

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

GPU Video Effects

This gpu_videoeffects demo serves two purposes:

1. It provides a framework for developers to experiment with creating new
GPU accelerated effects for use with Video and Images. This demo uses
the nv_image_processing framework, Cg, and GLSL.

2. This demonstration code can be used as a sample implementation on how
to use Microsoft DirectShow with the OpenGL EXT_pixel_buffer_object
extension to quickly upload video to the GPU and read it back quickly.

Class Design

Core Functionality

The gpu_videoeffects multimedia demo uses a set of classes and libraries in to
upload and render images/video on the GPU. For video data, classes
GraphBuilder, CTextureRenderer, and VideoSource are used to upload video to the
GPU. For static images, classes ImageTex and ImageSource upload static images to
the GPU. After the video or image is uploaded, the Scene class applies GPU
accelerated effects using ImageFilter (nv_image_processing), ProgramCg, and
ProgramGLSL. ImageSink reads the final rendered result from GPU back to
system memory:

Scene
+renderNVImageProc()
+renderCg()
+renderGLSL()

CTextureRenderer

ImageTex (OpenEXR) GraphBuilder (DirectShow)

Decoder Filters

ImageSource
+pushNewFrame()
+bind()
+unbind() VideoSource

+pushNewFrame()
+bind()
+unbind()

ImageSink
+pull()

InteractionController
+updateUniforms()

GraphBuilder connects all the proper DirectShow filters necessary to decode and
render a video stream. An OpenGL renderer (CTextureRenderer) supports the
DirectShow interface and connects through a FilterGraph. This renderer connects
to the Scene framework, so the GPU can render (VideoSource or ImageSource)
images with hardware accelerated effects.

Classes ImageSource and VideoSource update the textures to be rendered. Each of
these classes have a bind() function to binds the input image or video to the current
OpenGL texture unit. The pushNewFrame() method should be called before the
bind() to ensure the texture is uploaded to the GPU. pushNewFrame() also returns
the number of bytes that were transferred from system up to the GPU.

The Scene class renders a screen-aligned quad to the frame buffer. The render()
method calls pushNewFrame() from the ImageSource or VideoSource and binds a
new texture. Scene uses any one of three methods depending on what the
application sets: renderCg to render a Cg Program effect, renderGLSL to render a
GLSL Program effect, and renderNVimageProc for a nv_image_processing effect.

InteractionController takes parameters from the GUI’s slider controls, and passes
the uniform values to the vertex and pixel shader program. Using these shader
programs can be used to perform filtering effects such as: gamma correction,
exposure correction, Gaussian blur, night vision filter, radial blur, and edge
detection.

ImageSink reads data from the frame buffer back to system memory. The pull()
method returns the number of bytes transferred from the GPU to system memory.

ImageSource and ImageSink are all abstract base classes. The various classes derived
from these base abstract classes implement different transfer mechanisms.

ImageSource has four concrete implementations:

1. ImagePusher which uses normal glTextureSubImage() to upload textures
to the GPU.

2. StaticImage which creates a texture and uploads it only once. Subsequent
calls to pushNewFrame() will not cause any new data to be transferred to
the GPU.

3. ImagePusherPBO uses the EXT_pixel_buffer_object to repeatedly transfer
new texture content to the GPU (dynamic texture usage and write only
modification).

4. VideoPusherPBO is similar to ImagePusherPBO, with the addition that it
handles video images.

ImageSink has three concrete implementations:

1. ImageSinkDummy which doesn’t read back any data from the GPU.

2. ImagePuller which uses glReadPixels() in a straight forward manner to
transfer the frame-buffer content back from the GPU into system memory.

3. ImagePullerPBO which uses a pixel-buffer object to readback frame-buffer
data asynchronously from the GPU.

Supported Image and Video Formats

For Static Images, only OpenEXR file formats are supported.

For Video Files, any file that can be dropped into a DirectShow FilterGraph will
work with this GPU video and effects demo.

The external image/video formats (i.e. formats of images stored in system memory)
supported are 16bit floating point RGB and RGBA, 8 bit unsigned char RGB,
RGBA, BGR, and BGRA. Texture formats supported (i.e. format of how images
are stored on the GPU) are 16 bit floating point RGB and RGBA, 8 bit unsigned
integer RGB, and RGBA, as well as a 16 bit packed YUYV format used for video.

Demo App in Action
Here is a screen shot of the gpu_videoeffects demo with different screen elements
magnified. The performance info area shows all the options used for texture
download, readback, shader, image format, internal texture format, and the current
transfer rates upstream, downstream, and the total.

The effect parameter region allows the user to interactively manipulate the GPU
parameters. Depending on the effect chosen, there are different parameters that can
be configured. To change these values, hold down the left mouse button and drag
the slider to set the appropriate value.

With the right mouse button, menu options can be brought up. Source File lets the
user load different static images (OpenEXR) or video files into this application.
Source Upload lets the user toggle between a static image or video file. Image
Readback can enable the copying of the final frame back to system memory.
Playback Control, allows the user to “.” (pause/play), “>” skip +10 seconds, “<”
skip -10 seconds, (keyboard functions also enable this to be displayed). Different
GPU shader effects can be applied to the Image or Video when selected with the
appropriate menu option.

Developing effects
ProgramCg, ProgramGLSL, and ImageFilter are classes required to build GPU
effects. To create a new Cg or GLSL effect, instantiate a ProgramCg or
ProgramGLSL object with a Vertex and Pixel source program. These classes will
load the shader code and compile it upon construction. To use this shader to
render a geometry, first call the bind() and unbind() member.

To control GPU uniform parameters, fixed uniform Cg and GLSL names have been
defined by this example code. Through the InteractionController class, these
parameters can be updated interactively. For Cg, see uniforms.cg for a list of these
fixed uniform names. GLSL uniforms are defined at the top of each Vertex and
Pixel shader source file.

For more advanced effects, the ImageFilter class (nv_image_processing) provides
the added flexibility of combining different effects by using p-buffers to chain these
effects together. This nv_image_processing framework is a library included with the
NVIDIA SDK. An article in GPU Gems, “A Framework for Image Processing” also
shows how to build GPU accelerated ImageFilter.

Each rendering stage produces an output image that can be the source input for
another stage. For the nv_image_processing framework, each ImageFilter stage can
be chained to another stage by calling the setSourceOperator() member function
(i.e. from Gaussian x-direction) and passing a pointer to the ImageFilter (i.e.
Gaussian y-direction) object.

In this example, the Gaussian smoothing operation is a 2-D convolution filter that
blurs images. This operation can be performed more efficiently if separated into 2-
passes in the x and y direction. With the first stage applying a 1-D vertical Gaussian
in the x direction. This output is applied to the input of the y direction filtering
stage, where a 1-D horizontal Gaussian is done. By combine these two stages, we
have a 2-D Gaussian filter.

Prototyping new shader effects are not difficult, as new shaders can be built on top
of the existing examples from this demo. The NVIDIA SDK also provides many
HLSL and Cg shaders, and with modifications to change the uniform names, these
effects can be incorporated easily.

Gaussian (y-dir)

Gaussian (x-dir)

Final Output

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2005 NVIDIA Corporation. All rights reserved

