
User Guide
TexturePerformancePBO Demo

The TexturePerformancePBO Demo serves two purposes:

1. It allows developers to experiment with various combinations of texture
transfer methods for texture upload (to the GPU) and readback.
Performance implications of the various combinations can be explored
interactively.

2. The demo code can be used as an example implementation on how to use
the EXT_pixel_buffer_object extension in applications to perform fast
DMA transfers of pixel data to and from the GPU. The simple structure of
the demo allows developers to easily extend the application to add their
own performance experiments.

Class Design

Core Functionality

At the core of the TexturePerformancePBO demo three classes work together to
download images to the GPU, render/process these images, and read the processed
data back to system memory: Scene, ImageSource, and ImageSink.

Scene

-*_pImageSource:ImageSource
-*_pImageSink:ImageSink
-*_pShader:Shader

+render():void
+setImageSource(pImageSource:pImageSource):void
+setImageSink(pImageSink:ImageSink):void
+setShader(pShader:Shader):void

ImageSource

-_oImage:Image

+setImage(rImage:Image&):void
+image():Image
+pushNewFrame():unsigned int
+bind():void
+unbind():void

ImageSink

+pull(nPositionX:uint,nPositionY:uint):unsigned int

Shader

#_szName:const char *
#_hProgram:GLuint
#_pSliders:ParamListGL

+bind():void
+unbind():void
#load(zProgram:const char *):void

ImageSource provides the texture to be rendered. Its bind() function binds the input
image to the current OpenGL texture unit. Before calling bind() the
pushNewFrame() method should be called to make sure a texture is actually
available. pushNewFrame() returns the number of bytes that were transferred
between system memory and the GPU.

Scene renders a screen-aligned quad to the frame buffer. The render() method
performs a pushNewFrame() on the Scene’s ImageSource and binds the new
texture. Scene uses its Shader to render the texture to the frame buffer. A Shader
might for example perform gamma correction, enhance contrast, etc. After
rendering is complete the Scene calls pull() on its ImageSink.

ImageSink reads data from the frame buffer back to system memory. The pull()
method returns the number of bytes transferred from the GPU to system memory.

ImageSource and ImageSink both are abstract base classes. The various classes
derived from ImageSource and ImageSink implement different transfer
mechanisms.

ImageSource

-_oImage:Image

+setImage(rImage:Image&):void
+image():Image
+pushNewFrame():unsigned int
+bind():void
+unbind():void

ImageSink

+pull(nPositionX:uint,nPositionY:uint):unsigned int

ImagePusher

-_hTexture:GLuint
-_nPixelFormatGL:int
-_nFrameCounter:uint

+frameCounter():uint
+resetFrameCounter():void
#imprintPixelData(pData:void*,nImprint:uint):void

StaticImage ImagePusherPBO ImagePusherDoublePBO

ImageSinkDummy

ImagePuller

ImagePullerPBO

ImageSource has four concrete implementations:

1. ImagePusher which uses normal glTextureSubImage() to upload texture
data to the GPU.

2. StaticImage which creates a texture and uploads it only once. Subsequent
calls to pushNewFrame() will not cause any new data to be transferred to
the GPU.

3. ImagePusherPBO which uses the EXT_pixel_buffer_object to repeatedly
transfer new texture content to the GPU (dynamic texture usage and write
only modification).

4. ImagePusherDoublePBO uses two separate pixel-buffer objects, one to
kick of a new transfer and one to be used for rendering. This should further
decouple data transfer and rendering and yield better performance than just
a single PBO.

ImageSink has three concrete implementations:

1. ImageSinkDummy which doesn’t read back any data from the GPU.

2. ImagePuller which uses glReadPixels() in a straight forward manner to
transfer the frame-buffer content back from the GPU into system memory.

3. ImagePullerPBO which uses a pixel-buffer object to read frame-buffer data
asynchronously from the GPU.

Supported Image Formats

Image and texture formats can have a massive impact on the performance of image
transfer to- and from the GPU. The reason is that in case of a format mismatch
OpenGL needs to perform a time-consuming format conversion.
In order for a developer to be able to experiment with the different combinations it
is necessary for this demo to support at least the commonly used formats. The
external formats (i.e. formats of images stored in system memory) supported are
16bit floating point RGB and RGBA, 8 bit unsigned char RGB, RGBA, BGR, and
BGRA. Texture formats supported (i.e. format of how images are stored on the
GPU) are 16 bit floating point RGB and RGBA, 8 bit unsigned integer RGB, and
RGBA.
Since readback is only performed on an 8 bit RGBA frame-buffer the different
formats are only supported for texture upload to the GPU. The two classes involved
are the ImageSource and Image.

