

Technical Report

Fake Volumetric lines

 i
 10/18/2004

Abstract

Fake Volumetric lines
This whitepaper and corresponding SDK sample demonstrate a technique to render
volumetric lines. The technique is using a way to render quads which are able to fake a
volume in whatever orientation it will be. This effect need to perform some computation in
the Vertex shader more than in the fragment shader. The demo is coded by using Cg and
OpenGL API.

Tristan Lorach (tlorach@nvidia.com)
sdkfeedback@nvidia.com

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

February 14, 2005

 2
 10/18/2004

Table of Contents

Fake Volumetric lines ... i
Introduction..3
The Technique...4

First steps : send the vertices ... 4
Fake volumetric rendering of the line .. 7
Fake Orientation of the line... 10
Tweak the orientation... 12

Known issues & limitations ...13
Conclusion...14

GLSL Pseudo-Instancing

 3
 Volume lines effect 14/Feb/05

Introduction

Rendering simple primitives is part of many scenes in games or professional applications.

In a game, laser beam and specific wireframe objects could be rendered with this while in
CAD/DCC applications, these lines could help in highlighting some objects.

Direct3D doesn’t have any line primitives while on OpenGL API, line is really part of the
API. OpenGL is even able to render more-than-one pixel thick line. The historical reason
for that is coming from the fact that CAD systems are great line-primitive customers.

On our NVIDIA chips, lines are processed in different way, depending on the family you’re
using : on GeForce family, lines won’t be anti-aliased and the two edges will be
approximated depending upon the orientation of the line; on Quadro family, lines are anti-
aliased and edges are conforming to a 90 degrees angle.

However, even though OpenGL is able to render lines, it doesn’t perform what we want to
do here: no perspective applied to the line and not texturing available.

This effect is not made to replace OpenGL line drawing, but to show how to render a
perspective-deformed, thick and glowing line.

Although the glowing is representative of this effect, we could imagine using other rendering
styles. But the glowing effect is interesting because it allows enforcing the line without any
expensive post-processing (like Gaussian filtering).

Since we are dealing with a fake volume, there is also the question of how to render the line
when it is facing you. This problem is addressed by offsetting the clip-space coordinates and
by playing with a set of 16 textures, which will slightly change from a profile shape to a
facing shape, depending on the line orientation.

GLSL Pseudo-Instancing

 4
 Volume lines effect 14/Feb/05

The Technique

First steps : send the
vertices

The basic idea is to feed the API with a list of quads representing lines. What you want to do
is send the starting point A and the endpoint B. But as it is a quad, we will send two starting
points (A and A’), and two ending points (B and B’).

The interest of such an effect is to ask the GPU to do as much as possible so that the CPU
(and you) wouldn’t have to care too much of the details. So, instead if computing A, A’, B
and B’ on the CPU, we will simply send two time A and two times B then ask the vertex
shader to do the offset computation by itself.

Fig.1

GLSL Pseudo-Instancing

 5
 Volume lines effect 14/Feb/05

However, even though you want to send A and B, you’ll still need to feed the vertex shader
with offset and line direction to make the quad look like what we want. We will simply pass
these data by using other attributes than vertex coordinates (point size attribute, texture
coordinate…).

For a single line, we must draw a quad made of four sets of the following attributes :

struct app2vert
 {
 float4 startpos : POSITION;
 float4 endpos : PSIZE;
 float4 color : DIFFUSE;
 float4 param8 : TEXCOORD0;
 float3 param9 : TEXCOORD1;
 };

 Endpos.xyz is needed to allow the vertex shader to compute the line direction while
processing a single vertex of the quad : For the 2 vertex quad A, startpos will be A
coordinate and endpos will be B coordinate.

 Param8 contains some offsets that we’ll talk later.
 Param9 contains the thickness sizes

A line-thickness must be computed on a plane perpendicular to the viewing direction.
Starting from the 2 points A and B of the line, we must find four points by shifting A and B
onto a perpendicular plane to the viewing direction. On the other hand we want the line
thickness to be changing depending on the perspective.

We will project the line onto the screen-space (x,y and z divided by w), then guess what is its
direction, compute offsets but we will add these offsets into the clip-space (before we divide
by w).

