

GGPPUU PPeerrffoorrmmaannccee
OOppttiimmiizzaattiioonn wwiitthh
NNVVPPeerrffHHUUDD

NNVVPPeerrffHHUUDD 44..00
AA HHeeaaddss--UUpp DDiissppllaayy ffoorr
PPeerrffoorrmmaannccee AAnnaallyyssiiss

DU-01231-001_v06
May 2006

DA-01231-001_v06 2
May 2006

Table of Contents

Chapter 1. What is NVPerfHUD?..1
How NVPerfHUD Works ..1
NVPerfHUD Modes..2
System Requirements ...3
Recommended Reading ..4

Chapter 2. Getting Started...5
Quick Start...5
Profiling Effectively with NVPerfHUD..6
Enable Your Application ..8

Chapter 3. Performance Dashboard ..11
Performance Graphs ...12

3.1.1. Reading the Unit Utilization Graph ..13
3.1.2. Reading the Timing Graphs ..13
3.1.3. Resource Creation Monitor ...16

Pipeline Experiments ..17
Chapter 4. Debug Console ...18
Chapter 5. Frame Debugger...20

Rendering Decomposition ...21
5.1.1. Show Warnings ...22
5.1.2. Show D3D Markers ..22
5.1.3. Texture Unit and RTT Information ..22
5.1.4. Visualization Options..23
5.1.5. Advanced State Inspectors ...23

Vertex Assembly State Inspector ...24
Vertex Shader State Inspector...25
Pixel Shader State Inspector ...25
Raster Operations State Inspector ...26

Chapter 6. Frame Profiler ..28
Using the Frame Profiler ...29

DA-01231-001_v06 i
May 2006

6.1.1. Unit Utilization Bars ...30
6.1.2. Unit Utilization Graph ...31
6.1.3. Draw Call Duration Graph...31
6.1.4. Double-Speed Z/Stencil Graph ..32
6.1.5. Pixel Count Graph..32

Frame Profiler Advanced View ...33
Chapter 7. Analyzing Performance Bottlenecks ..34

Graphics Pipeline Performance ..34
7.1.1. Pipeline Overview ..35

Methodology ..35
7.1.2. Identifying Bottlenecks...36
7.1.3. Raster Operation Bottlenecks..37
7.1.4. Texture Bandwidth Bottlenecks...37
7.1.5. Pixel Shading Bottlenecks...37
7.1.6. Vertex Processing Bottlenecks ..38
7.1.7. Vertex and Index Transfer Bottlenecks..38
7.1.8. CPU Bottlenecks ..39

Chapter 8. Bottleneck Optimizations...40
CPU Optimizations ..40
Reduce Resource Locking ...40
Minimize Number of Draw Calls ...41
Reduce the Cost of Vertex Transfer ...42
Optimize Vertex Processing ...43
Speed Up Pixel Shading ..44
Reduce Texture Bandwidth ...46
Optimize Frame Buffer Bandwidth ...47

Chapter 9. Troubleshooting ...49
Known Issues...49
Frequently Asked Questions ..50

Appendix A. Why the Driver Waits for the GPU...53

DA-01231-001_v06 ii
May 2006

List of Figures

Figure 1. How NVPerfHUD Interacts with Various System Components1
Figure 2. NVPerfHUD Running on a Direct3D Application ..3
Figure 3. NVPerfHUD Starts in the Performance Dashboard ..7
Figure 4. NVPerfHUD Performance Dashboard Mode ..11
Figure 5. NVPerfHUD Info Strip (top) ..12
Figure 6. Unit Utilization Graph in Performance Dashboard Mode..........................13
Figure 7. Performance Graphs ..14
Figure 8. Occasional Spikes ..14
Figure 9. Draw Calls Graph...15
Figure 10. Histogram of Draw Calls...15
Figure 11. Memory Graphs ...16
Figure 12. Resource Creation Monitor ...16
Figure 13. The Debug Console..18
Figure 14. The Frame Debugger ...20
Figure 15. Viewing D3D Event Markers..22
Figure 16. Vertex Assembly Unit State Inspector ...24
Figure 17. Vertex Shader State Inspector ..25
Figure 18. Pixel Shader State Inspector...26
Figure 19. Raster Operations State Inspector ..27
Figure 20. The Frame Profiler ...28
Figure 21. Pipeline Overview ..35
Figure 22. Identifying Bottlenecks...36
Figure 23. Too Many Calls to the Driver ..39
Figure 24. Many Small DrawPrimitive Calls ..41
Figure 25. Driver Waiting for the GPU ...53

DA-01231-001_v06 iii
May 2006

DA-01231-001_v06 1

Chapter 1.
What is NVPerfHUD?

As graphics processing units (GPUs) grow ever more complex, getting optimal
performance out of them can be a daunting task. Because GPUs are pipelined
processors, it’s particularly important that you identify and address the slowest
stages of the pipeline. Otherwise, you can spend a great deal of effort without
getting any improvement in frame rate.

NVPerfHUD is a performance profiling and visual debugging tool that helps you to
solve this complex problem. It does this by presenting a variety of graphs,
experiments and state inspectors about the graphics pipeline superimposed on your
Direct3D application as a heads up display (HUD). (An activation hotkey allows
you to switch between interacting with your application and interacting with
NVPerfHUD.) In addition, NVPerfHUD offers automated performance analysis to
quickly identify the most expensive draw calls.

How NVPerfHUD Works
When NVPerfHUD is enabled, it effectively wraps itself around your application,
using a variety of sophisticated techniques to gather the information it needs to
generate the HUD. NVPerfHUD uses special performance monitoring routines in
the display driver that collect metrics directly from the GPU and within the driver
itself. NVPerfHUD also uses API interception to collect various metrics and
interact with your application. These instrumentation techniques are required for
NVPerfHUD to function properly, and introduce some small additional overhead.
Figure 1 illustrates how NVPerfHUD interacts with various system components to
gather data. The green boxes and arrows in the diagram represent components and
interactions related to NVPerfHUD.

Figure 1. How NVPerfHUD Interacts with Various System
Components

May 2006

 NVIDIA NVPerfHUD User Guide

NVPerfHUD Modes
NVPerfHUD provides four different ways to look at your application’s
performance. By switching between them, you can identify large-scale performance
problems, per-frame issues, and drill down all the way to a detailed analysis of the
draw calls in a particular frame. The four modes are:

F5 Performance Dashboard
Watch the timing graphs and utilization graph detect problem areas in your
application. Control how fast your application is running to zero in on
specific problem frames and then switch to Frame Debugger Mode or Frame
Profiler Mode for more details. On older GPUs, use directed experiments to
identify bottlenecks.

F6 Debug Console
Review messages from the DirectX Debug runtime, NVPerfHUD warnings
and custom messages from your application.

F7 Frame Debugger
Freeze the current frame and step through it one draw call at a time, drilling
down to investigate the setup for each stage of the graphics pipeline using
advanced State Inspectors that show details for each stage in the graphics
pipeline.

F8 Frame Profiler
Freeze the current frame and profile how your application is using the GPU.
This is the most powerful mode that NVPerfHUD offers, allowing you to
sort all draw calls in the current frame by cost. In addition, several
performance graphs and analysis tools are available.

DA-01231-001_v06 2
May 2006

When you run your application with NVPerfHUD, it starts in the Performance
Dashboard mode, a graphical overlay is displayed on top of your Direct3D
application, as shown in Figure 2 below. The four modes are listed at the bottom of

 NVIDIA NVPerfHUD User Guide

the screen, with the currently selected mode indicated by two green boxes.

Graph
overlay

showing
utilization

Graph
overlay
showing
performance

3DMark06 used with permission from Futuremark Corporation.

Figure 2. NVPerfHUD Running on a Direct3D Application
Read the chapters dedicated to each mode to ensure you get the most out of
NVPerfHUD.

System Requirements
 Any NVIDIA GPU (GeForce 3 or better)

GeForce 7 Series, GeForce 6 Series, G70-based or NV4X-based Quadro FX, or
better recommended
Older GPUs are supported with reduced functionality

 NVIDIA display drivers 83.50 or later with instrumentation enabled
(NVPerfKit installs an instrumented driver and automatically enables
instrumentation. You can disable instrumentation through the NVIDIA
Control Panel.)

 Microsoft DirectX 9.0c
 Windows XP

DA-01231-001_v06 3
May 2006

 NVIDIA NVPerfHUD User Guide

Recommended Reading
 NVPerfKit User Guide [Link]
 NVIDIA Developer Web Site

http://developer.nvidia.com
 Balancing the Graphics Pipeline for Optimal Performance – whitepaper [Link]
 NVIDIA GPU Programming Guide – all the latest tips and tricks [Link]
 NVShaderPerf – shader performance analysis utility [Link]
 NVIDIA SDK – hundreds of code samples & effects [Link]

 GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics [Link]
Several of the performance-related chapters are particularly helpful

 GPU Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation [Link]
Microsoft DirectX web site [Link]

 Microsoft Developer Network (MSDN) web site [Link]
Search for “performance” and “optimization”

 Microsoft DirectX SDK documentation [in the Start menu after installation]

DA-01231-001_v06 4
May 2006

http://developer.nvidia.com/object/nvperfkit_home.html
http://developer.nvidia.com/
http://developer.nvidia.com/
http://developer.nvidia.com/object/gpu_programming_guide.html
http://developer.nvidia.com/object/nvshaderperf_home.html
http://developer.nvidia.com/object/sdk_home.html
http://developer.nvidia.com/object/gpu_gems_home.html
http://developer.nvidia.com/object/gpu_gems_2_home.html
http://www.microsoft.com/windows/directx/default.aspx
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/directx9_c/directx/graphics/programmingguide/TutorialsAndSamplesAndToolsAndTips/tips/performanceoptimizations.asp

DA-01231-001_v06 5

Chapter 2.
Getting Started

This chapter explains the basics of starting and using NVPerfHUD, as well as the
simple steps needed to enable NVPerfHUD to work with your application.

