/*********************************************************************NVMH3**** File: $Id: //sw/devtools/SDK/9.5/SDK/MEDIA/HLSL/vnoise.fx#3 $ Copyright NVIDIA Corporation 2002-2004 TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THIS SOFTWARE IS PROVIDED *AS IS* AND NVIDIA AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL NVIDIA OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Comments: HLSL noise implementation for vertex program profile This is based on Perlin's original code: http://mrl.nyu.edu/~perlin/doc/oscar.html & Thanks to Simon Green - KB It combines the permutation and gradient tables into one array of float4's to conserve constant memory. The table is duplicated twice to avoid modulo operations. Notes: Should use separate tables for 1, 2 and 3D versions ******************************************************************************/ #include float Script : STANDARDSGLOBAL < string UIWidget = "none"; string ScriptClass = "object"; string ScriptOrder = "standard"; string ScriptOutput = "color"; string Script = "Technique=vnoise;"; > = 0.8; float timer : TIME ; ///////////// functions // this is the smoothstep function f(t) = 3t^2 - 2t^3, without the normalization float3 s_curve(float3 t) { return t*t*( float3(3,3,3) - float3(2,2,2)*t); } float2 s_curve(float2 t) { return t*t*( float2(3,3) - float2(2,2)*t); } float s_curve(float t) { return t*t*(3.0-2.0*t); } // 3D version float noise(float3 v, const uniform float4 pg[FULLSIZE]) { v = v + float3(10000.0f, 10000.0f, 10000.0f); // hack to avoid negative numbers float3 i = frac(v * NOISEFRAC) * BSIZE; // index between 0 and BSIZE-1 float3 f = frac(v); // fractional position // lookup in permutation table float2 p; p.x = pg[ i[0] ].w; p.y = pg[ i[0] + 1 ].w; p = p + i[1]; float4 b; b.x = pg[ p[0] ].w; b.y = pg[ p[1] ].w; b.z = pg[ p[0] + 1 ].w; b.w = pg[ p[1] + 1 ].w; b = b + i[2]; // compute dot products between gradients and vectors float4 r; r[0] = dot( pg[ b[0] ].xyz, f ); r[1] = dot( pg[ b[1] ].xyz, f - float3(1.0f, 0.0f, 0.0f) ); r[2] = dot( pg[ b[2] ].xyz, f - float3(0.0f, 1.0f, 0.0f) ); r[3] = dot( pg[ b[3] ].xyz, f - float3(1.0f, 1.0f, 0.0f) ); float4 r1; r1[0] = dot( pg[ b[0] + 1 ].xyz, f - float3(0.0f, 0.0f, 1.0f) ); r1[1] = dot( pg[ b[1] + 1 ].xyz, f - float3(1.0f, 0.0f, 1.0f) ); r1[2] = dot( pg[ b[2] + 1 ].xyz, f - float3(0.0f, 1.0f, 1.0f) ); r1[3] = dot( pg[ b[3] + 1 ].xyz, f - float3(1.0f, 1.0f, 1.0f) ); // interpolate f = s_curve(f); r = lerp( r, r1, f[2] ); r = lerp( r.xyyy, r.zwww, f[1] ); return lerp( r.x, r.y, f[0] ); } // 2D version float noise(float2 v, const uniform float4 pg[FULLSIZE]) { v = v + float2(10000.0f, 10000.0f); float2 i = frac(v * NOISEFRAC) * BSIZE; // index between 0 and BSIZE-1 float2 f = frac(v); // fractional position // lookup in permutation table float2 p; p[0] = pg[ i[0] ].w; p[1] = pg[ i[0]+1 ].w; p = p + i[1]; // compute dot products between gradients and vectors float4 r; r[0] = dot( pg[ p[0] ].xy, f); r[1] = dot( pg[ p[1] ].xy, f - float2(1.0f, 0.0f) ); r[2] = dot( pg[ p[0]+1 ].xy, f - float2(0.0f, 1.0f) ); r[3] = dot( pg[ p[1]+1 ].xy, f - float2(1.0f, 1.0f) ); // interpolate f = s_curve(f); r = lerp( r.xyyy, r.zwww, f[1] ); return lerp( r.x, r.y, f[0] ); } // 1D version float noise(float v, const uniform float4 pg[FULLSIZE]) { v = v + 10000.0f; float i = frac(v * NOISEFRAC) * BSIZE; // index between 0 and BSIZE-1 float f = frac(v); // fractional position // compute dot products between gradients and vectors float2 r; r[0] = pg[i].x * f; r[1] = pg[i + 1].x * (f - 1.0f); // interpolate f = s_curve(f); return lerp( r[0], r[1], f); } ////////////////////////////////////////////////////////////// float4x4 WorldViewProj : WORLDVIEWPROJECTION ; float4x4 NoiseMatrix = {1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1}; float Displacement < string UIWidget = "slider"; float UIMin = 0.0; float UIMax = 2.0; float UIStep = 0.01; > = 1.0f; float Sharpness < string UIWidget = "slider"; float UIMin = 0.1; float UIMax = 5.0; float UIStep = 0.1; > = 1.0f; float4 dd[5] = { 0,2,3,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5 }; ///////////////////////////// struct appData { float4 Position : POSITION; float4 Normal : NORMAL; float4 TexCoord0 : TEXCOORD0; }; // define outputs from vertex shader struct vertexOutData { float4 HPosition : POSITION; float4 Color0 : COLOR0; }; //////// vertexOutData mainVS(appData IN) { vertexOutData OUT; float4 noisePos = mul(IN.Position+timer,NoiseMatrix); float i = (noise(noisePos.xyz, NTab) + 1.0f) * 0.5f; OUT.Color0 = float4(i, i, i, 1.0f); // displacement along normal i = i - 0.5; i = sign(i) * pow(i,Sharpness); float4 position = IN.Position + (IN.Normal * i * Displacement); position.w = 1.0f; OUT.HPosition = mul(position,WorldViewProj); return OUT; } ////////////////////// technique vnoise < string Script = "Pass=p0;"; > { pass p0 < string Script = "Draw=geometry;"; > { VertexShader = compile vs_2_0 mainVS(); } } ///////////////////////////////////////////////////////////////// eof //