Fig. 2

These first considerations would lead to this first draft of Vertex shader Cg code :

1. Project in clip-space the start and end points :

GLSL Pseudo-Instancing

 6
 Volume lines effect 14/Feb/05

posstart = mul(ModelViewProj, IN.startpos);
posend = mul(ModelViewProj, IN.endpos);

2. Project these points in the Screen-space (we only need x and y):

float2 startpos2d = posstart.xy / posstart.w;
float2 endpos2d = posend.xy / posend.w;

3. Compute the 2d line direction :

float2 linedir2d = normalize(startpos2d - endpos2d);

4. Shift vertex for thickness perpendicular to the line direction in perspective space :

linedir2d = IN.param9.x * linedir2d;
posstart.x = posstart.x + linedir2d.y; // vertical x
posstart.y = posstart.y - linedir2d.x; // vertical y
OUT.hpos = posstart;

IN.param9.x (offset y in figure 1) contains the offset value that we passed to the vertice as a
varying attribute. Each of the four vertices of the quad will get this offset with different signs
depending on how we want to shift the vertices. In the figure below, the sign of thickness
value is relative to vector u, for A and vetor u’ for B.

Fig. 3

In the code, you would send the attributes as follow (simplified code, here):

cgGLSetParameter3fv(hVarParam1, inToPos.v);
cgGLSetParameter3f(hVarParam9, -inFromSize,…);
cgGLSetParameter3fv(hVarParam0, inFromPos.v);

cgGLSetParameter3fv(hVarParam1, inFromPos.v);
cgGLSetParameter3f(hVarParam9, inToSize,…);
cgGLSetParameter3fv(hVarParam0, inToPos.v);

cgGLSetParameter3fv(hVarParam1, inFromPos.v);
cgGLSetParameter3f(hVarParam9, -inToSize,…);
cgGLSetParameter3fv(hVarParam0, inToPos.v);

cgGLSetParameter3fv(hVarParam1, inToPos.v);
cgGLSetParameter3f(hVarParam9, inFromSize,…);
cgGLSetParameter3fv(hVarParam0, inFromPos.v);

GLSL Pseudo-Instancing

 7
 Volume lines effect 14/Feb/05

Fake volumetric
rendering of the line

The previous code is fine for drawing a line in 2d. But what happens after we projected the
line on screen space, when the line is almost facing us, for example when it is almost aligned
along the z axis ? As the schematic is showing it, we would get a kind of near-zero length
line.

Fig. 2

When A and B are projected in almost the same 2d location, we want to have a kind of
square sprite representing this the volumetric point.

For this, we need to shift the vertices along the 2d projected line according to a specific
offset. In the Cg code of the previous section, just before step #4, we would add this :

posstart.xy = ((texcoef * IN.param8.x) * linedir2d.xy) + posstart.xy;

- texcoef 1 : when the line turns to be parallel to our view direction, (projected points
A and B would be close to each other)

- texcoef 0 : when the line turns to a be perpendicular to our view direction

GLSL Pseudo-Instancing

 8
 Volume lines effect 14/Feb/05

Fig. 3

To compute texcoef, we must guess how the 3D line is oriented with respect to the eye point.
For this purpose we must first transform the 2 points of the line in ModelView space :

 posstart = mul(ModelViewProj, IN.startpos);
 posend = mul(ModelViewProj, IN.endpos);

Then we will take the center of the line to compute the vector from the line to the eye

float3 middlepoint = normalize((posstart.xyz + posend.xyz)/2.0);

Now we need to compute the dot product between the line unit vector and the unit vector from
the eye to the middle of the line :

float3 lineoffset = posend.xyz - posstart.xyz;
float3 linedir = normalize(lineoffset);
float texcoef = abs(dot(linedir, middlepoint));

texcoef will reach 0 when the line is perpendicular to the eye direction and will be 1 when it is
aligned with it.

GLSL Pseudo-Instancing

 9
 Volume lines effect 14/Feb/05

Fig. 4

If you test the sample with this texcoef, you’ll se that the result isn’t so interesting: something
is wrong with the appearance of the line, essentially because of the textures. But before
getting deeper into the trick to solve this, let’s see how to map textures on the quad.