Section 0 provides a short tutorial on NVPerfHUD using the “Fog Polygon
Volumes” sample that is installed along with NVPerfHUD. Once you’ve learned the
basics of NVPerfHUD, Section 0 describes how to use NVPerfHUD’s various
modes efficiently to quickly identify an application’s bottlenecks. Finally, Section 0
explains how to enable your own applications so that they can be analyzed with
NVPerfHUD.

Quick Start

May 2006

When you run your application with
NVPerfHUD, the Performance
Dashboard Mode graphs are
displayed on top of your application.
The advanced features of
NVPerfHUD are available via the
activation hotkey you provide during
the setup process described below.

1. Install NVPerfKit
The installer will update your
driver, install NVPerfKit, and
installer NVPerfHUD on your
system. A new icon will be
placed on your desktop for
NVPerfHUD.

2. Run NVPerfHUD
The first time you run the
NVPerfHUD Launcher, a
configuration dialog is
displayed automatically. You
can see the configuration
dialog at any time by running
the launch without specifying
an application to analyze.

3. Select an activation hotkey
Make sure it does not conflict with the keys used by your application.

 NVIDIA NVPerfHUD User Guide

Note: When NVPerfHUD is activated using the activation hotkey, all subsequent
keyboard events are intercepted by NVPerfHUD.

4. Configure API Interception
Tell NVPerfHUD how it should capture your mouse and keyboard events.
You will not be able to use the keyboard and/or mouse if your application
uses an unsupported method.

Note: By default, NVPerfHUD forces NON-PURE device creation because this
is required for several features.

5. Drag-and-drop your application onto the NVPerfHUD desktop icon.
Click OK to confirm your configuration options and then drag-and-drop your
.EXE, .BAT or .LNK (shortcut) file onto the NVPerfHUD Launcher Icon.
You can also run NVPerHUD.exe from the command line and specify the
application to analyze as a command line argument. Some developers choose to
create batch files or modify their IDE settings so this happens automatically.

6. Optional: Change the “Delta Time” setting to SlowMo if your application
crashes or has problems in Frame Debugger Mode or Frame Profiler
Mode. This will help determine whether the problem is in NVPerfHUD or
your application. See the Troubleshooting section for more details.

Note: Access the configuration dialog at any time by running NVPerfHUD
without specifying an application.

You should now see your application running with the default set of NVPerfHUD
graphs and information displayed on top of your application. Use the activation
hotkey you selected to interact with NVPerfHUD and then press F1 to display the
on-screen help. Use your hotkey again to return control to your application.

Note: NVPerfHUD forces vertical refresh synchronization OFF by setting the
PresentationInterval to D3DPRESENT_INTERVAL_IMMEDIATE,
ensuring that you are able to accurately identify bottlenecks in your
application.

Profiling Effectively with NVPerfHUD
With all performance tuning, it’s very important to identify the largest bottlenecks
first. By using NVPerfHUD’s various modes effectively, you can do just that.

When your application first starts with NVPerfHUD enabled, you’ll be in
Performance Dashboard Mode (as shown in Figure 3). The Performance
Dashboard is a great place to start because it gives you a broad look at the graphics
pipeline, including time spent by the CPU. If your application is CPU-limited, you’ll
see a big gap between the yellow line (“Total Frame Time”) and the red line
(“Driver Time”). For CPU-limited situations, you should use a CPU performance

DA-01231-001_v06 6
May 2006

 NVIDIA NVPerfHUD User Guide

analyzer such as Intel’s VTune or AMD’s CodeAnalyst to make your CPU code
more efficient. For more information on Performance Dashboard Mode, please
read Chapter 3.

3DMark06 used with permission from Futuremark Corporation.

Figure 3. NVPerfHUD Starts in the Performance Dashboard

Once you’ve verified that your application is not CPU-bound, navigate through your

ame Profiler (if you are using

ts in

application to the area you want to analyze. If you notice any rendering issues along
the way, switch to the Frame Debugger and solve those problems first. The Frame
Debugger allows you to step through your scene, one draw call at a time. For each
draw call, you can see what geometry, textures, shaders, raster operations are used.
Learn more about the Frame Debugger in Chapter 5.

When you notice a performance issue, switch to the Fr
a GeForce 6 Series or later GPU) and use the advanced profiling features to identify
the bottleneck. The Frame Profiler provides automated performance analysis, giving
you very detailed information about your draw calls and time spent in the various
GPU stages, as well as other useful GPU statistics. It also allows you to group draw
calls into buckets to identify specific types of bottlenecks. If you don’t have a
GeForce 6 Series or later GPU, you must manually use the pipeline experimen
the Performance Dashboard to identify the bottleneck.

DA-01231-001_v06 7
May 2006

 NVIDIA NVPerfHUD User Guide

Enable Your Application
NVPerfHUD is a powerful performance analysis tool that helps you understand the
internal functions of your application. To ensure that unauthorized third parties do
not analyze your application without your permission, you must make a minor
modification to enable NVPerfHUD analysis. Additional information about making
your application work well with NVPerfHUD is detailed in the Troubleshooting
section at the end of this document.

Note: Be sure you disable NVPerfHUD analysis in your application before you
ship. Otherwise, anyone will be able use NVPerfHUD on your application!

One of the first functions called when setting up your graphics pipeline is the
Direct3D CreateDevice() function that creates your display device. In your
application it probably looks something like this:
HRESULT Res;
Res = g_pD3D->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,
 hWnd, D3DCREATE_HARDWARE_VERTEXPROCESSING,
 &d3dpp, &g_pd3dDevice);

DA-01231-001_v06 8
May 2006

 NVIDIA NVPerfHUD User Guide

When your application is launched by NVPerfHUD, a special NVIDIA
NVPerfHUD adapter is created. Your application can give NVPerfHUD
permission to analyze it by selecting this adapter. In addition, since some
applications might select the NVIDIA NVPerfHUD adapter ID unintentionally
and expose themselves to unauthorized analysis, you must select
“D3DDEVTYPE_REF” as the device type. Your application will not actually use the
reference rasterizer as long as you have selected the NVPerfHUD adapter.

A minimal code change that will enable NVPerfHUD analysis in your application
would be something like this:
HRESULT Res;
Res = g_pD3D->CreateDevice(g_pD3D->GetAdapterCount()-1,
 D3DDEVTYPE_REF, hWnd,
 D3DCREATE_HARDWARE_VERTEXPROCESSING,
 &d3dpp, &g_pd3dDevice);

Using the last adapter (by calling GetAdapterCount()-1 as shown above)
assumes that the NVIDIA NVPerfHUD adapter identifier created by
NVPerfHUD will be the last in the list.

Note: Selecting the “NVIDIA NVPerfHUD” adapter and setting the
DeviceType flag to D3DDEVTYPE_REF are the only changes required
to activate NVPerfHUD analysis for your application. If you change only
one of these parameters, NVPerfHUD analysis will not be enabled.

As you will note, this quick and dirty implementation will cause your application to
use the software reference rasterizer when the NVIDIA NVPerfHUD adapter is
not available. To avoid this problem, we recommend that you replace the call to
CreateDevice() in your application with the following code:

// Set default settings
UINT AdapterToUse=D3DADAPTER_DEFAULT;
D3DDEVTYPE DeviceType=D3DDEVTYPE_HAL;

#if SHIPPING_VERSION
// When building a shipping version, disable NVPerfHUD (opt-out)
#else
// Look for 'NVIDIA NVPerfHUD' adapter
// If it is present, override default settings
for (UINT Adapter=0;Adapter<g_pD3D->GetAdapterCount();Adapter++)
{
 D3DADAPTER_IDENTIFIER9 Identifier;
 HRESULT Res;

Res = g_pD3D->GetAdapterIdentifier(Adapter,0,&Identifier);
 if (strcmp(Identifier.Description,"NVIDIA NVPerfHUD") == 0)
 {
 AdapterToUse=Adapter;
 DeviceType=D3DDEVTYPE_REF;
 break;
 }
}

DA-01231-001_v06 9
May 2006

 NVIDIA NVPerfHUD User Guide

#endif

if (FAILED(g_pD3D->CreateDevice(AdapterToUse, DeviceType, hWnd,
 D3DCREATE_HARDWARE_VERTEXPROCESSING,
 &d3dpp, &g_pd3dDevice)))
{
 return E_FAIL;
}

This will enable NVPerfHUD analysis when you want to use it, and ensure that your
application does not use the software reference rasterizer when run normally.

DA-01231-001_v06 10
May 2006

DA-01231-001_v06 11

Chapter 3.
Performance Dashboard

This chapter teaches you how to interpret the information displayed by
NVPerfHUD in Performance Dashboard Mode.

Note: Use the Unit Utilization Graph instead of the manual experiments if you are
using a GeForce 6 Series or later GPU.

Figure 4 shows the graphs and overlays available in Performance Dashboard Mode.

Time
Control

Unit
Utilization

Graph

Batching
Graph

Memory
Graphs

Timing
Graph

3DMark06 used with permission from Futuremark Corporation.

Figure 4. NVPerfHUD Performance Dashboard Mode

May 2006

 NVIDIA NVPerfHUD User Guide

The Info Strip
Basic performance metrics are displayed on the top left corner of the screen (see
Figure 4). Together these numbers provide a measure of how quickly your
application is accomplishing its workload.

Figure 5. NVPerfHUD Info Strip (top)

Time Control
Notice the speed control icon in the upper left corner of the screen, just below the
Info Strip. This control allows you to determine the playback speed of your
application. Controlling the time for your application can be very useful when you
are zeroing in on a specific frame. Use the following keyboard shortcuts to slow
down or speed up your application:

 NumPad + Increase speed
 NumPad - Decrease speed
 NumPad Enter Pause / Continue

Note: NVPerfHUD “freezes” your application by returning the same value every
time your application asks for the current time. This simulates an infinitely fast
rendering loop, so the same workload is submitted for each frame.

Note: If your application has implemented a frame rate limiter, you may need to
disable this functionality to use the time control, debugging and profiling
features of NVPerfHUD. Please see the FAQ (Section 0) for more
information.

Performance Graphs
NVPerfHUD displays several graphs and basic performance metrics by default
when you first start your application.

