

 developer.nvidia.com
The Source for GPU Programming

NVPerfHUD 3
QQuuiicckk RReeffeerreennccee

When NVPerfHUD is activated, you can perform graphics
pipeline experiments, display graphs of performance
metrics, and explore potential problems using several
performance visualization modes. You can also switch to
the Debug Console or Frame Analysis Mode for deeper
analysis. Use these shortcut keys to switch modes:

F5 Performance Analysis Mode - Use timing graphs
and directed experiments to identify bottlenecks.

F6 Debug Console Mode - Review messages from the
DirectX Debug runtime, NVPerfHUD warnings and
custom messages from your application.

F7 Frame Analysis Mode - Freeze the current frame
and step through your scene one draw call at a
time, using advanced State Inspectors for state of
the graphics pipeline.

Performance Analysis Mode
Configure the information displayed on the screen and
perform several graphics pipeline experiments:

F1 Cycle display of helpful information

B Show Batch Size Histogram

F Fade Background

H Hide Graphs

W Show Wireframe

D Show Depth Complexity

T Isolate the texture unit by forcing the GPU to use
2x2 textures

V Nullify workload of units after the vertex shader
using a 1x1 scissor rectangle to clip all rasterization
and shading work

N Eliminate the GPU (and state change overhead) by
ignoring all draw calls

Frame Analysis Mode
Use the slider or the left/right arrow keys and the
options below to scrub through your scene:

A Toggle Simple/Advanced display

S Show Warnings

W Show Wireframe

D Show Depth Complexity

State Inspectors
Click on the Advanced… button to use the advanced
State Inspectors. You can click on the colored bar
or use the shortcut keys below to switch between
State Inspectors:

1 Index Unit – fetches vertex data

2 Vertex Shader – executes vertex shaders

3 Pixel Shader – executes pixel shaders

4 Raster Operations – post-shading operations

Helpful
Information
(F1 toggles)

Using the Index Unit State Inspector you can verify
all the information used to fetch the vertex data and
make sure the geometry associated with the current
draw call is correct.

Batching
Graph (B) Use the Vertex and Pixel Shader State Inspectors

to verify that the shader program constants and
textures are correct for the current draw call. Make
sure the constants are not #NAN or #INF.

Timing
Graph (H)

Using the Raster Operations State Inspector you
confirm that the back buffer format has an alpha
component when blending doesn’t seem to be working
properly, verify that opaque objects are not drawn with
blendEnable, etc. Memory

Graphs

NVPerfHUD 3 Quick ReferenceQuick Reference

 Identifying Bottlenecks

NVIDIA, the NVIDIA logo, NVPerfHUD are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which they are associated.

© 2005 by NVIDIA Corporation. All rights reserved

Methodology
1. Identify the bottleneck
2. Optimize the bottleneck stage
3. Repeat steps 1 and 2 until desired performance

level is achieved.

CPU Optimizations
 Reduce Resource Locking

 Avoid lock or read from a surface you were previously
rendering to

 Avoid write to a surface the GPU is reading from, like a
texture or a vertex buffer

 Minimize Number of Draw Calls
 If using triangle strips, use degenerate triangles to stitch

together disjoint strips.
 Use texture pages.
 Use the vertex shader constant memory as a lookup

table of matrices
 Use geometry instancing if you have multiple

copies of the same mesh in your scene
 Use CPU shader branching to increase batch

size
 Defer decisions as far down in the pipeline as

possible
 Reduce Cost of Vertex Transfers

 Use the fewest number of bytes possible in vertex
format

 Generate potentially derivable vertex attributes inside
the vertex program instead of storing them inside of the
input vertex format.

 Use 16-bit indices instead of 32-bit indices
 Access vertex data in a relatively sequential manner

 Optimize Vertex Processing
 Pull out per-object computations onto the CPU
 Optimize for the post-TnL vertex cache
 Reduce the number of vertices processed
 Use vertex processing LOD
 Use correct coordinate space
 Use vertex branching to early-out of computations

Graphics Pipeline

Note: If you suspect that you are CPU limited, press N at any time. If

the frame rate of your application does not change, you are CPU
limited.

GPU Optimizations
 Speed up Pixel Shading

 Render depth first
 Help early-Z optimizations throw away pixel processing
 Store complex functions in textures
 Move per-pixel work to the vertex shader
 Use the lowest precision necessary
 Avoid unnecessary normalization
 Use half precision normalizes when possible (e.g. nrm_pp)
 Consider using pixel shader level-of-detail
 Disable trilinear filtering when unnecessary

 Reduce Texture Bandwidth
 Reduce the size of your textures
 Always use mipmapping on any surface that may be

minified
 Compress all color textures
 Avoid expensive texture formats if not necessary

 Optimize Framebuffer Bandwidth
 Render depth first
 Reduce alpha blending
 Turn off depth writes when possible
 Avoid extraneous color buffer clears
 Render front-to-back clears
 Optimize skybox rendering
 Only use floating point framebuffers when necessary
 Use a 16-bit depth buffer when possible
 Use a 16-bit color when possible

Application

CPU Texture
Memory

ROPPixel ShaderVertex
ShaderDriver

GPU

developer.nvidia.com
The Source for GPU Programming

 Refer to the NVPerfHUD User Guide for optimization details