GLSL Pseudo-Instancing

 10
 Volume lines effect 14/Feb/05

Fake Orientation of the
line

The texture which is used to render the line is a 2d texture made of 4x4 tiles. Each tile will
be accessed depending on the orientation factor that we computed into texcoef.

Fig. 4

 tile #0: texture used when the line is perpendicular to the eye direction.
 Tile #15: texture used when the line is ‘facing’ the eye direction
 Tiles #1 to #14 : slight transitions.

To access properly the textures, we can use modf() function, returning the fractional and the
integer part of a value : fp = modf(val, ip).

GLSL Pseudo-Instancing

 11
 Volume lines effect 14/Feb/05

The fractional part will be used to access 4 tiles in the u axis, while the integer part will be
used to access the 4 levels in the v axis. For this purpose we will scale the texcoef range [0,1] to
[0,4] and isolate integer from fractional parts :

u_n = modf(texcoef * 4.0, v_m4);

u_n is ranging from [0,1] while v_m4 is an integer from [0,3]. Now let’s do the same
operation of getting the integer value for the u axis :

bf = modf(u_n * 4.0, u_m4);

u_m4 and v_m4 are now both integers values in [0,3]. bf is a fractional part that we are going
to use in order to blend 2 textures parts for a smooth transition. The last thing to do is to
normalize u_m4 and v_m4 and add an offset depending on which vertices of the quad we
addressed (in pseudo-Cg-code):

{u,v} = ({u_m4,v_m4} / 4.0) + (IN.param8).zw;

To blend two stages of the texture, we must compute another set of texture coordinates by
using texcoef+(1/16) instead of texcoef. Then passing bf value to the fragment will allow us to
do the blending at the fragment level with a simple lerp().

Because we’re doing this second computation at texcoef+1/16, we must cap the to 15/16 to
avoid going outside of the texture. Thus we must replace a line above like this:

u_n = modf(min(15.0/16.0, texcoef[+1/16])* 4.0, v_m4);

Note: It is possible to get the same result by using a 3D texture. 3D texture will
do the bilinear filtering in z for you, instead of doing it by hand in the
vertex shader.

GLSL Pseudo-Instancing

 12
 Volume lines effect 14/Feb/05

Tweak the orientation
As I said before the way that texcoef is changing from 0 to 1 is used both to change the length
of the line and to change the texture offset.

When trying the demo with the simple computation of texcoef mentioned above, the
transitions of the texture doesn’t seem to be correct.

To correct this problem I propose a simple correction of texcoef as follow:

- When the line length is equal to its thickness, don’t change texcoef: the transition is
consistent (L (length)=W (width), black line in the figure below)

- When the line length turns to be greater that its thickness, then let’s try to postpone the
texture transition until texcoef almost reaches the 1 value.

Fig. 5

texcoef = max(((texcoef - 1)*(line_length / line_thickness)) + 1, 0);

This trick will help the to get a more consistent texture transition, depending on the line shape.

GLSL Pseudo-Instancing

 13
 Volume lines effect 14/Feb/05

Known issues & limitations

When used with a glowing texture, this effect seems to not be so well fitting for series of
lines connected to each other (poly-line). The reason is because each line creates some
discontinuity because of the texture shape.

As we saw before, texcoef is the value that avoids the lines to overlap. Further work could be
done to find a good tradeoff between the issues we worked around thanks to texcoef and the
issue we can see when lines are badly connected to each other.

For example, shifting texcoef to 0.2 in the vertex shader code:

posstart.xy = (((texcoef + 0.2) * IN.param8.x) * linedir2d.xy) +
posstart.xy;

will make the lines to overlap.

However this value will depend on the texture we used to render the lines.

GLSL Pseudo-Instancing

 14
 Volume lines effect 14/Feb/05

Conclusion

The fake volume-line can be an efficient way to render perspective-corrected lines in various
applications with very few polygons. The glowing effect can also bring you a cheap
approximation of a Gaussian filter post-processing.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 by NVIDIA Corporation. All rights reserved

