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Abstract 

About Normalization Heuristics 
This white paper answers the question, “When is cube-map normalization 
faster than normalize()?”  It describes experiments performed with a non-
trivial pixel shader, and uses the experimental results to derive useful rules of 
thumb regarding the performance and quality of normalization in pixel 
shaders. These heuristics provide tuning dials that developers can use to trade 
quality for performance, and vice versa, in 3D applications. To gain an 
intuitive understanding of these performance-quality tradeoffs, a 
demonstration application is provided so that the user has access to the 
experiments described in this white paper. 
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Normalization in a Pixel Shader 

Discussion 
NVIDIA often encourages developers to use cube-map normalization in pixel 
shaders on GeForce FX.  Although this is often faster than the standard 
normalize() pixel shader function, there are cases where it is not. This white 
paper addresses the question of when to choose cube-map normalization over 
normalize() and vice versa for faster performance. With the help of experiments, 
this paper presents two heuristics—one based on performance and one on quality—
for the use of normalization cube maps. 

Consider a non-trivial per-pixel lighting skin shader with tangent-space bump 
mapping as shown in Error! Reference source not found..  This pixel shader is 
described later on in Appendix A and consists of the following four normalize 
operations:  

1. Normalize the eye space position of the fragment.  This gives the V vector. 
2. Normalize the eye space light vector, L. 
3. Compute the half angle vector, H = normalize(V + L). 
4. Normalize the normal vector, N after it is scaled and transformed into eye space. 
These normalizations are all essential1. You cannot compute H from non-

normalized vectors because if V and L have 
different lengths, then their sum has a 
different direction than the sum of the 
normalized vectors2. 

The standard normalize() pixel shader 
function compiles to three instructions on 
GeForce FX GPUs: dp3, rsq, and mul  
which requires multiple cycles. The goal is to 
determine if and when a cube map lookup is 
faster but not at the expense of quality; 
indiscriminate use of cube-map normalization 
can result in shading artifacts. 

Figure 1. Model, Shader, and 
View Used in Experiments 

                                                      

1 See Appendices B and C for a discussion of situations where normalization may not be 
necessary. 
2 Even with the optimization at the end of Appendix B, this shader requires four square 
roots. 
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Exhaustive tests of different configurations of the pixel shader are performed. The 
first test performs all normalization using normalize(); the last test performs all 
normalization using cube map lookups with the remaining 14 tests covering other 
combinations of normalize() and cube map lookups. A single 8-bit RGBA 
normalization cube map with face resolution of 256x256 is used. A discussion of how 
cube-map normalization affects rendering quality follows. 

Performance 
You might assume that the slowest case would be four calls to normalize(), and 
the fastest to be four cube map lookups. These are both incorrect assumptions! 
Table 1 shows performance for all 16 combinations of normalization methods on 
three GPUs: GeForce FX 5200, 5700, and 5950. The leftmost four columns indicate 
which of V, L, H, and N are normalized with a cube map in each test.   

Table 1. Performance Comparison for all Combinations of 
Normalize() and Normalization via Cube Map Lookups 

Active Cube Maps Performance (FPS) 

N H L V # inst FX 5950 FX 5700 FX 5200 Comment 
    34 132.5 61.4 17.7 No cube maps 

    33 132.3 61.4 18.6  

    32 137.3 63.4 18.2  

    31 146.8 68.2 21.6 Speed / quality sweet spot 

    32 138.6 68.0 19.3  

    31 145.2 71.1 21.5  

    30 142.0 66.1 19.9  

    29 155.9 75.9 23.4 Highest performance 

    32 119.3 57.9 18.2 Lowest performance 

    31 121.4 60.3 18.9  

    30 118.3 57.6 18.0  

    29 130.0 63.9 20.6  

    30 129.3 60.5 17.9  

    29 133.3 62.9 19.3  

    28 134.2 63.3 19.5  

    27 148.3 68.8 22.1 All cube maps 

 

Table 1 yields the following observations: 

1. The shortest shader is not the fastest, and the longest shader is not the slowest 

2. Performance when using a cube map to normalize N is always lower than the 
corresponding case using normalize(). 
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The second observation is important; the cause is texture cache incoherence. The 
cube map is used to normalize the normal obtained from the normal map, which 
contains detailed regions over which the surface normal varies rapidly. This causes 
large strides across the normalization cube map, resulting in many texture cache 
misses. You can be verify this by reducing the resolution of the cube map textures. 
With a cube map composed of 1x1 textures, cube-map normalization always 
increases performance over normalize(). However, low-resolution cube maps 
can cause blocky lighting. 