Additional graphs and information can be displayed as needed, using the activation
hotkey and the following options:

 F1 Cycle display of helpful information
 B Toggle display of batch size histogram
 F Fade the background to improve graph readability
 H Hide graphs
 W Wireframe
 D Depth Complexity

DA-01231-001_v06 12
May 2006

 NVIDIA NVPerfHUD User Guide

Note: The additional overhead and performance characteristics of the DirectX
Debug Runtime make it an inappropriate environment for performance
analysis. NVPerfHUD displays a warning message when it detects that your
application is running with the DirectX Debug Runtime.

3.1.1. Reading the Unit Utilization Graph
The scrolling graph in the upper right corner shows utilization of the various units
inside the GPU. If you are using a GeForce 6 Series GPU or later you can use this
graph to conveniently monitor how your application is using the GPU. If you are
using an older GPU you will need to learn how to interpret the timing graphs,
described below.

The graph shows the number of milliseconds each unit was busy for each frame.
Use this graph to keep tabs on the high level performance characteristics of your
application. When you see a potential problem, switch to Frame Profiler Mode to
freeze the current frame and analyze unit utilization by draw call. (Learn more about
the Frame Profiler in Chapter 6.)

Figure 6. Unit Utilization Graph in Performance Dashboard
Mode

 YELLOW = Vertex Assembly Unit
 RED = Vertex Shader Unit
 GREEN = Pixel Shader Unit
 BLUE = Raster Operations Unit

3.1.2. Reading the Timing Graphs
GPUs released before the GeForce 6 Series do not have the internal performance
counters required by the Unit Utilization Graph. If you are using one of these older
GPUs, you will need to use the manual pipeline experiments and learn to interpret
the timing graphs described below.

Scrolling Graphs

DA-01231-001_v06 13
May 2006

 NVIDIA NVPerfHUD User Guide

These graphs behave like a heart rate monitor, scrolling from right to left every
frame so you can see changes over time.

Figure 7. Performance Graphs

 GPU_IDLE
Total amount of time per frame that the GPU was idle

 DRIVER_WAITS_FOR_GPU
Accumulated elapsed time when the driver had to wait for the GPU
(See Appendix A for more information on why this happens)

 TIME_IN_DRIVER
Total amount of time per frame that the CPU is executing driver code,
including DRIVER_WAITS_FOR_GPU

 FRAME_TIME
Total elapsed time from the end of one frame to the next - you want to keep the
FRAME_TIME line as low as possible. For your convenience, the table below
lists some common frame times and corresponding frame rates (1 /
FRAME_TIME).

FRAME_TIME 17ms 34ms 50ms 75ms 100ms
FPS 60 30 20 13 10

Note: The time gap between the FRAME_TIME line and the TIME_IN_DRIVER
line is the time consumed by application logic and the OS.

You might see occasional spikes caused by some operating system processes
running in the background. The graph below shows a sudden frame rate hit that is
caused by a hard disk access, texture upload, operating system context switch, etc.

100 ms

0 ms
A B

Figure 8. Occasional Spikes

DA-01231-001_v06 14
May 2006

 NVIDIA NVPerfHUD User Guide

This situation is normal if it is sporadic, but you should understand why the spikes
are happening. If they occur regularly, your application may be performing CPU-
intensive operations inefficiently.

 Type A:
If the TIME_IN_DRIVER and FRAME_TIME lines spike simultaneously it is
likely because the driver is uploading a texture from the CPU to the GPU.

 Type B:
If the FRAME_TIME line spikes and the TIME_IN_DRIVER line does not, your
application is likely performing some CPU-intensive operation (like decoding
audio) or accessing the hard disk. This situation may also be caused by the
operating system attending to other processes.

Please note that the green line may spike in either case because you are not sending
data to the GPU.

Draw Primitives Graph
This graph displays the number of draw calls per frame. This includes calls to
DrawPrimitive, DrawPrimitiveUP and DrawIndexedPrimitives.
Using this information to identify performance bottlenecks is discussed in Pipeline
Experiments on the next page and in Chapter 7.

2000

0

1000

2000

0

1000

Figure 9. Draw Calls Graph

Batch Size Histogram
The batch size graph only shows up when you turn it on by activating NVPerfHUD
(using your activation hotkey) and pressing the B key. The first column on the left
represents the number of batches that have between 0 and 100 triangles, the second
between 100 and 200 and so on. If you use many small batches, the bar on the far
left will be high.

1000

0

2000

Figure 10. Histogram of Draw Calls

DA-01231-001_v06 15
May 2006

 NVIDIA NVPerfHUD User Guide

Memory Graphs
This graph displays megabytes of AGP and video memory allocated by the driver.

3DMark06 used with permission from Futuremark Corporation.

Figure 11. Memory Graphs

3.1.3. Resource Creation Monitor
The Resource Creation Monitor indicators blink each time a resource is created.
Dynamic creation of resources in Direct3D is generally bad for performance and
should be avoided whenever possible.

Figure 12. Resource Creation Monitor

The types of resource creation events monitored are:

Tex 2D textures created using CreateTexture()
VolTex Volume textures created using CreateVolumeTexture()
CubTex Cubemap textures created using CreateCubeTexture()
VB Vertex buffers created using CreateVertexBuffer()
IB Index buffers created using CreateIndexBuffer()
RT Render targets created using CreateRenderTarget()

DA-01231-001_v06 16
May 2006

 NVIDIA NVPerfHUD User Guide

DSS Depth stencil surfaces created using CreateDepthStencilSurface()

Note: Resource creation events are also logged in the Debug Console (F6) so you
can see what is causing the indicators to blink.

Pipeline Experiments
Identifying performance bottlenecks requires focusing on certain stages of the
graphics pipeline one stage at a time. On GeForce 6 series and later GPUs, you
should use Performance Dashboard to identify bottlenecks in the graphics pipeline.
These more recent GPUs have special counters designed in that can be used to
determine exactly where the bottleneck is. On older GPUs NVPerfHUD allows
you to perform the following experiments to manually identify performance
bottlenecks:

 T—Isolate the texture unit
Force the GPU to use 2×2 textures, if the frame rate increases dramatically your
application performance is limited by texture bandwidth.

 V—Isolate the vertex unit
Use a 1×1 scissor rectangle to clip all rasterization and shading work in pipeline
stages after the vertex unit. This approach approximates truncating the graphics
pipeline after the vertex unit and can be used to measure whether your
application performance is limited by vertex transforms, CPU workload and/or
bus transactions.

 N—Eliminate the GPU
This feature approximates having an infinitely fast GPU by ignoring all
DrawPrimitive() and DrawIndexedPrimitives() calls. This approximates the
frame rate your application would achieve if the entire graphics pipeline had no
performance cost. Note that CPU overhead incurred by state changes is also
omitted.

You can also selectively disable pixel shaders by version and visualize how they are
used in your application. When a particular shader version is disabled, all shaders in
that group are represented by the same color. The shader visualization options
provided by NVPerfHUD are listed below:

1 — FFiixxeedd ffuunnccttiioonn
2 — 11..11 PPiixxeell sshhaaddeerrss
3 — 11..33 PPiixxeell sshhaaddeerrss
4 — 11..44 PPiixxeell sshhaaddeerrss

5 — 22..00 PPiixxeell sshhaaddeerrss
6 — 22..aa PPiixxeell sshhaaddeerrss
7 — 33..00 PPiixxeell sshhaaddeerrss

Note: Shader visualization only works when a Direct3D device is created as a
NON PURE device. You can force the device to be created in NON PURE
device mode in the NVPerfHUD configuration settings.

DA-01231-001_v06 17
May 2006

DA-01231-001_v06 18

Chapter 4.
Debug Console

This chapter describes the information available to you in the Debug Console mode.
The Debug Console screen is shown in Figure 13.

3DMark06 used with permission from Futuremark Corporation.

Figure 13. The Debug Console

The Debug Console shows all the messages reported via the DirectX Debug
runtime, messages reported by your application via the OutputDebugString()
function and any additional warnings or errors detected by NVPerfHUD. Please
note that the maximum supported size for debug output strings is 4 KB, and only
the first 80 characters of a string will be visible in the Debug Console if the string
doesn’t contain newline characters. Resource creation events and warnings detected
by NVPerfHUD are also logged in the console window.

May 2006

 NVIDIA NVPerfHUD User Guide

You can use the options below to customize how the Debug Console works:

 C Clear Log Each Frame
 S Stop Logging
 F Fade Console

Enabling the “Clear Log Each Frame” checkbox causes the contents of the console
window to be cleared at the beginning of the frame so you only see the warnings
generated by the current frame. This is useful when your application generates
more warnings per frame than fit in the console window.

Enabling the “Stop Logging” checkbox causes the console to stop displaying new
messages.

You can also choose to display on your application or only NVPerfHUD in this
mode.

DA-01231-001_v06 19
May 2006

DA-01231-001_v06 20

Chapter 5.
Frame Debugger

This chapter explains how to get the most out of the Frame Debugger and its
advanced graphics pipeline State Inspectors. Figure 14 shows the Frame Debugger.

When you first enter Frame Debugger Mode, the results of the first draw call are
shown. Use the slider at the bottom of the screen to scrub forward in time and see
the results of each successive draw call.

3DMark06 used with permission from Futuremark Corporation.

Figure 14. The Frame Debugger

The geometry associated with the current draw call is highlighted in orange
wireframe.

You can also use the left/right arrow keys to display the previous/next draw call,
and the options below to configure the Frame Debugger:

 A Toggle Advanced / Simple display
 S Show Warnings
 M D3D Markers

May 2006

 NVIDIA NVPerfHUD User Guide

The pull-down menu at the bottom of the screen or a shortcut keys below can be
used to select one of the supported rendering modes.

 W Wireframe
 D Depth Complexity
 Z Z-Buffer
 F Dest Alpha

Rendering Decomposition
You can use Frame Debugger Mode to navigate to any Draw Call within a frame.
When you have identified a frame that has rendering artifacts, you can use Frame
Debugger Mode to verify the order in which your scene gets drawn or learn more
about what is causing any warnings that arise. When you switch to Frame Debugger
Mode, NVPerfHUD stops the clock for your application and you can perform in-
depth analysis of the current frame while it is frozen. If your application uses frame-
based animation, freezing time will have no effect on animated objects.

