
223

Dynamic Ambient Occlusion
and Indirect Lighting
Michael Bunnell
NVIDIA Corporation

Chapter 14

14.1 Surface Elements

In this chapter we describe a new technique for computing diffuse light transfer and
show how it can be used to compute global illumination for animated scenes. Our
technique is efficient enough when implemented on a fast GPU to calculate ambient
occlusion and indirect lighting data on the fly for each rendered frame. It does not have
the limitations of precomputed radiance transfer (PRT) or precomputed ambient oc-
clusion techniques, which are limited to rigid objects that do not move relative to one
another (Sloan 2002). Figure 14-1 illustrates how ambient occlusion and indirect light-
ing enhance environment lighting.

Our technique works by treating polygon meshes as a set of surface elements that can
emit, transmit, or reflect light and that can shadow each other. This method is so effi-
cient because it works without calculating the visibility of one element to another. In-
stead, it uses a much simpler and faster technique that uses shadowing to account for
occluding (blocking) geometry.

14.1 Surface Elements
The first step in our algorithm is to convert the polygonal data to surface elements to
make it easy to calculate how much one part of a surface shadows or illuminates an-
other. Figure 14-2 illustrates the basic concept. We define a surface element as an ori-
ented disk with a position, normal, and area. An element has a front face and a back

214_gems2_ch14.qxp 1/4/2005 1:58 PM Page 223

224

face. Light is emitted and reflected from the front-facing side. Light is transmitted and
shadows are cast from the back. We create one element per vertex. Assuming that the
vertices are defined as a position and normal already, we just need to calculate the area
of each element. We calculate the area at a vertex as the sum of one-third of the area of
the triangles that share the vertex (or one-fourth of the area for quads). Heron’s formula
for the area of a triangle with sides of length a, b, and c is:

Chapter 14 Dynamic Ambient Occlusion and Indirect Lighting

Figure 14-1. Adding Realism with Indirect Lighting
The scene on the left uses only environment lighting and looks very flat. The middle scene adds
soft shadows using ambient occlusion. The scene on the right adds indirect lighting for an extra
level of realism.

Figure 14-2. Converting a Polygonal Mesh to Elements
Left: A portion of a polygonal mesh. Right: The mesh represented as disk-shaped elements.

214_gems2_ch14.qxp 1/4/2005 1:58 PM Page 224

where s is half the perimeter of the triangle: (a + b + c)/2.

We store element data (position, normal, and area) in a texture map because we will be
using a fragment program (that is, a pixel shader) to do all the ambient occlusion calcu-
lations. Assuming that vertex positions and normals will change for each frame, we
need to be able to change the values in the texture map quickly. One option is to keep
vertex data in a texture map from the start and to do all the animation and transforma-
tion from object space to eye (or world) space with fragment programs instead of vertex
programs as usual. We can use render-to-vertex array to create the array of vertices to be
sent down the regular pipeline, and then use a simple pass-through vertex shader. An-
other, less efficient option is to do the animation and transformation on the CPU and
load a texture with the vertex data each frame.

14.2 Ambient Occlusion
Ambient occlusion is a useful technique for adding shadowing to diffuse objects lit with
environment lighting. Without shadows, diffuse objects lit from many directions look flat
and unrealistic. Ambient occlusion provides soft shadows by darkening surfaces that are
partially visible to the environment. It involves calculating the accessibility value, which is
the percentage of the hemisphere above each surface point not occluded by geometry
(Landis 2002). In addition to accessibility, it is also useful to calculate the direction of
least occlusion, commonly known as the bent normal. The bent normal is used in place of
the regular normal when shading the surface for more accurate environment lighting.