The fastest shader uses normalization cube maps for all vectors except N. This is 
because the first three vectors vary smoothly (because the polygonal surface is not 
as rough as the normal map), meaning that the lookups have good spatial locality in 
the cube map texture. This results in more texture cache hits and better 
performance. This leads to the first normalization heuristic. 

Normalization Performance Heuristic: If a vector to be normalized varies smoothly, it 
is generally faster to use cube-map normalization than to call normalize(). If the 
vector varies rapidly, normalize() is likely to be faster. 

Quality 
If all four normalization cube maps are used, there are noticeable artifacts. There are 
two sources of these artifacts. The first is precision. The 8-bit RGBA textures used 
in the cube maps result in only 256 different values for each normal component. 
This results in visible bands in smooth gradients in the lighting3. This is most 
noticeable in specular highlights. The second problem is the resolution of the cube 
map. A lower resolution cube map tends to be faster because more of it can fit in 
the texture cache. However, lower resolution maps represent fewer vectors resulting 
in blocky artifacts in the lighting. These artifacts are most noticeable in variable, high 
frequency lighting, such as view-dependent specular highlights.  In the shader used 
here, these artifacts show when a cube map is used to normalize the halfway vector, 
H, as demonstrated by the picture on the right in Figure 2. 

Normalization Quality Heuristic: If a vector to be normalized is used for view-
dependent or time-varying lighting or other effects, low-precision cube-map normalization 
is likely to result in visible artifacts. 

                                                      
3 It is possible to use cube maps that have two 16-bit channels for higher-precision 
normalization. Unfortunately, this requires two cube map lookups per normalization: one for 
x and y, the other for z.  See Table 6 and Table 7. 
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Figure 2. Artifacts (right) caused by cube-map normalization of H 

Mipmapping 
The strong dependence of performance on texture cache coherence leads to 
Mipmapping as another option for balancing performance and quality. Mipmapping is a 
practice commonly used to reduce texture aliasing, but its benefits extend to 
performance, too. Texture minification without mipmapping leads to samples falling far 
apart in the texture and poor cache coherence which in turn means reduced 
performance. Textures that will undergo minification should almost always be 
mipmapped. 

This leads to the question, “Why not mipmap the normalization cube maps?” They will 
undergo minification as well, and you want to avoid texture cache thrashing. Before you 
pursue this approach, however, you should think about the purpose of the cube map. 
The goal is to replace an expensive normalize()computation with a cheaper texture 
access, while keeping the error in the normalization to a minimum.  As mentioned in the 
previous section lower-resolution cube maps can represent fewer vectors because the 
sphere of directions is sampled in fewer directions. When you use mipmaps, you are 
effectively using a lower-resolution cube map in areas of texture minification. 
Neighboring vectors in lower-resolution maps will point in significantly different 
directions. Bilinear filtering of these vectors can result in significant denormalization 
(shortening) of the vectors resulting in vectors that were intended to be normalized not 
being normalized at all. 

Nonetheless, that makes for an interesting experiment.  Using the same shader, you can 
normalize N, L, and V using cube maps, because this configuration maintains high 
rendering quality, and has a lot to gain from mipmapping due to the poor texture cache 
coherence of normalizing N.  The results are shown in Table 2. 
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Table 2. Performance Comparison using Mipmapped 
Normalization Cube Maps for N, L, and V Vectors 

Performance (FPS) 

Max Mip Level FX 5950 FX 5700 FX 5200 
0 130 61.8 20.6 

1 143.3 64.5 21.6 

2 145.8 66 22.3 

3 152.2 67 22.8 

4 152.2 67.7 23 

5 152.2 67.9 23 

6 152.2 68 23 

7 152.2 68 23 

8 152.2 68 23 

 

The next experiment enables mipmapping on the normalization cube map, but the 
maximum mip level accessed4 is limited. Table 2 shows that performance increases 
up to 17 percent as the maximum mip level is raised, but only up to a point.  
Beyond level 3, the performance gain is negligible.  Equally of interest is that in this 
experiment, most of the visible error introduced by mipmapping occurs after level 3. 
Figure 3 shows the results of error introduced by mipmapping on a model viewed at 
a distance, so that it projects to an area of roughly 50 pixels square.  With a 
maximum mip level of 3 there is very little visible error, whereas, the error is quite 
noticeable at a mip level of 8. 