Note: To use Frame Debugger Mode effectively, your application must behave in
a way that NVPerfHUD can control it. Several requirements are described
below. See the Troubleshooting section at the end of this document for
additional issues.

Frame Debugger Mode requires that your application use and rely on the
QueryPerformanceCounter() or timeGetTime() win32 functions. Your application
must be robust in handling elapsed time (dt) calculations, especially the case where
dt is zero. In other words, your program should not divide by dt.

While your application is frozen, use the Next (right arrow) and Previous (left
arrow) keyboard buttons to step through all the draw calls in the frame. You can
also drag the slider at the bottom of the screen back and forth or use PgUp / PgDn
for quick navigation to a particular draw call. The geometry drawn by the current
draw call is highlighted on the screen.

If mouse or keyboard event interception isn’t working properly, exit your
application and select an alternate API interception option in the NVPerfHUD
configuration dialog.

The information displayed for each draw call includes:

 Which draw call was just drawn and how many there are in total
 The function name and parameters of the last draw call. If the draw call

generated a warning then the warning message is displayed as well.

DA-01231-001_v06 21
May 2006

 NVIDIA NVPerfHUD User Guide

5.1.1. Show Warnings
When Show Warnings (S) is enabled, a list of warnings is shown in a list box at the
top of the screen, including the most expensive vertex buffer (VB) locks by DP call.
Clicking on a warning will jump you to the associated DP call. You can also use the
Up / Down arrows to scroll through the list. Clicking Next (right arrow) or
Previous (left arrow) while warnings are displayed moves the slider at the bottom
of the screen to the next/previous draw call that caused a warning.

You should inspect each VB lock to make sure that the time spent locked is
understood and as small as possible. This should help you understand where your
application is spending CPU time to setup Vertex Buffers.

5.1.2. Show D3D Markers
The D3D Markers option allows you to see markers you have set in your
application, displayed in a hierarchical tree view (see Figure 15). Clicking on a
marker to jumps to the associated draw call. See the Direct3D API documentation
for more information on using D3D Markers to instrument your application:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/Accurately_Profiling_Direct3D_API_Calls.asp

Figure 15. Viewing D3D Event Markers

5.1.3. Texture Unit and RTT Information
Information displayed for each texture unit and off-screen render to texture (RTT)
target includes:

 The texture stored in each texture unit and attributes for each:

DA-01231-001_v06 22
May 2006

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/Accurately_Profiling_Direct3D_API_Calls.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/Accurately_Profiling_Direct3D_API_Calls.asp

 NVIDIA NVPerfHUD User Guide

 Dimensions
 Filtering Parameters: minification, magnification and MIP level
 Texture Format: RGBA8, DXT1, DXT3, DXT5, etc…
 Texture Target: 1D, 2D, Volume Texture, Cube Texture, NP2, etc…

 If the current draw call is rendering to an off-screen texture (RTT) the contents
of that texture and its attributes will be displayed in the middle of the screen.

When more textures are used than fit on the screen, use the scroll bar to navigate
through the list.

5.1.4. Visualization Options
Frame Debugger Mode supports several visualization options:

 D Depth Complexity: this option turns on additive blending with a reddish
colored tint. The brighter the screen becomes, the more the frame buffer has
been touched. Each frame buffer Read-Modify-Write (RMW) increments the
color value by 8, up to a maximum of 32 RMWs. When the screen color is
saturated (255), your application is overwriting to the frame buffer too often,
possibly leading to fill-limited performance bottlenecks.

 W Wireframe: this option forces wireframe rendering so you can examine the
geometric complexity of the scene.

 F Dest Alpha: this option allows you to visualize how your application is
using destination alpha.

You can also export the current set of data to an XML file for later analysis by
clicking on the Export button.

5.1.5. Advanced State Inspectors
Clicking on the Advanced… (A) button activates the advanced State Inspectors.
The slider at the bottom of the screen is still available for navigation, but now the
top of the screen has several buttons for each stage in the graphics pipeline. You
can either click on the button or press a shortcut key to switch between Inspectors
for various GPU pipeline units:

 1 Vertex Assembly – fetches vertex data
 2 Vertex Shader – executes vertex shaders
 3 Pixel Shader – executes pixel shaders
 4 Raster Operations – post-shading operations in the frame buffer

Note: For details regarding the state information displayed in each of the
NVPerfHUD State Inspectors, refer to the documentation that is installed
with the latest version of the DirectX SDK.

Clicking on each stage shows you detailed information about what is happening in
that stage during the current draw call. The following sections describe the
information displayed by each of the State Inspectors.

DA-01231-001_v06 23
May 2006

 NVIDIA NVPerfHUD User Guide

Vertex Assembly State Inspector

When this State Inspector is selected, NVPerfHUD displays information about the
 call. Vertex Assembly Unit during the current draw

Figure 16. Vertex Assembly Unit State Inspector

In the center of the screen, a rotating wireframe rendering of the geometry
associated with this draw call is displayed inside a bounding box.

Next to this, a list box reports all the information used to fetch the vertex data for
this draw call, including:

ly Unit State Inspector you should look at the wireframe
ication sent is correct. For example,

ring is corrupted, you should
er/index buffer is correct. If the

osture is correct, then any rendering corruption of this geometry in your

 16-

 Draw call parameters and return flags
 Index and Vertex buffer formats, sizes, etc.
 FVFs

Using the Vertex Assemb
rendering to verify that the batch your appl
when doing matrix palette skinning and the rende

ure in the vertex buffverify that the reference post
reference p
scene is probably caused by the vertex shader or bad vertex weights

You should also verify that the format of the indices is correct, making sure that
bit indices are used whenever applicable.

DA-01231-001_v06 24
May 2006

 NVIDIA NVPerfHUD User Guide

Vertex Shader State Inspector
When this State Inspector is selected, NVPerfHUD displays information about the
vertex shader used for the current draw call.

Figure 17. Vertex Shader State Inspector

The vertex shader program, along with any constants and textures used by it, are
displayed for inspection. When a vertex shader uses the address register (e.g. matrix
palette skinning) all the constants are shown. Information about each of the texture
samplers is also displayed for reference. Use the + / – keys to magnify the textures
displayed.

Using the Vertex Shader State Inspector you should:

 Verify that the expected vertex shader is applied for the current draw call
 Verify that the constants are not passing #NAN or #INF
 Verify that texture states are set correctly

Pixel Shader State Inspector
When this State Inspector is selected, informat
current draw call is displayed.

ion about the Pixel Shader during the

DA-01231-001_v06 25
May 2006

 NVIDIA NVPerfHUD User Guide

Figure 18. Pixel Shader State Inspector

The pixel shader program, along with any constants and textures used by it, are
displayed for inspection. Information about each of the texture samplers is also
displayed for r fere splayed.

y

Raster Op

e nce. Use the + / – keys to magnify the textures di

Using the Pixel Shader State Inspector, you should:

 Verify that the expected pixel shader is applied for the current draw call
 Verify that the constants are not passing #NAN or #INF
 Verify that the textures and render-to-texture textures are used correctly
 Verify that texture filtering states are set correctl

erations State Inspector
When this State Inspector is selected, NVPerfHUD displays information about the
raster operations (ROP) unit for the current draw call. This information is displayed
in a collapsible tree to help manage the large amount of data.

Note: For additional details regarding the state i nformation displayed in the Raster
Operations State Inspector, please see the documentation that is installed
with the latest version of the DirectX SDK.

DA-01231-001_v06 26
May 2006

 NVIDIA NVPerfHUD User Guide

Figure 19. Raster Operations State Inspector

Information about the post-shading raster operations for this draw call is displayed
for inspection. The information includes:

 Back buffer format

erization mode
e – Writes Z in the depth buffer or not

t is the blend operation
cation blending in the frame buffer

fer enabled

Wh

 a component

 aque objects is not done with blendEnable

 Render target format

 Render states that can cause frame buffer processing to be expensive include:
 Zenable – Z compare operation
 Fillmode – rast
 ZWriteEnabl
 AlphaTestEnable – is alpha test enabled
 SRCBLEND and DSTBLEND – wha
 AlphablendEnable – is the appli
 Fogenable – is fog enabled
 Stencil enable – is writing to stencil buf
 StencilTest

en you are using the Raster Operations State Inspector, you should:

Verify that the back buffer oes indeed contains an alph
whe esn’t work right

 format d
n the blending do

Verify that drawing op

DA-01231-001_v06 27
May 2006

DA-01231-001_v06 28
May 2006

.
filer

The NVPerfHUD Frame Profiler uses special hardware inside the GPU and
instrumentation inside the drivers to measure exactly how your application is using
the GPU and report information you can use to identify and remove bottlenecks
from your graphics pipeline.

The Frame Profiler is the most powerful and effective way to find bottlenecks in a
particular frame because it automatically identifies that frame’s most expensive draw
calls. In addition, it allows you to access a wealth of detailed information for any
particular draw call so you can see how to address suboptimal performance.

Chapter 6
Frame Pro

3DMark06 used with permission from Futuremark Corporation.

Figure 20. The Frame Profiler

Note: Frame Profiler is available only on GeForce 6 Series and newer GPUs.

 NVIDIA NVPerfHUD User Guide

Using the Frame Profiler
When you switch to Frame Profiler Mode (F8), NVPerfHUD forces your
pplication to render the same frame several times and monitors how the driver and
PU are used by each draw call in your application. This information is then used

 state

pensive (that is, time consuming) draw call in state

 another that draws a second, similar object far away from the camera (B).

a
G
to group draw calls with similar state attributes into “state buckets”. Think of
buckets as a “group by bottleneck” operation.

Since all the draw calls in a state bucket share common characteristics, optimizing
the bottleneck of the most ex
bucket is likely to benefit all draw calls in that state bucket.

For example, suppose you have a state bucket with two draw calls in it:

 one that draws an object close to the camera (A), and

The object close to the camera will probably take more time to draw. Optimizing
for the bottleneck of the most expensive draw call (A) in this state bucket will also
benefit the other draw call (B) at times when the second object is close to the
camera.

