose you are on an island,
you could use high grid detail near the shore. Farther away from the shore, you
could use a lower density mesh. This would require revisiting the Verlet integration
equations (Equation 3) and throwing away the assumptions about the uniform grid.

The technique could have a fallback for non Shader Model 3.0 hardware by simply
not doing the vertex texture fetch; the water’s surface would remain flat. The texture
coordinate generation is similar to virtual displacement mapping or offset mapping
or parallax mapping or whatever you want to call it, so it would probably still have a
reasonable appearance.

 Vertex Texture Fetch Water

11/17/2004 14

Bibliography

Dudash, B., “Custom Clip Plane.”

http://download.nvidia.com/developer/SDK/Individual_Samples/samples.html#
NearClampPlane

Gerasimov, G., Fernando, F., Green, S. “Shader Model 3.0 Using Vertex Textures.”

ftp://download.nvidia.com/developer/Papers/2004/Vertex_Textures/Vertex_Tex
tures.pdf

Guardado, J., Sanchez-Crespo, D. (2004). Rendering Water Caustics. In R.
Fernando, GPU Gems: Programming Techniques, Tips And Tricks, Ch. 2. Aw
Professional.

Wloka, M., “Fresnel Reflection.” http://developer.nvidia.com/attach/6664

The collective consciousness of computer graphics.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS." NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