We can calculate the accessibility value at each element as 1 minus the amount by
which all the other elements shadow the element. We refer to the element that is shad-
owed as the receiver and to the element that casts the shadow as the emitter. We use an
approximation based on the solid angle of an oriented disk to calculate the amount by
which an emitter element shadows a receiver element. Given that A is the area of the
emitter, the amount of shadow can be approximated by:

Equation 14-1. Shadow Approximation

1
1 4

1

2
2 2

−
()

+
−

+

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

r

A
r

r

A
r

E Rcos max , cosθ θ

π ⎟⎟

× × ×()cos min , cos .θ θE R1 4

s s a s b s c−() −() −(),

14.2 Ambient Occlusion 225

214_gems2_ch14.qxp 1/4/2005 1:58 PM Page 225

226

As illustrated in Figure 14-3, θE is the angle between the emitter’s normal and the vector
from the emitter to the receiver. θR is the corresponding angle for the receiver element.
The max(1, 4 × cos θR) term is added to the disk solid angle formula to ignore emitters
that do not lie in the hemisphere above the receiver without causing rendering artifacts
for elements that lie near the horizon.

Here is the fragment program function to approximate element-to-element solid angle:

float SolidAngle(float3 v, float d2, float3 receiverNormal,

float3 emitterNormal, float emitterArea)

{

// we assume that emitterArea has already been divided by PI

return (1 - rsqrt(emitterArea/d2 + 1)) *

saturate(dot(emitterNormal, v)) *

saturate(4 * dot(receiverNormal, v));

}

14.2.1 The Multipass Shadowing Algorithm
We calculate the accessibility values in two passes. In the first pass, we approximate the
accessibility for each element by summing the solid angles subtended by every other

Chapter 14 Dynamic Ambient Occlusion and Indirect Lighting

Figure 14-3. The Relationship Between Receiver and Emitter Elements
Receiver element R receives light or shadow from emitter E with r as the distance between the
centers of the two elements.

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 226

element and subtracting the result from 1. After the first pass, some elements will gen-
erally be too dark because other elements that are in shadow are themselves casting
shadows. So we use a second pass to do the same calculation but this time to multiply
each form factor by the emitter element’s accessibility from the last pass. The effect is
that elements that are in shadow will cast fewer shadows on other elements, as illus-
trated in Figure 14-4. After the second pass, we have removed any double shadowing.
However, surfaces that are triple shadowed or more will end up being too light. We can
use more passes to get a better approximation, but we can approximate the same answer
by using a weighted average of the combined results of the first and second passes. Fig-
ure 14-5 shows the results after each pass, as well as a ray-traced solution for compari-
son. The bent normal calculation is done during the second pass. We compute the bent
normal by first multiplying the normalized vector between elements and the form fac-
tor. Then we subtract this result from the original element normal.

14.2 Ambient Occlusion 227

Figure 14-4. Correcting for Occlusion by Overlapping Objects
Left: Elements A and B correctly shadow C after the first pass. Middle: In this arrangement, B casts
too much shadow on C. Right: B’s shadow is adjusted by the second pass to shadow C properly.

Figure 14-5. Comparing Models Rendered with Our Technique to Reference Images
Model rendered with ambient occlusion accessibility value calculated after (a) one pass, (b) two
passes, and (c) three passes of the shader. (d) Image made by tracing 200 random rays per vertex
for comparison.

(a) (b) (c) (d)

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 227

228

We calculate the occlusion result by rendering a single quad (or two triangles) so that
one pixel is rendered for each surface element. The shader calculates the amount of
shadow received at each element and writes it as the alpha component of the color of
the pixel. The results are rendered to a texture map so the second pass can be performed
with another render. In this pass, the bent normal is calculated and written as the RGB
value of the color with a new shadow value that is written in the alpha component.

