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Abstract 

Fake Volumetric lines 
This whitepaper and corresponding SDK sample demonstrate a technique to render 
volumetric lines. The technique is using a way to render quads which are able to fake a 
volume in whatever orientation it will be. This effect need to perform some computation in 
the Vertex shader more than in the fragment shader. The demo is coded by using Cg and 
OpenGL API. 
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Introduction 

 

  

Rendering simple primitives is part of many scenes in games or professional applications.  

In a game, laser beam and specific wireframe objects could be rendered with this while in 
CAD/DCC applications, these lines could help in highlighting some objects. 

Direct3D doesn’t have any line primitives while on OpenGL API, line is really part of the 
API. OpenGL is even able to render more-than-one pixel thick line. The historical reason 
for that is coming from the fact that CAD systems are great line-primitive customers. 

On our NVIDIA chips, lines are processed in different way, depending on the family you’re 
using : on GeForce family, lines won’t be anti-aliased and the two edges will be 
approximated depending upon the orientation of the line; on Quadro family, lines are anti-
aliased and edges are conforming to a 90 degrees angle.  

However, even though OpenGL is able to render lines, it doesn’t perform what we want to 
do here: no perspective applied to the line and not texturing available. 

This effect is not made to replace OpenGL line drawing, but to show how to render a 
perspective-deformed, thick and glowing line.  

Although the glowing is representative of this effect, we could imagine using other rendering 
styles. But the glowing effect is interesting because it allows enforcing the line without any 
expensive post-processing (like Gaussian filtering). 

Since we are dealing with a fake volume, there is also the question of how to render the line 
when it is facing you. This problem is addressed by offsetting the clip-space coordinates and 
by playing with a set of 16 textures, which will slightly change from a profile shape to a 
facing shape, depending on the line orientation.  
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The Technique 

First steps : send the 
vertices 

The basic idea is to feed the API with a list of quads representing lines. What you want to do 
is send the starting point A and the endpoint B. But as it is a quad, we will send two starting 
points (A and A’), and two ending points (B and B’). 

The interest of such an effect is to ask the GPU to do as much as possible so that the CPU 
(and you) wouldn’t have to care too much of the details. So, instead if computing A, A’, B 
and B’ on the CPU, we will simply send two time A and two times B then ask the vertex 
shader to do the offset computation by itself. 

 
Fig.1 
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However, even though you want to send A and B, you’ll still need to feed the vertex shader 
with offset and line direction to make the quad look like what we want. We will simply pass 
these data by using other attributes than vertex coordinates (point size attribute, texture 
coordinate…). 

For a single line, we must draw a quad made of four sets of the following attributes : 

struct app2vert 
 { 
 float4 startpos : POSITION; 
 float4 endpos : PSIZE; 
 float4 color : DIFFUSE; 
 float4 param8 : TEXCOORD0; 
 float3 param9 : TEXCOORD1; 
 }; 

 Endpos.xyz is needed to allow the vertex shader to compute the line direction while 
processing a single vertex of the quad : For the 2 vertex quad A, startpos will be A 
coordinate and endpos will be B coordinate.  

 Param8 contains some offsets that we’ll talk later. 
 Param9 contains the thickness sizes 

A line-thickness must be computed on a plane perpendicular to the viewing direction. 
Starting from the 2 points A and B of the line, we must find four points by shifting A and B 
onto a perpendicular plane to the viewing direction. On the other hand we want the line 
thickness to be changing depending on the perspective. 

We will project the line onto the screen-space (x,y and z divided by w), then guess what is its 
direction, compute offsets but we will add these offsets into the clip-space (before we divide 
by w). 

 
Fig. 2 

 

These first considerations would lead to this first draft of Vertex shader Cg code : 

1. Project in clip-space the start and end points : 
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posstart = mul(ModelViewProj, IN.startpos); 
posend = mul(ModelViewProj, IN.endpos); 

2. Project these points in the Screen-space (we only need x and y): 

float2 startpos2d = posstart.xy / posstart.w; 
float2 endpos2d = posend.xy / posend.w; 

3. Compute the 2d line direction : 

float2 linedir2d = normalize(startpos2d - endpos2d); 

4. Shift vertex for thickness perpendicular to the line direction in perspective space : 

linedir2d = IN.param9.x * linedir2d; 
posstart.x = posstart.x + linedir2d.y; // vertical x 
posstart.y = posstart.y - linedir2d.x; // vertical y 
OUT.hpos = posstart; 

IN.param9.x (offset y in figure 1) contains the offset value that we passed to the vertice as a 
varying attribute. Each of the four vertices of the quad will get this offset with different signs 
depending on how we want to shift the vertices. In the figure below, the sign of thickness 
value is relative to vector u, for A and vetor u’ for B. 

 
Fig. 3 

In the code, you would send the attributes as follow (simplified code, here): 

cgGLSetParameter3fv(hVarParam1, inToPos.v ); 
cgGLSetParameter3f(hVarParam9, -inFromSize,…); 
cgGLSetParameter3fv(hVarParam0, inFromPos.v);  
 
cgGLSetParameter3fv(hVarParam1, inFromPos.v); 
cgGLSetParameter3f(hVarParam9, inToSize,…); 
cgGLSetParameter3fv(hVarParam0, inToPos.v); 
 
cgGLSetParameter3fv(hVarParam1, inFromPos.v); 
cgGLSetParameter3f(hVarParam9, -inToSize,…); 
cgGLSetParameter3fv(hVarParam0, inToPos.v); 
 
cgGLSetParameter3fv(hVarParam1, inToPos.v); 
cgGLSetParameter3f(hVarParam9, inFromSize,…); 
cgGLSetParameter3fv(hVarParam0, inFromPos.v); 
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Fake volumetric 
rendering of the line 

The previous code is fine for drawing a line in 2d. But what happens after we projected the 
line on screen space, when the line is almost facing us, for example when it is almost aligned 
along the z axis ? As the schematic is showing it, we would get a kind of near-zero length 
line. 