Note: If the number of draw calls in the current frame changes, NVPerfHUD will
prompt you to press the SPACE BAR and then reanalyze the current
frame. This is an indication that your application is not able to send the
same workload repeatedly, and will therefore be very difficult to analyze.
See the Troubleshooting section

Initially, you should let NVPerfHUD use the default state bucket configuration,
shown below:

After the initial analysis, you can configure which attributes are used sort draw calls
into state buckets manually for a different perspective.

The top list box shows you all the state buckets into which your draw calls have
been grouped, sorted by default from most expensive to least expensive. You can
click on any column header to sort by that column (in ascending or descending
order).

DA-01231-001_v06 29
May 2006

 NVIDIA NVPerfHUD User Guide

The next list box shows you all the draw calls in the currently selected state bucket.
By default the draw calls are sorted from most expensive to least expensive, but yo
can click on any column header to sort by that column instead (in ascending or
descending order).

u

 on any draw call will cause the slider at the bottom of the screen to jump
w call, and the results of that draw call to be highlighted on the screen. Yo
 drag the slider at the bottom of th

Clicking to
that dra u
can also e screen to a specific draw call to see
which state bucket it is in.

hs
o better analyze the performance characteristics of the current scene.

6.1.1.

 all calls in the same state

Use the pull-down menu below the draw calls list box to select one of several grap
that allow you t

Unit Utilization Bars
In this graph, the bar on top represents the entire frame. The bars below that show
how busy each unit was during the current draw call and

DA-01231-001_v06 30
May 2006

 NVIDIA NVPerfHUD User Guide

bucket.

6.1.2.
nce Dashboard that
basis. The Frame

h shows GPU unit

The yellow section of each bar represents the total time in ms for the frame.

The red section represents time used by all calls in the current state bucket.

The orange section represents time used by the current draw call.

Unit Utilization Graph
This graph is similar to the Utilization Graph in the Performa
helps you monitor GPU unit utilization on a frame-by-frame
Profiler is focused on analyzing a single frame, so this grap
utilization in milliseconds for each draw call in the current frame.

6.1.3. Draw Call Duration Graph
took to complete each draw call in the frame. This graph shows the number of ms it

You can use the slider to quickly navigate through the scene looking for potential
problems.

DA-01231-001_v06 31
May 2006

 NVIDIA NVPerfHUD User Guide

6.1.4.
 call for which

the double-speed depth/stencil “fast path” was active. This refers to the ability of
ards) to render at double speed when

Double-Speed Z/Stencil Graph
The graph shows you the number of milliseconds during each draw

NVIDIA GPUs (from GeForce FX onw
outputting only depth or stencil values.

6.1.5.

and as the number of pixels drawn per

Pixel Count Graph
This graph shows the number of pixels actually rendered to the screen for each
draw call, both as a percentage of the screen
GPU clock cycle.

DA-01231-001_v06 32
May 2006

 NVIDIA NVPerfHUD User Guide

Frame Profiler Advanced View
You can use the Advanced button at the bottom of the screen to access advanced
State Inspectors. When you do this from Frame Profiler Mode, you can select draw
calls by state bucket and view how expensive each draw call was in the context of
the current frame. The colored bars at the top are the same style as the unit
utilization bars described above.

The top list box in this view allows you to choose between state buckets, and the
bottom list box allows you to select different draw calls within a state bucket.

DA-01231-001_v06 33
May 2006

DA-01231-001_v06 34
May 2006

Chapter 7.
tlenecks

Graphics

Analyzing Performance Bot

Pipeline Performance
Modern graphics processing units (GPUs) generate images through a pipelined
sequence of operations. A pipeline runs only as fast as its slowest stage, so tuning
graphical applications for optimal performance requires a pipeline-based approach
to performance analysis.

Over the past few years, hardware-accelerated rendering pipelines have substantially
increased in complexity, bringing with it increasingly complex and potentially
confusing performance characteristics. What used to be a relatively simple matter of
reducing CPU cycles of inner loops in your renderer to improve performance, has
now become a cycle of determining bottlenecks and systematically optimizing them.
This repeating process of Identification and Optimization is fundamental to tuning a
heterogeneous multiprocessor system, with the driving idea being that a pipeline is,
by definition, only as fast as its slowest stage. The logical conclusion is that, while
premature and unfocused optimization of a single processor system can lead to only
minimal performance gains, in a multi-processor system it very often leads to zero
gains.

Working hard on graphics optimization and seeing zero performance improvement is
no fun. The goal of this chapter is to explain how NVPerfHUD should be used to
identify performance bottlenecks and save you from wasting time.

 NVIDIA NVPerfHUD User Guide

DA-01231-001_v06 35
May 2006

7.1.1. Pipeline Overview
At th
Figu
operating in parallel, which can essentially be viewed as separate special purpose
processors, and a number of spots where a bottleneck can occur. These include
vertex and index fetching, vertex shading (transform and lighting), pixel shading,
texture loading, and raster operations (ROP).

e highest level, the pipeline is broken into two parts: the CPU and GPU.
re 21 shows that within the GPU there are a number of functional units

Methodol

Figure 21. Pipeline Overview

ogy
Optimization without proper bottleneck identification is the cause of much wasted
development effort, and so we formalize the process into the following fundamental
identification and optimization loop:

 Identify

e application to
vary its workload,

 Optimize
Given the bottlenecked stage, reduce its workload until performance stops
improving, or you achieve your desired level of performance.

 Repeat
Repeat steps 1 and 2 until the desired performance level is reached

For each stage in the pipeline use an NVPerfHUD experiment to isolate that
stage. If performance varies, you’ve found a bottleneck. You can also try
implementing similar experiments on your own by modifying th

 NVIDIA NVPerfHUD User Guide

7.1.2. Identifying Bottlenecks
ke

ows a

e
at,

y definition, has a single bottleneck,
over the course of a frame the bottleneck most likely changes, so modifying the

or

en

Figure 22. Identifying Bottlenecks

Locating the bottleneck is half the battle in optimization, as it enables you to ma
intelligent decisions on focusing your actual optimization efforts. Figure 22 sh
flow chart depicting the series of steps required to locate the precise bottleneck in
your application. Note that we start at the back end of the pipeline, with the fram
buffer operations (also called raster operations) and end at the CPU. Note also th
while any single primitive (usually a triangle), b

workload on more than one stage in the pipeline often influences performance. F
example, it’s often the case that a low polygon skybox is bound by pixel shading or
frame buffer access, while a skinned mesh that maps to only a few pixels on scre
is bound by CPU or vertex processing. For this reason, it often helps to vary
workloads on an object-by-object, or material-by-material, basis.

Note: If you suspect that your application is CPU limited, you can press N at any
time. If the frame rate of your application does not dramatically increase,
your application is CPU limited.

DA-01231-001_v06 36
May 2006

 NVIDIA NVPerfHUD User Guide

7.1.3. Raster Operation Bottlenecks

7.1.4.
Texture bandwidth is consumed anytime a texture fetch request goes out to

e most expensive using
NVShader poser. Remember that pixel
shader cost is per-pixel, so an expensive shader that only affects a few pixels may

pixels.
your pe the shaders with the highest cost.

The backend of the pipeline, often called the ROP, is responsible for reading and
writing depth and stencil, doing the depth and stencil comparisons, reading and
writing color, and doing alpha blending and testing. As you can see, much of the
ROP workload taxes the available frame buffer bandwidth.

The best way to test if your application is frame buffer bandwidth bound is to vary
the bit depths of the color and/or depth buffers. If reducing your bit depth from
32-bit to 16-bit significantly improves your performance, then you are definitely
frame buffer bandwidth bound.

Frame buffer bandwidth is a function of GPU memory clock speed.

Texture Bandwidth Bottlenecks

memory. Although modern GPUs have texture caches designed to minimize
extraneous memory requests, they obviously still occur and consume a fair amount
of memory bandwidth.

Pressing T while NVPerfHUD is activated replaces all textures in your application
with a 2×2 texture. This emulates a much faster texture-fetch with much better
texture cache coherence. If this causes performance to improve significantly, you are
bound by texture bandwidth.

Texture bandwidth is also a function of GPU memory clock speed.

7.1.5. Pixel Shading Bottlenecks
Pixel shading refers to the actual cost of generating a pixel, with associated color and
depth values. This is the cost of running the “pixel shader”. Note that pixel shading
and frame buffer bandwidth are often lumped together under the heading “fillrate”
since they are both a function of screen resolution, but they are two distinct stages
in the pipeline, and being able to tell the difference between the two is critical to
effective bottleneck identification and optimization.

The first step in determining if pixel shading is the bottleneck is using NVPerfHUD
to substitute all the shaders with very simple shaders. To do this, disable the pixel
shader profiles one at a time using 1, 2, 3, … in Performance Dashboard Mode and
watch for changes in frame rate. If this causes performance to improve, the culprit
is most likely pixel shading.

The next step is to figure out which shaders are th
Perf or the Shader Perf panel in FX Com

not be as much of a performance problem as an expensive shader that affects many
 Basically, shader_cost = cost_per_pixel * number_of_pixels_affected. Focus
rformance optimization efforts on

DA-01231-001_v06 37
May 2006

 NVIDIA NVPerfHUD User Guide

FX Composer includes a number of shader optim
helpful in reducing the performance cost of your s

ization tutorials that may be
haders.

Note: The latest versions of FX Composer and NVShaderPerf will help you
analyze shader performance across the entire family of NVIDIA GPUs.
Both are available from http://developer.nvidia.com.

7.1.6.
 the rendering pipeline is responsible for taking a

xture
g and

ertex lighting results, texture
e is a function of the work

ng

 roughly equivalent to the original frame-rate, then your

Vertex Processing Bottlenecks
The vertex transformation stage of
set of vertex attributes (e.g. model-space positions, vertex normals, te
coordinates, etc.) and producing a set of attributes suitable for clippin
rasterization (e.g. homogeneous clip-space position, v
coordinates, etc.). Naturally, performance in this stag
done per-vertex, along with the number of vertices being processed.