This experiment shows that you can use mipmapping to squeeze more performance 
out of normalization cube maps, as long as you are careful to constrain the error by 
limiting the maximum mipmap level.  Table 3 is a revision of Table 1, with the 
normalization cube map mipmapped to a maximum level of 3.  

                                                      
4 The maximum mipmap level is controlled in OpenGL by setting the 
GL_TEXTURE_MAX_LOD texture parameter, and in DirectX by setting the 
D3DSAMP_MAXMIPLEVEL sampler state. 



 Normalization Heuristics 
    

 

 

WP-01164-001_v03  7 
7/15/2004 

 

Figure 3. Comparison of Error Induced by using Maximum 
Mipmap Levels of 3 (bottom left) and 8 (bottom right) 
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The Speed/Quality Sweet Spot 
The best quality is obtained by using normalize()for all normalization. These 
experiments show that using cube maps to normalize the light, view, and normal 
vectors results in very little visible difference. The half angle vector H on the other 
hand, directly affects specular lighting. Artifacts are noticeable due to the higher 
frequency and view dependence of specular lighting. Performance when using cube 
maps for only the view and light vectors is nearly as good as when using them for 
view, light, and half angle vectors, so this is a good balance between performance 
and quality. You can get even higher performance by also normalizing N with a 
mipmapped cube map, but you must be careful to clamp the maximum mipmap 
level used to avoid noticeable artifacts.   

A working application with OpenGL source code is available at 
http://developer.nvidia.com. Appendix A details the Cg shader source code used 
in these experiments. Appendices B and C provide additional information about 
normalization. Appendix D contains detailed tables of all results obtained from 
these experiments, including a 16-bit HILO cube map experiment not described 
here. 

Table 3 Performance Comparison for all Combinations of 
normalize() and Normalization via Mipmapped Cube Map 
Lookups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The maximum mipmap level is constrained to 3 (32x32). 

Active Cube Maps Performance (FPS) 

N H L V # inst FX 5950 FX 5700 FX 5200 Comment 
    34 132.5 61.4 17.7 Lowest performance 

    33 132.3 61.4 18.6  

    32 137.3 63.4 18.2  

    31 146.8 68.2 21.6  

    32 138.6 68 19.3  

    31 145.2 71.1 21.5  

    30 142 66.1 19.9  

    29 155.9 75.9 23.4  

    32 139.3 63.5 19.9  

    31 142.3 66.4 20.8  

    30 139 63.8 19.7  

    29 152.2 70.9 22.8 Speed / quality sweet spot 

    30 105.9 66.9 19.6  

    29 150.3 69.2 21  

    28 152.5 70.3 21.4  

    27 172.9 76.8 24.5 Highest Performance 
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Appendix A 
Cg / HLSL Shader Source 

// Note: this code depends on the use of signed RGB textures  
// for normalization cube maps.  These are available on  
// NVIDIA GeForce 3 and higher GPUs, through the GL_SIGNED_RGB_NV 
// texture internal format (The DirectX equivalent is  
// D3DFMT_Q8W8V8U8). If unsigned textures are used, care must be 
taken  
// to range expand the vectors obtained from the cube map lookups: 
// vec = 2 * h3texCUBE() – 1. 
 
struct fragin  
{ 
    half2 texcoords            : TEXCOORD0; 
    half4 shadowcoords         : TEXCOORD1; 
    half4 tangentToEyeMat0     : TEXCOORD4; 
    half3 tangentToEyeMat1     : TEXCOORD5; 
    half3 tangentToEyeMat2     : TEXCOORD6; 
    half3 eyeSpacePosition     : TEXCOORD7; 
}; 
 
half4 main(fragin In, 
   uniform sampler2D normalTexture, 
   uniform sampler2D diffuseTexture, 
   uniform sampler2D glossyTexture, 
   uniform samplerCUBE normCubeTexture, 
   uniform half3 eyeSpaceLightPosition) : COLOR 
{   
    // diffuse and specular colors 
    half4 kd = h4tex2D(diffuseTexture, In.texcoords); 
    half4 ks = h4tex2D(glossyTexture, In.texcoords);     
 
    half3 n,h,l,v; 
 
    // Get eye-space eye vector.     
#ifdef CUBEMAP_V 
    v = h3texCUBE(normCubeTexture, -In.eyeSpacePosition); 
#else 
    v = normalize(-In.eyeSpacePosition); 
#endif 
 