Image

#_nWidth:uint
#_nHeight:uint
#_ePixelFormat:tePixelFormat
#_pData:void *

+setData(nWidth:uint,nHeight:uint,ePixelFormat:tePixelFormat,pData:const void *):void
+imageDataSize():uint
+data():const void *
+pixelFormat():tePixelFormat
+imprintPixelData(nImprint:uint):void
+glInternalTextureFormat():GLint
+glTextureFormat():GLenum
+glTextureType():GLenum
+ConvertPixelFormat(ePixelFormat:tePixelFormat,rImage:const Image&):Image

<< enumeration >>
Image::tePixelFormat

+FP16_RGB_PIXEL:int
+FP16_RGBA_PIXEL:int
+FX8_RGB_PIXEL:int
+FX8_RGBA_PIXEL:int
+FX8_BGR_PIXEL:int
+FX8_BGRA_PIXEL:int
+UNDEFINED_PIXEL:int

Image knows about its image format. In order for setData() to work correctly the
right image format enumerator needs to be specified. Based on this information
glTextureFormat() and glTextureType() return the correct OpenGL tokens needed
for texture creation using glTexImage(). glInternalTextureFormat() returns the
internal texture format best suited for this image’s data format.
ImagePusher itself contains an option to define an internal image format to be used
for GPU upload. If the ImagePusher finds that the user set a specific internal
format than this format it used for the texture upload. Otherwise ImagePusher uses
the format returned by Image::glInternalTextureFormat().
For easy creation of various image formats Image also contains a static conversion
method ConvertPixelFormat. This method takes an Image and a target format and
returns a copy of this image in the new format. In the demo app this method is used
to create copies of the sample image in all the different storage formats supported
by Image. When the user changes to a new format all the different incarnations of
ImageSources are set up so that they use this image with the new format.
An other feature of the image class is the imprintPixelData() method. This method
imprints a binary time stamp (nImprint) in the lower left corner of the image. Note:
This happens in system memory. The ImagePushers increments this time stamp
before each new upload of an image. When the application runs and images
continuously get uploaded and rendered this shows the progress and also proves
that the images in fact get uploaded between each render pass.

Demo App in Action
Here is a screen shot of the TexturePerformancePBO demo with the different
screen elements magnified. The application info area shows all the options used for
texture download, readback, shader, image format, internal texture format, and the
current transfer rates upstream, downstream, and the sum.
The shader parameter area allows the user to interactively manipulate shading. To
change a parameter the up- and down-arrow keys are used to cycle through the
parameter list. The active parameter is displayed in white. The parameter value is
changed using the left- and right-arrow keys.
In the right bottom corner the frames “time stamp” is displayed as a binary pattern.
The time stamp is imprinted on the image in system memory before it is transferred
to the GPU. When “Static Image” is selected as image source (which only uploads
the texture to the GPU once) no time stamp shows up. In this case the download
rate will also show up as zero since no data is transferred to the GPU.
Setting different image sources, sinks, etc. is accomplished via a GLUT menu. Right
click brings up the menu.

One thing shown in the image above has not yet been mentioned: The “Dummy
Workload”. When using PBOs for read pixels ideally these data transfers are
performed as DMA transfers by the memory controller and thus only burn a
minimum amount of CPU cycles. Since the demo app is very light-weight in terms
of CPU in the first place there is hardly any improvement visible when using
asynchronous PBO read-backs instead of normal read-backs. What enabling the
dummy workload does is to perform some dummy CPU stuff after issuing the
readback call but before accessing the texture. Since the DMA transfer happens
parallel to the CPU working the performance improves compared to the normal
read-back that consumes the CPU for transfer and executes the dummy workload
after finishing the read-back.

Interesting Experiments
The most interesting thing for most developers is most likely to find out what
combination of internal and external format and what technique gives them
maximum texture transfer speeds.
One of the general rules is that the pixel size should be an integer multiple of 32bits.
For all other cases some kind of data-padding occurs slowing down transfer. The
other issue is the order of the color channels. NVIDIA cards are build to match the
Microsoft GDI pixel layout for the 8 bit per channel formats. This pixel format in
fact is BGRA in system memory. When colors in RGBA format are transferred
these need to be swizzled during transfer.

Maximum download speeds for 8 bit per channel images are achieved using the
BGRA image format and RGBA as internal format. Switching through the different
ImagePushers reveals that PBO is necessary for maximum transfer rates.

On lower end graphics cards it is also good to check, what the maximum render rate
of the card is to make sure that image transfer is in fact the bottleneck and not the
display of the image. Setting the image source to static image, image sink to dummy
basically results in the GPU rendering the image as fast as possible (v-sync should
be set to always off in the NVIDIA control panel). Switching the simple and the
gamma shader should demonstrate that the shader has a pretty big impact on
rendering performance. If the FPS (frames-per-second) is substantially higher than
the maximum frame rate achieved with texture transfers it is clear that the shader
will not become the bottleneck.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 NVIDIA Corporation. All rights reserved