Determining if vertex processing is your bottleneck is a simple matter of runni
your application with NVPerfHUD and pressing the V key to isolate the vertex unit.
If the resulting frame-rate is
application is limited by vertex/index buffer AGP transfers, vertex shader units, or
inefficient locks and resulting GPU stalls.

Note: To rule out inefficient locks you should run the app in the Direct3D debug
run-time and verify that no errors or warnings are generated.

7.1.7. Vertex and Index Transfer Bottlenecks

s

nts to help the driver choose

Vertices and indices are fetched by the GPU as the first step in the GPU part of the
pipeline. The performance of vertex and index fetching can vary depending on
where the actual vertices and indices are placed, which is usually either system
memory, which means they will be transferred to the GPU over a bus like AGP or
PCI-Express, or local frame buffer memory. Often, on PC platforms especially, thi
decision is left up to the device driver instead of your application, though modern
graphics APIs allow applications to provide usage hi
the correct memory type. Refer to the NVIDIA GPU Programming Guide [Link]
for advice about using Index Buffers and Vertex Buffers optimally in your
application.

Determining if vertex or index fetching is a bottleneck in your application is a
matter of modifying the vertex format size.

ed
Vertex and index fetching performance is a function of the AGP/PCI-Express rate
if the data is placed in system memory, and a function of the memory clock if plac
in local frame buffer memory.

DA-01231-001_v06 38
May 2006

 NVIDIA NVPerfHUD User Guide

7.1.8.
There are two ways to know if your application performance is limited by the CPU.

O o
watch t
is flat at he GPU is never idle. If the green line jumps up

s not submitting enough

y

plication.

man ation Monitor
described in Section 3.1.3.

CPU Bottlenecks

ne quick way to tell that your application performance is limited by the CPU is t
he GPU Idle (green) line in the NVPerfHUD timing graph. If the green line
the bottom of the graph, t

from the bottom of the graph, it means that the CPU i
work to the GPU.

You can also tell that your application is limited by the CPU by pressing N to isolate
the GPU. When you do this, NVPerfHUD forces the Direct3D runtime to ignore
all the DP calls. The resulting frame rate approximates the frame rate your
application would have with an infinitely fast GPU and display driver.

If your application performance is CPU limited (too busy to feed the GPU), it ma
be caused by:

 Too many DP calls – there is driver overhead for each call. See Figure 23 and
the accompanying description below.

 Demanding application logic, physics, etc. - the gap between the FRAME_TIME
(YELLOW) line and TIME_IN_DRIVER (RED) line represents the amount of
time the CPU was dedicated to your ap

 Loading or allocating resources – for example, the driver must process each
texture, so the GPU may finish all pending work while the driver is busy loading

y (large) textures. Watch for these events in the Resource Cre

100 m

0

s

ms

 the
king at the graph that reports number

Figure 23. Too Many Calls to the Driver

Figure 23 shows a typical case where your application is doing too many calls to
driver, double check this scenario by also loo
of batches.

DA-01231-001_v06 39
May 2006

 NVIDIA NVPerfHUD User Guide

Chapter 8.

CPU Opti

Bottleneck Optimizations

Once you have identified the bottleneck, you must optimize that particular stage in
order to improve application performance. The following optimization suggestions
are organized by the stage for which they may improve overall application
performance.

mizations
Applications performance may CPU-limited due to complex physics or AI. Your

ormance may also suffer due to poor batch size and resource management. If
’ve found that your application is CPU-limited, try

perf
you the following suggestions to

Reduce Resource Locking

reduce CPU work in the rendering pipeline.

Resources can be either textures or vertex buffers. Anytime you perform a
synchronous operation which demands access to a GPU resource, there is the
potential to massively stall the GPU pipeline, which costs both CPU and GPU
cycles. CPU cycles are wasted because the CPU must sit and spin in a loop waiting
for the GPU pipeline to drain and return the requested resource. GPU cycles are
then wasted as the pipeline sits idle and has to refill.

This can occur any time you:

 Lock or read from a surface you were previously rendering to.
 Write to a surface the GPU is reading from, like a texture or a vertex buffer.

PU.

To rule out inefficient locks you should run the application in the Direct3D debug
run-time and verify that no errors or warnings are generated. Read more about
effectively managing how you lock resources in this whitepaper:
http://developer.nvidia.com/object/dynamic_vb_ib.html

Locking a busy resource contributes to raising the DRIVER_WAITS_FOR_GPU (BLUE)
line. See Appendix A for more information about things that cause the driver to
wait for the G

DA-01231-001_v06 40
May 2006

 NVIDIA NVPerfHUD User Guide

Minimize Number of Draw Calls
Every API function call to d
minimizing the number of API calls a
graphics state changes minimizes the amount of CPU work used for a given number
of triangles rendered.

We define a batch as a group of primitives rendered with a single API rendering calls
such as DrawPrimitive() and DrawIndexedPrimitive() in DirectX 9. The

too
many draw calls with a small number of primitives.

raw geometry has an associated CPU cost, so
nd, in particular, minimizing the number of

“size” of a batch refers to the number of primitives contained in it.

You can know how well you are batching using NVPerfHUD. Pressing B displays a
histogram showing the distribution of number of triangles per draw call per frame.
Figure 24 shows an application that probably performs poorly because it has

20002000

0

1000

0

1000

Figure 24. Many Small DrawPrimitive Calls

rimitive calls, try the following:

 disjoint
ial, in

o a single 2D texture and

inates appropriately, you can send geometry that uses
e draw call. Note that this technique can have issues

s many of these
st

et broken when many small objects share all material properties

at for each object.
ant memory in the vertex

shader and use the correct transformation matrix, thus rendering N objects at
once.

 Use geometry instancing if you have multiple copies of the same mesh in
your scene. This technique allows you to draw multiple copies of the same

To reduce the number of DrawP

 If using triangle strips, use degenerate triangles to stitch together
strips. This enables you to send multiple strips, provided they share mater
a single draw call. The NVTristrip library is available from
http://developer.nvidia.com provides source code for this.

 Use texture pages. Batches are frequently broken when different objects use
different textures. By arranging many textures int
setting your texture coord
multiple textures in a singl
with mipmapping and anti-aliasing. One technique that sidestep
issues is to pack individual 2D textures into each face of a cubemap. The late
version of the NVIDIA SDK includes a collection of texture atlas tools that
help you create and preview texture pages.

 Use the vertex shader constant memory as a lookup table of matrices.
Often batches g
but differ only in matrix state (for example, a forest of similar trees). In these
cases, you can load multiple matrices into the vertex shader constant memory
and store indices into the constant memory in the vertex form
Then you use this index to lookup into the const

DA-01231-001_v06 41
May 2006

 NVIDIA NVPerfHUD User Guide

mesh object with a single draw call and t
“instance” of the mesh can be drawn in

wo vertex streams. Each copy or
a different locations, and (optionally)

with different visualizations. One stream contains a single copy of the mesh to
ors,
d

0) polygon objects because this reduces the CPU overhead

PUs have

oke out of the loop when the

h submissions.

Reduce the Cost of Vertex Transfer

be instanced, and the other contains per-instance data (world transforms, col
etc). Then you can issue a single draw call and tell it how many instances you’
like to draw. In general, geometry instancing is most useful when you have
many low (sub-100
of many draw calls. An example of geometry instancing (with full source code)
is also included in the latest version of the NVIDIA SDK.

 Use GPU shader branching to increase batch size. Modern G
flexible vertex and pixel processing pipelines that allow for branching inside the
shader. For example, if two batches are separate because one requires a 4 bone
skinning vertex shader, while the other requires a 2 bone skinning vertex shader,
you could instead write a vertex shader that looped over the number of bones
required, accumulating blending weights, and br
weights summed to one. This way, the two batches could be combined into
one. On architectures that don’t support shader branching, similar functionality
can be implemented, at the cost of shader cycles, by using a 4 bone vertex
shader on everything, and simply zeroing out the bone weights on vertices
thathave fewer than 4 bone influences.

 Defer decisions as far down in the pipeline as possible. It’s faster to use
the alpha channel of your texture as a gloss factor, rather than breaking the
batch to set a pixel shader constant for glossiness. Similarly, putting shading
data in your textures and vertices can allow for larger batc

Ver
imp ven less likely,

 se

 vertex transfer rate.

tex transfer is rarely the bottleneck in modern applications, but it’s certainly not
ossible for this to be a problem. If the transfer of vertices or, e

indices, is the bottleneck in your application, try the following:

Use the fewest number of bytes possible in your vertex format. Don’t u
floats for everything if bytes would suffice (for colors, for example).
Generate potentially derivable vertex attributes inside the vertex program
instead of storing them inside of the input vertex format. For example, there’s
often no need to store a tangent, binormal, and normal, since given any two, the
third can be derived using a simple cross-product in the vertex program. This
technique trades vertex processing speed for

 Use 16-bit indices instead of 32-bit indices. 16-bit indices are cheaper to
fetch, cheaper to move around, and take less memory.
Access vertex data in a relatively sequential manner. Modern GPUs cache
memory accesses when fetching vertices. As in any memory hierarchy, spatial
locality of reference helps maximize hits in the cache, thus reducing bandwidth
requirements.