    // Get eye-space light and halfangle vectors. 
#ifdef CUBEMAP_L 
    l = h3texCUBE(normCubeTexture,  
                        eyeSpaceLightPosition - 
In.eyeSpacePosition); 
#else 
    l = normalize(eyeSpaceLightPosition - In.eyeSpacePosition); 
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#endif 
     
#ifdef CUBEMAP_H 
    h = h3texCUBE(normCubeTexture, v + l); 
#else 
    h = normalize(v + l); 
#endif 
 
    // Get tangent-space normal vector from normal map. 
    half3 bumpScale = {In.tangentToEyeMat0.ww, 1};    
    half3 tangentSpaceNormal = bumpScale *  
 h3tex2D(normalTexture, In.texcoords); 
     
    // Transform it into eye-space. 
    n.x = dot(In.tangentToEyeMat0.xyz, tangentSpaceNormal); 
    n.y = dot(In.tangentToEyeMat1, tangentSpaceNormal); 
    n.z = dot(In.tangentToEyeMat2, tangentSpaceNormal); 
 
#ifdef CUBEMAP_N 
    n = h3texCUBE(normCubeTexture, n); 
#else 
    n = normalize(n); 
#endif 
 
    static const half m = 34; // specular exponent 
    half4 coeffs; 
    coeffs.y = dot(n,l); 
    coeffs.z = dot(n,h); 
    coeffs = lit(coeffs.y, coeffs.z, m); 
 
    // Compute lighting. 
    return coeffs.y * kd + coeffs.z * ks; 
} 
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Appendix B 
When to Normalize 

Depending on the situation, normalization may not always be necessary.  In the 
lighting example given in this white paper, all four normalizations are essential.  
Because the vectors are used for lighting, they must have unit length or the results 
of the lighting computation will be incorrect.  In the case of environment mapping, 
however, normalization is sometimes overused. The formula typically given for the 
reflection vector is: 

R = 2 * dot(N,V) * N – V, 

where N is the unit-length normal vector, and V is the vector from the viewpoint to 
the reflection point.   

Textbooks sometimes claim that V must be normalized, too.  In the common case 
of hardware cube map reflection, this is not true; texture coordinates for cube map 
lookups can represent any three-dimensional vector.  Only N need be unit length to 
get the correct reflected value.  In the case of a non-unit-length N, you can use 
another formulation of reflection: 

R = 2 * dot(N,V) * N – dot(N,N) * V. 

This formulation results in an R with the correct direction, regardless of the lengths 
of N and V. Note, however that R and V do not necessarily have the same length.  If 
preserving the length of V is necessary, then the following formulation can be used. 

R = (2 * dot(N,V) * N) / dot(N,N) – V. 

Dot Product Optimization 
In lighting computations, vectors are typically used to compute dot products. There 
is a trick that can sometimes be used to reduce the computational cost of 
normalizing vectors.  To compute diffuse lighting you must compute the dot 
product of the unit-length normal and light vectors.  This typically requires two 
reciprocal square roots instructions: 

dot(N / ||N||,L / ||L||) = dot(N * rsq(dot(N,N) ), L * rsq(dot(L,L) ) ). 

However, you can reduce this to a single reciprocal square root because 

dot(N / ||N||, L / ||L|| ) = dot(N,L) / ( ||N|| * ||L|| ). 

Thus, a more efficient computation is 

dot(N/||N||, L/||L|| ) = dot(N,L) * rsq( dot(N,N) * dot(L,L) ). 
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Appendix C 
Approximate Normalization 

A useful optimization for normalization is based on the fact that vectors to be 
interpolated are usually close to unit length. For a nearly-unit-length vector V, you 
can approximate 1 / ||V|| by the first terms of the Taylor expansion of 
 1 / sqrt(x) at x = 1: 

1 / sqrt(x) ≈ 1 + (1 - x) / 2. 

The approximation for V is therefore 

V / || V || = V / sqrt(||V||2) ≈ V + V * (1 - ||V||2) / 2. 