14.2.2 Improving Performance
Even though the element-to-element shadow calculation is very fast (a GeForce 6800
can do 150 million of these calculations per second), we need to improve our algorithm
to work on more than a couple of thousand elements in real time. We can reduce the
amount of work by using simplified geometry for distant surfaces. This approach works
well for diffuse lighting environments, because the shadows are so soft that those cast
by details in distant geometry are not visible. Fortunately, because we do not use the
polygons themselves in our technique, we can create surface elements to represent sim-
plified geometry without needing to create alternate polygonal models. We simply
group elements whose vertices are neighbors in the original mesh and represent them
with a single, larger element. We can do the same thing with the larger elements, creat-
ing fewer and even larger elements, forming a hierarchy. Now instead of traversing
every single element for each pixel we render, we traverse the hierarchy of elements. If
the receiver element is far enough away from the emitter—say, twice the radius of the
emitter—we use it for our calculation. Only if the receiver is close to an emitter do we
need to traverse its children (if it has any). See Figure 14-6. By traversing a hierarchy in
this way, we can improve the performance of our algorithm from O(n2) to O(n log n) in
practice. The chart in Figure 14-7 shows that the performance per vertex stays consis-
tent when the number of vertices in the hierarchy increases.

Chapter 14 Dynamic Ambient Occlusion and Indirect Lighting

Figure 14-6. Hierarchical Elements
Elements are traversed in a hierarchy; child elements are traversed only if necessary.

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 228

We use the createParentElements and updateParentElements shaders,
found on the book’s CD, to create the element data for nonleaf elements in the hierar-
chy. We use createParentElements to calculate the position, normal, and area
values when they change. We use updateParentElements before each shader pass
that needs the result of the last pass. It calculates a sum of child element results
weighted by the child’s area. Both shaders are called for each level in the hierarchy,
starting at parents of leaf nodes and moving up, so they can calculate their results by
looking only at the direct descendants of an element. It is worth noting that the area of
most elements varies little, if at all, even for nonrigid objects; therefore, the area does
not have to be recalculated for each frame.

The ambient occlusion fragment shader appears in Listing 14-1.

Listing 14-1. Ambient Occlusion Shader

float4 AmbientOcclusion(

float4 position : WPOS,

float4 normOffset : TEX1,

14.2 Ambient Occlusion 229

Figure 14-7. Ambient Occlusion Shader Performance for Meshes of Different Densities

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 229

230

Listing 14-1 (continued). Ambient Occlusion Shader

uniform samplerRECT lastResultMap : TEXUNIT0,

uniform samplerRECT positionMap : TEXUNIT1,

uniform samplerRECT elementNormalMap : TEXUNIT2,

uniform samplerRECT indexMap : TEXUNIT3) : COL

{

float eArea; // emitter area

float4 ePosition; // emitter position

float4 eNormal; // emitter normal

float3 rPosition = texRECT(positionMap, position.xy).xyz;

float3 rNormal = texRECT(elementNormalMap, position.xy).xyz;

float3 v; // vector from receiver to emitter

float total = 0; // used to calculate accessibility

float4 eIndex = float2(0.5, 0.5); // index of current emitter

float3 bentNormal = rNormal; // initialize with receiver normal

float value;

float d2; // distance from receiver to emitter squared

while (emitterIndex.x != 0) { // while not finished traversal

ePosition = texRECT(positionMap, emitterIndex.xy);

eNormal = texRECT(elementNormalMap, emitterIndex.xy);

eArea = emitterNormal.w;

eIndex = texRECT(indexMap, emitterIndex.xy); // get next index

v = ePosition.xyz - rPosition; // vector to emitter

d2 = dot(v, v) + 1e - 16; // calc distance squared, avoid 0

// is receiver close to parent element?

if (d2 < -emitterArea) { // (parents have negative area)

eIndex.xy = eIndex.zw; // go down hierarchy

emitterArea = 0; // ignore this element

}

v *= rsqrt(d2); // normalize v

value = SolidAngle(v, d2, rNormal, eNormal.xyz, abs(eArea)) *

texRECT(resultMap, eIndex.xy).w; // modulate by last result

bentNormal -= value * v; // update bent normal

total += value;

}

if (!lastPass) // only need bent normal for last pass

return 1 - total; // return accessibility only

return float4(normalize(bentNormal), 1 – total);

}

Chapter 14 Dynamic Ambient Occlusion and Indirect Lighting

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 230

14.3 Indirect Lighting and Area Lights
We can add an extra level of realism to rendered images by adding indirect lighting caused
by light reflecting off diffuse surfaces (Tabellion 2004). We can add a single bounce of
indirect light using a slight variation of the ambient occlusion shader. We replace the solid
angle function with a disk-to-disk radiance transfer function. We use one pass of the
shader to transfer the reflected or emitted light and two passes to shadow the light.