DA-01231-001_v06 42
May 2006

 NVIDIA NVPerfHUD User Guide

Optimize Vertex Processing
Ver
mig
thes
app

of the computation

tex processing is rarely the bottleneck on modern GPUs, but it is possible this
ht be a problem, depending on your usage patterns and target hardware. Try
e suggestions if you find that vertex processing is the bottleneck in your
lication:

Pull out per-object computations onto the CPU. Often, a calculation that
changes once per-object or per-frame is done in the vertex shader for
convenience. For example, transforming a directional light vector to eye space
is sometimes done in the vertex shader, although the result
only changes per-frame.
Optimize for the post-TnL vertex cache. Modern GPUs have a small FIFO
cache that stores the result of the most recently transformed vertices; a hit in
this cache saves all transform and lighting work, along with all work earlier in
the pipeline. To take advantage of this cache, you must use indexed primitives,
and you must order your vertices to maximize locality of reference over the
mesh. There are freely available tools that help you with this task, including
D3DX and NVTriStrip - http://developer.nvidia.com/object/nvtristrip_library.html.
Reduce the number of vertices processed. This is rarely the fundamenta
issue, but using a simple level-of-detail scheme, like a set of static LODs,
certainly helps reduce vertex processing

 l

load.

on
tions

for the lighting. If your material is multi-passed, reducing the number of passes
vertex processing cost.

ly, your choice of coordinate
space impacts the number of instructions required to compute a value in the

rtex shader. If the

 to 1 (and
e

anteed to

 Use vertex processing LOD. Along with using LODs for the number of
vertices processed, try applying LOD to the actual vertex computations
themselves. For example, it is likely not necessary to do full 4-bone skinning
distant characters, and you can probably get away with cheaper approxima

for lower LODs in the distance will also reduce
 Use the correct coordinate space. Frequent

vertex program. For example, when doing vertex lighting, if your vertex
normals are stored in object space, and the light vector is stored in eye space,
then you have to transform one of the two vectors in the ve
light vector was instead transformed into object space once per-object on the
CPU, no per-vertex transformation would be necessary, saving GPU vertex
instructions.

 Use vertex branching to “early-out” of computations. If looping over a
number of lights in the vertex shader, and doing normal, low dynamic range
[0..1] lighting, you can check for saturation to one, or if you’re facing away from
the light, and break out of further computations. A similar optimization can
occur with skinning, where you can break when your weights sum
therefore all subsequent weights would be zero). Note that this depends on th
way that the GPU implements vertex branching, and isn’t guar
improve performance on all architectures.

DA-01231-001_v06 43
May 2006

 NVIDIA NVPerfHUD User Guide

Speed Up Pixel Shading
If you’re using long and complex pixel shaders, it is often likely that you’re pixel
shading bound. If you find that to be the case, try these suggestions:

 Render depth first. Rendering a depth-only (no color) pass before rend
your prim

ering
ary shading passes can dramatically boost performance, especially in

e full

as color (e.g. alpha test).

es

ree.

 cubemap, which allows you to

e

 ify
work

ing a calculation. Recognize which transformations preserve
ns

n

ion

s a
to make sure the _pp modifier is

being used on the operations corresponding to normalize to ensure that you
have used the 'half' data type appropriately. You can verify the assembly
generated from an HLSL shader by running fxc.exe or the FX Composer
Shader Perf panel. You can also use the NVShaderPerf command line utility.

scenes with high depth complexity, by reducing the amount of pixel shading
and frame buffer memory access that needs to be performed. To get th
benefits of a depth-only pass, it’s not sufficient to just disable color writes to the
frame buffer, you should also disable all shading on pixels, including shading
that affects depth as well

 Help early-Z optimizations throw away pixel processing. Modern GPUs
have silicon devoted to not shading pixels you can’t see, but these rely on
knowledge of the scene up to the current point, and can be dramatically helped
out by rendering in a roughly front-to-back order. Also, laying depth down first
(see above) in a separate pass can help dramatically speed up subsequent pass
(where all the expensive shading is done) by effectively reducing their shaded
depth complexity to one

 Store complex functions in textures. Textures can be enormously useful as
lookup tables, with the additional benefit that their results are filtered for f
The canonical example here is a normalization
normalize an arbitrary vector at high precision for the cost of a single texture
lookup.
Move per-pixel work to the vertex shader. Just as per-object work in the
vertex shader should be moved to the CPU instead, per-vertex computations
(along with computations that can be correctly linearly interpolated in screen-
space) should be moved to the vertex shader. Common examples includ
computing vectors and transforming vectors between coordinate systems.
Use the lowest precision necessary. APIs like DirectX 9 allow you to spec
precision hints in pixel shader code for quantities or calculations that can
with reduced precision. Many GPUs can take advantage of these hints to
reduce internal precision and improve performance.
Avoid unnecessary normalization. A common mistake is to get overly
normalization-happy and normalize every single vector every step of the way
when perform
length (like a transformation by an orthonormal basis) and which computatio
do not depend on vector length (such as a cubemap lookup).
Use half precision normalizes when possible. Normalizing at half-precision
is essentially a free operation on the NV4x class of GPUs. Use the 'half' type i
HLSL for the vector that is to be normalized. If using ps_2_0 or higher vers
assembly shaders in DirectX 9, use nrm_pp (or use the '_pp' modifier on all
operations for the equivalent math). While testing your HLSL shaders it i
good idea to check the generated assembly

DA-01231-001_v06 44
May 2006

 NVIDIA NVPerfHUD User Guide

 Consider using pixel sh
buck as vertex LOD (sim

ader level-of-detail. While not as high a bang for the
ply because objects in the distance naturally LOD

themselves with respect to pixel processing due to perspective), reducing the
 complexity of the shaders in the distance, along with reducing the number of

passes over a surface, can reduce the pixel processing workload.
 Make sure you are not limited by texture bandwidth. Refer to the Reduce

Texture Bandwidth section below for more information.

DA-01231-001_v06 45
May 2006

 NVIDIA NVPerfHUD User Guide

Reduce Texture Bandwidth
If

 Reduce the size of your textures. Consider your target resolution and texture
coordinates. Do your users ever get to see your highest mipmap level? If not,
consider scaling back the size of your textures. This can be especially helpful if
overloaded frame buffer memory has forced texturing to occur from non-local
memory (like system memory, over the AGP or PCI Express bus). The
NVPerfHUD memory graph can help diagnose this problem, as it shows the
amount of memory allocated by the driver in various heaps.

 Always use mipmapping on any surface that may be minified.
Mipmapping delivers better image quality by reducing texture aliasing. A variety
of filters can be used to create high-quality mipmaps that do not look blurry.
NVIDIA provides a suite of texture tools to aid you in optimal mipmap
creation, including a Photoshop plug-in, a command line utility and a library –
all available at http://developer.nvidia.com/object/nv_texture_tools.html

y t mostly when
fetching from textures, consider these optimizations:

ou’ve found that your application is memory bandwidth bound, bu

.
Without mipmapping, you are limited to point sampling from a texture, which
may cause an undesirable shimmering effect.

Note: If you find that mipmapping on certain surfaces makes them look blurry,
avoid the temptation to disable mipmapping or add a large negative LOD
bias. Use anisotropic filtering instead.

 Compress all color textures. All textures that are used just as decals or detail
textures should be compressed, using one of DXT1, DXT3, or DXT5,
depending on the specific texture’s alpha needs. This will reduce memory
usage, reduce texture bandwidth requirements, and improve texture cache
efficiency.

 Avoid expensive texture formats if not necessary. Large texture formats,
like 64-bit or 128-bit floating point formats, obviously cost much more
bandwidth to fetch from. Only use these as necessary.

 Use appropriate anisotropic texture filtering levels. When using low
frequency textures and high anisotropic filtering levels, the GPU is doing extra
work that does not improve the visual quality. If you are texture bandwidth
limited, use the lowest anisotropic filtering level that gives you good enough
image quality. In an ideal application should have texture-specific anisotropic
filtering settings.

 Disable trilinear filtering where unnecessary. Trilinear filtering, even when
not consuming extra texture bandwidth, costs extra cycles to compute in the
pixel shader on most modern GPU architectures. On textures where mipmap
level transitions are not readily discernable, turn trilinear filtering off to save
fillrate.

DA-01231-001_v06 46
May 2006

 NVIDIA NVPerfHUD User Guide

Optimize Frame Buffer Bandwidth
The final stage in the pipeline, the ROP, interfaces directly with the frame buffer

idth:

al

,

however, that you should

 Ren
ren e are also similar benefits in the
area of frame buffer bandwidth, as early-Z hardware optimizations can discard

th-test,

 there is a decision to be made in how to optimize them. You can

ender
Which of these

 how

y

ore bandwidth than smaller integer formats. The same applies

lso
ough for render-to-texture effects that require depth, such as dynamic

cube maps.

memory and is the single largest consumer of frame buffer bandwidth. For this
reason, if bandwidth is an issue in your application, it can often be traced to the
ROP. Here’s how to optimize for frame buffer bandw

 Render depth first. Not only does this reduce pixel shading cost (see above),
it also reduces frame buffer bandwidth cost.
Reduce alpha blending. Note that alpha blending requires both a read and a
write to the frame buffer, thus potentially consuming double the bandwidth.
Reduce alpha blending to only those situations that require it, and be wary of
high levels of alpha blended depth complexity

 Turn off depth writes when possible. Writing depth is an addition
consumer of bandwidth, and should be disabled in multi-pass rendering (where
the final depth is already in the depth buffer), when rendering alpha blended
effects, such as particles, and when rendering objects into shadow maps (in fact
for rendering into color-based shadow maps, you can turn off depth reads as
well).
Avoid extraneous color buffer clears. If every pixel is guaranteed to be
overwritten in the frame buffer by your application, then clearing color should
be avoided as it costs precious bandwidth. Note,
clear the depth and stencil buffers whenever you can, as many early-Z
optimizations rely on the deterministic contents of a cleared depth buffer.

der front-to-back. In addition to the pixel shading advantages to
dering front-to-back mentioned above, ther

extraneous frame buffer reads and writes. In fact, even older hardware without
these optimizations will benefit from this, as more pixels will fail the dep
resulting in fewer color and depth writes to the frame buffer.
Optimize skybox rendering. Skyboxes are often frame buffer bandwidth
bound, but
either render them last, reading (but not writing) depth, and allow the early-Z
optimizations along with regular depth buffering to save bandwidth, or r
the skybox first, and disable all depth reads and writes.
techniques saves more bandwidth is a function of the target hardware and
much of the skybox is visible in the final frame. If a large portion of the skybox
is obscured, the former technique will likely be better, otherwise the latter ma
save more bandwidth.
Only use floating point frame buffers when necessary. These obviously
consume much m
for multiple render targets.
Use a 16-bit depth buffer when possible. Depth transactions are a huge
consumer of bandwidth, so using 16-bit instead of 32-bit can be a huge win and
is often enough for small-scale indoor scenes that don’t require stencil. It is a
often en

DA-01231-001_v06 47
May 2006

 NVIDIA NVPerfHUD User Guide

 Use 16-bit color when possible. This is e
texture effects, as many of these, such as dy

specially applicable to render-to-
namic cubemaps and projected

color shadow maps, work just fine in 16-bit color.