This computation can be implemented using the following two assembly 
instructions. 
dp3_sat r1, r0, r0 

mad_d2 r1, r0, 1-r1, r0_d2 
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Appendix D 
Results 

Table 4  contains the complete performance comparison for all configurations with 
signed RGB cubemaps, float (32-bit) registers, with and without mipmaps.  In the 
mipmap case, the maximum mipmap level is set to 3 

Table 4. Signed RGB Cube Maps, 32-bit Float Registers 

FX 5950 Performance  FX 5700 Performance  FX 5200 Performance  
Active 
Cubemaps 

# 
inst 

# R 
regs no mipmaps mipmaps* no mipmaps mipmaps* no mipmaps mipmaps* 

N H L V                 

0 0 0 0 34 4 94.2  fps 94.2  fps 44.1  fps 44.1  fps 17.9 fps 17.9 fps 

0 0 0 1 33 3 97.1  fps 97.1  fps 45.6  fps 45.6  fps 19.1 fps 19.1 fps 

0 0 1 0 32 5 100  fps 100  fps 47.9  fps 47.9  fps 19.1 fps 19.1 fps 

0 0 1 1 31 4 107.3  fps 107.3  fps 50.5  fps 50.5  fps 20.7 fps 20.7 fps 

0 1 0 0 32 5 98.3  fps 98.3  fps 46.5  fps 46.5  fps 19.1 fps 19.1 fps 

0 1 0 1 31 4 103.1  fps 103.1  fps 48.9  fps 48.9  fps 20.6 fps 20.6 fps 

0 1 1 0 30 5 103.7  fps 103.7  fps 49  fps 49  fps 21.2 fps 21.2 fps 

0 1 1 1 29 5 112.8  fps 112.8  fps 53.7  fps 53.7  fps 22.2 fps 22.2 fps 

1 0 0 0 32 5 87.6  fps 98.2  fps 42.5  fps 45.8  fps 17.2 fps 18.7 fps 

1 0 0 1 31 4 93.5  fps 104.4  fps 45.5  fps 49.8  fps 18.2 fps 19.9 fps 

1 0 1 0 30 6 94.2  fps 103.2  fps 44  fps 48  fps 18.3 fps 20.1 fps 

1 0 1 1 29 5 97.6  fps 110.5  fps 47.8  fps 52.6  fps 19.8 fps 21.9 fps 

1 1 0 0 30 5 90.5  fps 102.2  fps 44.2  fps 47.7  fps 18.4 fps 20.3 fps 

1 1 0 1 29 5 97.7  fps 107.7  fps 47.6  fps 51.5  fps 19.6 fps 21.7 fps 

1 1 1 0 28 5 96.5  fps 108.4  fps 47  fps 51.1  fps 20.3 fps 22.3 fps 

1 1 1 1 27 5 103.8  fps 116.5  fps 51.3  fps 55.6  fps 21.1 fps 23.3 fps 
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Table 5 contains the complete performance comparison for all configurations with 
signed RGB cubemaps, half (16-bit) registers, with and without mipmaps.  In the 
mipmap case, the maximum mipmap level is set to 3. 