For indirect lighting, first we need to calculate the amount of light to reflect off the
front face of each surface element. If the reflected light comes from environment light-
ing, then we compute the ambient occlusion data first and use it to compute the envi-
ronment light that reaches each vertex. If we are using direct lighting from point or
directional lights, we compute the light at each element just as if we are shading the
surface, including shadow mapping. We can also do both environment lighting and
direct lighting and sum the two results. We then multiply the light values by the color
of the surface element, so that red surfaces reflect red, yellow surfaces reflect yellow, and
so on. Area lights are handled just like light-reflective diffuse surfaces except that they
are initialized with a light value to emit.

Here is the fragment program function to calculate element-to-element radiance transfer:

float FormFactor(float3 v, float d2, float3 receiverNormal,

float3 emitterNormal, float emitterArea)

{

// assume that emitterArea has been divided by PI

return emitterArea * saturate(dot(emitterNormal, v)) *

saturate(dot(receiverNormal, v)) / (d2 + emitterArea);

}

We calculate the amount of light transferred from one surface element to another using
the geometric term of the disk-to-disk form factor given in Equation 14-2. We leave off
the visibility factor, which takes into account blocking (occluding) geometry. Instead
we use a shadowing technique like the one we used for calculating ambient occlusion—
only this time we use the same form factor that we used to transfer the light. Also, we
multiply the shadowing element’s form factor by the three-component light value in-
stead of a single-component accessibility value.

Equation 14-2. Disk-to-Disk Form Factor Approximation

A

r A
E Rcos cosθ θ

π 2 +

14.3 Indirect Lighting and Area Lights 231

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 231

232

We now run one pass of our radiance-transfer shader to calculate the maximum
amount of reflected or emitted light that can reach any element. Then we run a shadow
pass that subtracts from the total light at each element based on how much light
reaches the shadowing elements. Just as with ambient occlusion, we can run another
pass to improve the lighting by removing double shadowing. Figure 14-8 shows a scene
lit with direct lighting plus one and two bounces of indirect lighting.

14.4 Conclusion
Global illumination techniques such as ambient occlusion and indirect lighting greatly
enhance the quality of rendered diffuse surfaces. We have presented a unique technique
for calculating light transfer to and from diffuse surfaces using the GPU. This tech-
nique is suitable for implementing various global illumination effects in dynamic scenes
with deformable geometry.

Chapter 14 Dynamic Ambient Occlusion and Indirect Lighting

Figure 14-8. Combining Direct and Indirect Lighting
Top, left to right: Scene lit with direct lighting, with direct lighting plus one bounce of indirect
lighting, and with direct lighting plus two bounces of indirect lighting. Bottom, left to right: Indirect
lighting after one pass, after two passes (one bounce), and after two bounces (four passes total).

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 232

14.5 References and Further Reading
Landis, Hayden. 2002. “Production-Ready Global Illumination.” Course 16 notes,

SIGGRAPH 2002.

Pharr, Matt, and Simon Green. 2004. “Ambient Occlusion.” In GPU Gems, edited by
Randima Fernando, pp. 279–292. Addison-Wesley.

Sloan, Peter-Pike, Jan Kautz, and John Snyder. 2002. “Precomputed Radiance Transfer
for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments.”
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2002) 21(3), pp. 527–536.

Tabellion, Eric, and Arnauld Lamorlette. 2004. “An Approximate Global Illumination
System for Computer Generated Films.” ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2004) 23(3).

14.5 References and Further Reading 233

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 233

214_gems2_ch14.qxp 1/4/2005 1:59 PM Page 234

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