 
Fig. 2 

 

When A and B are projected in almost the same 2d location, we want to have a kind of 
square sprite representing this the volumetric point. 

For this, we need to shift the vertices along the 2d projected line according to a specific 
offset. In the Cg code of the previous section, just before step #4, we would add this : 

posstart.xy = ((texcoef * IN.param8.x) * linedir2d.xy) + posstart.xy;  

- texcoef  1 : when the line turns to be parallel to our view direction, (projected points 
A and B would be close to each other) 

- texcoef  0 : when the line turns to a be perpendicular to our view direction 
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Fig. 3 

 

To compute texcoef, we must guess how the 3D line is oriented with respect to the eye point. 
For this purpose we must first transform the 2 points of the line in ModelView space : 

 posstart = mul(ModelViewProj, IN.startpos); 
 posend = mul(ModelViewProj, IN.endpos); 

Then we will take the center of the line to compute the vector from the line to the eye 

float3 middlepoint = normalize((posstart.xyz + posend.xyz)/2.0); 

Now we need to compute the dot product between the line unit vector and the unit vector from 
the eye to the middle of the line : 

float3 lineoffset = posend.xyz - posstart.xyz;  
float3 linedir = normalize(lineoffset);  
float  texcoef = abs(dot(linedir, middlepoint)); 

texcoef will reach 0 when the line is perpendicular to the eye direction and will be 1 when it is 
aligned with it.  
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Fig. 4 

If you test the sample with this texcoef, you’ll se that the result isn’t so interesting: something 
is wrong with the appearance of the line, essentially because of the textures. But before 
getting deeper into the trick to solve this, let’s see how to map textures on the quad.
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Fake Orientation of the 
line 

The texture which is used to render the line is a 2d texture made of 4x4 tiles. Each tile will 
be accessed depending on the orientation factor that we computed into texcoef.  

 
Fig. 4 

 tile #0: texture used when the line is perpendicular to the eye direction. 
 Tile #15: texture used when the line is ‘facing’ the eye direction 
 Tiles #1 to #14 : slight transitions. 

To access properly the textures, we can use modf() function, returning the fractional and the 
integer part of a value : fp = modf(val, ip). 
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The fractional part will be used to access 4 tiles in the u axis, while the integer part will be 
used to access the 4 levels in the v axis. For this purpose we will scale the texcoef range [0,1] to 
[0,4] and isolate integer from fractional parts : 

u_n = modf(texcoef * 4.0, v_m4); 

u_n is ranging from [0,1] while v_m4 is an integer from [0,3]. Now let’s do the same 
operation of getting the integer value for the u axis : 

bf = modf(u_n * 4.0, u_m4); 

u_m4 and v_m4 are now both integers values in [0,3]. bf is a fractional part that we are going 
to use in order to blend 2 textures parts for a smooth transition. The last thing to do is to 
normalize u_m4 and v_m4 and add an offset depending on which vertices of the quad we 
addressed (in pseudo-Cg-code): 

{u,v} = ({u_m4,v_m4} / 4.0) + (IN.param8).zw;  

To blend two stages of the texture, we must compute another set of texture coordinates by 
using texcoef+(1/16) instead of texcoef. Then passing bf value to the fragment will allow us to 
do the blending at the fragment level with a simple lerp(). 

Because we’re doing this second computation at texcoef+1/16, we must cap the to 15/16 to 
avoid going outside of the texture. Thus we must replace a line above like this: 

u_n = modf(min(15.0/16.0, texcoef[+1/16])* 4.0, v_m4); 

 

Note: It is possible to get the same result by using a 3D texture. 3D texture will 
do the bilinear filtering in z for you, instead of doing it by hand in the 
vertex shader. 
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Tweak the orientation 
As I said before the way that texcoef is changing from 0 to 1 is used both to change the length 
of the line and to change the texture offset. 

When trying the demo with the simple computation of texcoef mentioned above, the 
transitions of the texture doesn’t seem to be correct. 

To correct this problem I propose a simple correction of texcoef as follow: 

- When the line length is equal to its thickness, don’t change texcoef: the transition is 
consistent (L (length)=W (width), black line in the figure below) 

- When the line length turns to be greater that its thickness, then let’s try to postpone the 
texture transition until texcoef almost reaches the 1 value. 

 
Fig. 5 

 

 

texcoef = max(((texcoef - 1)*(line_length / line_thickness)) + 1, 0); 

This trick will help the to get a more consistent texture transition, depending on the line shape.
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Known issues & limitations 

When used with a glowing texture, this effect seems to not be so well fitting for series of 
lines connected to each other (poly-line). The reason is because each line creates some 
discontinuity because of the texture shape.  

 
As we saw before, texcoef is the value that avoids the lines to overlap. Further work could be 
done to find a good tradeoff between the issues we worked around thanks to texcoef and the 
issue we can see when lines are badly connected to each other. 

For example, shifting texcoef to 0.2 in the vertex shader code: 

posstart.xy = (((texcoef + 0.2) * IN.param8.x) * linedir2d.xy) + 
posstart.xy;  

will make the lines to overlap.  

 
However this value will depend on the texture we used to render the lines.  
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Conclusion 

The fake volume-line can be an efficient way to render perspective-corrected lines in various 
applications with very few polygons. The glowing effect can also bring you a cheap 
approximation of a Gaussian filter post-processing. 
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