DA-01231-001_v06 48
May 2006

DA-01231-001_v06 49
May 2006

.
g

Your questions and comments are always welcome at on our developer forums and
confidentially via email to NVPerfHUD@nvidia.com.

Known Issues

Chapter 9
Troubleshootin

 NVPerfHUD does not handle multiple devices. It only supports the first device
created with Direct3DCreate9().

 NVPerfHUD may crash when using software vertex processing.

 An application that uses rdtsc natively won’t be able to function properly
with the Frame Debugger Mode of NVPerfHUD – see Troubleshooting below
for possible solutions.

 Frame Debugger Mode and Frame Profiler Mode require that your application
use and rely on the QueryPerformanceCounter() or
timeGetTime() win32 functions. Your application must be robust in
handling elapsed time (dt) calculations, especially the case where dt is zero. In
other words, you program should not divide by dt. If you suspect this is a
problem, try setting the Delta Time option to “SlowMo” in the NVPerfHUD
Configuration dialog. If this works, please consider fixing your application to
handle the case where dt is zero.

 The State Inspectors do not display detailed information when your application
is using fixed T&L.

 When you are in Frame Debugger Mode or Frame Profiler Mode, if you
deactivate NVPerfHUD (using your activation hotkey) and then exit your
application you may see a warning dialog that says “Number of references when
exiting was not 0.”

 Applications running in windowed mode may not exit properly when
NVPerfHUD is active and you click on the close button.

 NVIDIA NVPerfHUD User Guide

Frequently Asked Questions

NVPerfHUD says my application is not enabled for NVPerfHUD Analysis.
 To ensure that unauthorized third parties do not analyze your application

without your permission, you must make a minor modification to enable
NVPerfHUD analysis. Refer to the Getting Started section of this User Guide for
instructions.

No data is reported in the Unit Utilization Graph in Performance Dashboard
mode and/or Frame Profiler mode doesn’t seem to work.
 Both th

from N
is supported by

e Unit Utilization Graph and Frame Profiler require performance signals
VPerfKit. Make sure NVPerfKit is installed and you are using a GPU that

 NVPerfKit.

My app UD is active. lication does not respond while NVPerfH
 keyboard When NVPerfHUD is enabled using the hotkey feature, it consumes all

input and does not pass any key stroke events to the application. You can
toggle this mode on/off using the activation hotkey you selected.

My application does not respond while NVPerfHUD is active.
 When NVPerfHUD is enabled using the hotkey feature, it consumes all keyboard

input and does not pass any key stroke events to the application. You can
toggle this mode on/off using the activation hotkey you selected.

I can see the NVPerfHUD header across the top of my screen, but it doesn’t
respond to my activation hotkey.
 intercepting key stroke events. If you are

PerfHUD uses DirectInput to listen for your activation

ccess advanced
features of NVPerfHUD such as bottleneck identification experiments, shader
visualization, etc.

NVPerfHUD uses several methods of
using a method that is not yet supported, please let us know so we can update
NVPerfHUD.

Note that in Win2K NV
hotkey and to intercept keyboard commands while activated. DirectInput
supplies two types of data: buffered and immediate. Buffered data is a record
of events that are stored until an application retrieves them. Immediate data is
a snapshot of the current state of a device.

What this means is that your application needs to use the
IDirectInputDevice8::GetDeviceData interface instead of the
IDirectInputDevice8::GetDeviceState interface if you want to a

NVPerfHUD messes up alpha and some rendering states.
 NVPerfHUD renders the HUD at the end of the frame. It also changes the

rendering states to draw itself, but does not restore them to their original state.
In other words, it does not push and pop rendering states for performance

DA-01231-001_v06 50
May 2006

 NVIDIA NVPerfHUD User Guide

reasons—therefore, it is assumed that your application resets the rendering
states at the beginning of each frame.

The GPU_IDLE (GREEN) line is not reporting any data.
 This information is not available for GeForce4 (NV25) and older GPUs. You may

erly also see this on newer GPUs if NVPerfHUD is unable to communicate prop
with the display driver. Verify that you are using the latest version of
NVPerfHUD and running the latest NVIDIA display drivers.

In the Frame Profiler’s Advanced mode, why can’t I use the RGB dropdown to
visualize the individual channels of render targets in Raster Operations?
 Currently the RGB dropdown only works for textures. It will be grayed out

unless at least one texture is present.

DA-01231-001_v06 51
May 2006

 NVIDIA NVPerfHUD User Guide

I see some extra lines in the middle of my NVPerfHUD graphs.
 If you are using very old drivers you may see portions of the old NVPerfHUD

1.0 graphs super-imposed on top of your NVPerfHUD graphs. Upgrading your
drivers to 71.8x or later should fix the problem.

Some objects in my scene continue to animate when my application is frozen.
 The NVPerfHUD time control feature stops the clock for your application,

allowing you to perform in-depth analysis of the current frame while it is frozen.

 application uses the rdtsc instruction it
will not function properly with Frame Debugger Mode, Frame Profiler Mode, or
the time control features in Performance Dashboard.

If your application has implemented a frame rate limiter, you may need to
disable this functionality to use the time control, debugging and profiling
features of NVPerfHUD.

If your application uses frame-based animation, freezing time will have no
effect on animated objects.

Your application must use and rely on the QueryPerformanceCounter() or
timeGetTime() win32 functions. If your

What else do I need to know about NVPerfHUD?
 • Multi sampled render targets at not displayed in Frame Debugger Mode.

• NVPerfHUD may crash if you turn on “Break on D3D errors” in the DirectX
Control Panel.

• Pixel shader visualization does not work for primitives that use VS 3.0.

I have discovered a problem that is not listed above
 We want to make sure NVPerfHUD continues to be a useful tool for developers

analyzing their applications. Please let us know if you encounter any problems
or think of additional features that would be helpful while using NVPerfHUD.

NVPerfHUD@nvidia.com

DA-01231-001_v06 52
May 2006

DA-01231-001_v06 53
May 2006

Appendix A.
Why the Driver Waits for the GPU

The ve
two ith more
dat

In t than
it ca rt to build up in the FIFO
que ing the
driv
com

 GPU fully utilized scenario is the typical situation that happens when you ha
 processors connected by a FIFO, and one chip is feeding the other w

a than it can process.

his case shown below, the CPU is feeding the GPU with more commands
n process. When this happens all the commands sta
ue, also called the “push buffer”. To prevent this FIFO from overflow
er is forced to wait until there is some room in the FIFO to place new
mands.

100 ms

s0 m

Fig r

 the

load.

u e 25. Driver Waiting for the GPU

If you find that the frame rate is:

High, then you can do more work on the CPU and this should not affect
frame rate (object culling, physics, game logic, AI, etc...).
Not adequate, you should reduce the scene complexity to lighten the GPU

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTO
ALL IMP
PARTIC

Informa o be accurate and reliable. However, NVIDIA Corporation
assume
infringe
granted
Specific
publicat
product ems
without val of NVIDIA Corporation.

Trademar

NVIDIA
Other
they ar

Copyri

© 2004

RY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
LIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
ULAR PURPOSE.

tion furnished is believed t
s no responsibility for the consequences of use of such information or for any
ment of patents or other rights of third parties that may result from its use. No license is
 by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
ations mentioned in this publication are subject to change without notice. This
ion supersedes and replaces all information previously supplied. NVIDIA Corporation
s are not authorized for use as critical components in life support devices or syst
 express written appro

ks

and the NVIDIA logo are registered trademarks of NVIDIA Corporation.
company and product names may be trademarks of the respective companies with which
e associated.

ght

 - 2006 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

	Chapter 1. What is NVPerfHUD?
	How NVPerfHUD Works
	NVPerfHUD Modes
	System Requirements
	Recommended Reading
	Chapter 2. Getting Started
	Quick Start
	Profiling Effectively with NVPerfHUD
	Enable Your Application

	Chapter 3. Performance Dashboard
	
	
	The Info Strip
	Time Control
	Performance Graphs
	3.1.1. Reading the Unit Utilization Graph
	3.1.2. Reading the Timing Graphs
	Scrolling Graphs
	Draw Primitives Graph
	Batch Size Histogram
	Memory Graphs

	3.1.3. Resource Creation Monitor

	Pipeline Experiments

	Chapter 4. Debug Console
	Chapter 5. Frame Debugger
	Rendering Decomposition
	5.1.1. Show Warnings
	5.1.2. Show D3D Markers
	5.1.3. Texture Unit and RTT Information
	5.1.4. Visualization Options
	5.1.5. Advanced State Inspectors

	Vertex Assembly State Inspector
	Vertex Shader State Inspector
	Pixel Shader State Inspector
	Raster Operations State Inspector

	Chapter 6. Frame Profiler
	Using the Frame Profiler
	6.1.1. Unit Utilization Bars
	6.1.2. Unit Utilization Graph
	6.1.3. Draw Call Duration Graph
	6.1.4. Double-Speed Z/Stencil Graph
	6.1.5. Pixel Count Graph

	 Frame Profiler Advanced View

	Chapter 7. Analyzing Performance Bottlenecks
	Graphics Pipeline Performance
	7.1.1. Pipeline Overview

	Methodology
	7.1.2. Identifying Bottlenecks
	7.1.3. Raster Operation Bottlenecks
	7.1.4. Texture Bandwidth Bottlenecks
	7.1.5. Pixel Shading Bottlenecks
	7.1.6. Vertex Processing Bottlenecks
	7.1.7. Vertex and Index Transfer Bottlenecks
	7.1.8. CPU Bottlenecks

	Chapter 8. Bottleneck Optimizations
	CPU Optimizations
	Reduce Resource Locking
	Minimize Number of Draw Calls
	Reduce the Cost of Vertex Transfer
	Optimize Vertex Processing
	Speed Up Pixel Shading
	 Reduce Texture Bandwidth
	Optimize Frame Buffer Bandwidth

	Chapter 9. Troubleshooting
	Known Issues
	 Frequently Asked Questions
	