Table 5. Signed RGB Cube Maps 16-bit Half Registers 

FX 5950 Performance  FX 5700 Performance  FX 5200 Performance  
Active 
Cubemaps 

# 
inst 

# R 
regs no mipmaps mipmaps* no mipmaps mipmaps* no mipmaps mipmaps*

N H L V                 

0 0 0 0 34 4 132.5  fps 132.5  fps 61.4  fps 61.4  fps 17.7  fps 17.7  fps 

0 0 0 1 33 3 132.3  fps 132.3  fps 61.4  fps 61.4  fps 18.6  fps 18.6  fps 

0 0 1 0 32 5 137.3  fps 137.3  fps 63.4  fps 63.4  fps 18.2  fps 18.2  fps 

0 0 1 1 31 4 146.8  fps 146.8  fps 68.2  fps 68.2  fps 21.6  fps 21.6  fps 

0 1 0 0 32 5 138.6  fps 138.6  fps 68.0  fps 68.0  fps 19.3  fps 19.3  fps 

0 1 0 1 31 4 145.2  fps 145.2  fps 71.1  fps 71.1  fps 21.5  fps 21.5  fps 

0 1 1 0 30 5 142.0  fps 142  fps 66.1  fps 66.1  fps 19.9  fps 19.9  fps 

0 1 1 1 29 5 155.9  fps 155.9  fps 75.9  fps 75.9  fps 23.4  fps 23.4  fps 

1 0 0 0 32 5 119.3  fps 139.3  fps 57.9  fps 63.5  fps 18.2  fps 19.9  fps 

1 0 0 1 31 4 121.4  fps 142.3  fps 60.3  fps 66.4  fps 18.9  fps 20.8  fps 

1 0 1 0 30 6 118.3  fps 139  fps 57.6  fps 63.8  fps 18  fps 19.7  fps 

1 0 1 1 29 5 130  fps 152.2  fps 63.9  fps 70.9  fps 20.6  fps 22.8  fps 

1 1 0 0 30 5 129.3  fps 105.9  fps 60.5  fps 66.9  fps 17.9  fps 19.6  fps 

1 1 0 1 29 5 133.3  fps 150.3  fps 62.9  fps 69.2  fps 19.3  fps 21  fps 

1 1 1 0 28 5 134.2  fps 152.5  fps 63.3  fps 70.3  fps 19.5  fps 21.4  fps 

1 1 1 1 27 5 148.3  fps 172.9  fps 68.8  fps 76.8  fps 22.1  fps 24.5  fps 
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Table 6 contains the complete performance comparison for all configurations with 
signed HILO cube maps, float (32-bit) registers, with and without mipmaps.  In the 
mipmap case, the maximum mipmap level is set to 3. 

Table 6. Signed HILO Cube Maps, 32-bit float registers 

FX 5950 Performance FX 5700 Performance FX 5200 Performance 
Active 
Cubemaps 

# 
inst 

# R 
regs no mipmaps mipmaps* no mipmaps mipmaps* no mipmaps mipmaps* 

N H L V                 

0 0 0 0 34 4 94.2 fps 94.2 fps 44.1 fps 44.1 fps 17.9 fps 17.9 fps 

0 0 0 1 35 5 97.7 fps 97.7 fps 47.4 fps 47.4 fps 18 fps 18 fps 

0 0 1 0 34 5 92.8 fps 92.8 fps 45.7 fps 45.7 fps 18.3 fps 18.3 fps 

0 0 1 1 35 5 92.9 fps 92.9 fps 43.7 fps 43.7 fps 18.4 fps 18.4 fps 

0 1 0 0 34 5 98.6 fps 98.6 fps 42.7 fps 42.7 fps 18.3 fps 18.3 fps 

0 1 0 1 35 5 96.3 fps 96.3 fps 43.5 fps 43.5 fps 18.5 fps 18.5 fps 

0 1 1 0 34 5 88.5 fps 88.5 fps 40.2 fps 40.2 fps 18.6 fps 18.6 fps 

0 1 1 1 35 5 89.2 fps 89.2 fps 44.1 fps 44.1 fps 18.7 fps 18.7 fps 

1 0 0 0 34 5 71.2 fps 85.8 fps 36.9 fps 40.3 fps 15.3 fps 17.4 fps 

1 0 0 1 36 5 75.1 fps 88.8 fps 37.8 fps 40.9 fps 15.4 fps 17.4 fps 

1 0 1 0 34 5 68.9 fps 81.2 fps 38.2 fps 41.5 fps 15.5 fps 17.6 fps 

1 0 1 1 36 5 74.1 fps 87.2 fps 37.4 fps 40.7 fps 16.0 fps 18.2 fps 

1 1 0 0 34 5 70.5 fps 84.1 fps 37.8 fps 40.9 fps 15.7 fps 17.8 fps 

1 1 0 1 37 5 65 fps 76.5 fps 39.4 fps 43.3 fps 15.9 fps 18.1 fps 

1 1 1 0 34 5 69.8 fps 80.4 fps 34.9 fps 41.0 fps 15.8 fps 18 fps 

1 1 1 1 37 5 72.3 fps 83.2 fps 41.3 fps 45.5 fps 16.3 fps 18.5 fps 
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Table 7 contains the complete performance comparison for all configurations with 
signed HILO cube maps, half (16-bit) registers, with and without mipmaps.  In the 
mipmap case, the maximum mipmap level is set to 3. 

Table 7. Signed HILO Cube Maps, 16-bit half registers 

FX 5950 Performance FX 5700 Performance FX 5200 Performance  
Active 
Cubemaps 

# 
inst 

# H 
regs no mipmaps mipmaps* no mipmaps mipmaps* no mipmaps mipmaps* 

N H L V                 

0 0 0 0 34 4 132.5 fps 132.5 fps 61.4 fps 61.4 fps 17.7 fps 17.7 fps 

0 0 0 1 35 5 126.6 fps 126.6 fps 56.7 fps 56.7 fps 17.7 fps 17.7 fps 

0 0 1 0 34 5 130 fps 130 fps 59.7 fps 59.7 fps 17.6 fps 17.6 fps 

0 0 1 1 35 5 129.3 fps 129.3 fps 61.1 fps 61.1 fps 19.3 fps 19.3 fps 

0 1 0 0 34 5 133 fps 133 fps 59.6 fps 59.6 fps 19.2 fps 19.2 fps 
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