<
#VIDIA.

User Guide

NVIDIA Performance Toolkit

DEVELOPMENT

Table of Contents

g o T T ot oo ii
System ReqUIrEMENTSie e rrs s s s s r e s e n e ra e e s ran s rn s rnnsennss ii
NVPerfKit Getting Startedcciiriimmimmimmmm s 1
Installing the Instrumented Driver and NVPerfKitcooiriiiiiiiiiiii e 1
Graphing the RESUILScvieiiii e e rna s 3
NVIDIA Plug-in for Microsoft PIX for WindOWS........ccuviiiiiiiniiiiiiiccerninsseenne s eennns 5
Appendix A. Frequently Asked Questions..........ccsimmmemmmmssnmmsssmmssssmnnsssnnnssnnnsnns 7
Appendix B. Counters ReferencCeccurressrmssrnsssmsssmnssmssssssssnsssmnsssssssnsssnnssnnssenns 8
D] =T G I 00 LU= 8
(0] 07 1] I 0T =T =T 9
L€ O I 0T =) U 10
Appendix C. Sample Code......ccurmmmmmmmmmmsmmnsmmsssmnmssmassmassssssmsssssasssasssssssnnsssnsssnnssns 13
[0 1 7= o T 14
DA-01800-001_v02 i

June 2005 NVIDIA CONFIDENTIAL

Introduction

Please read this entire document before you get started! Important issues are
covered in this document that will help get things running smoothly.

NVPerfKit gives every graphics application developer access to low-level
performance counters inside the driver and hardware counters inside the GPU itself.
The performance counters are available in PerfMon through the Windows
Management Instrumentation (WMI) Performance Data Helper (PDH) interface
and in Microsoft PIX for Windows via the PIX for Windows NVIDIA Plug-in.

The counters can be used to determine exactly how your application is using the
GPU, identify performance issues, and confirm that performance problems have
been resolved. Now, for the first time ever, this confidential information is available
to third party developers.

NVPerfKit consists of the following components:
Instrumented display driver
PIX for Windows NVIDIA Plug-in
NVDevCPL Control Panel applet
Sample code and helper classes

Appendix A contains a breakdown of the files that are installed on your system.

System Requirements

DA-01800-001_v02
June 2005

NVIDIA instrumented display driver, version 77.40 or later on Windows XP
NVPerfKit signals are available on all NVIDIA GPUs listed below:

GeForce 6800 Ultra

GeForce 6800 GT

GeForce 6600

NVPerfKit signals may or may not be available on other NVIDIA GPUs.

i

NVPerfKit
Getting Started

Installing the Instrumented Driver
and NVPerfKit

Follow the instructions below to install the instrumented driver and get started using
NVPerfKit.

1. Install the instrument driver by unzipping the driver zip file into a directory and
running setup.exe. You will need to reboot following the driver installation.

2. Install NVPerfKit, by double clicking on NVPerfKit_<version>.exe and
following the installer prompts.

3. Enable driver instrumentation from the ForceWare driver control panel. Check
both the Enable driver instrumentation and Performance Data Helper (PDH)
support check boxes.

[}

- .Themes!!_ > _I:_ ault Momitor and IDIA GeForce 6800 Ultra
- @_e_ngl_a_l_ || = _.9!:]?[3_[_?[_ j' Mo_nitor I = “Tloubleshoot :
| Calor Management | &3 GeForce BA00 Ulra
(= GeForce 6800 Ultra
L Soreen Adustment #VIDL&- d _]
Dizplay Mode Timing
- Performance & Quality Settings e aareralen
- Calor Corection
Wideo Owerlay S ettings Enable driver instrumentation
i Toals
M MNvRotate Perfarmance D ata Helper (PDH) support
H Temperature Settings
Screen Resolutions & Refresh Rates
H Dirivver Instrument stion
- Desktop Management Warning: Instrumentation cverhead invalidates performance benchmarks.
L Manil Editing See hitp\\developer. nvidia. com for developer tools that uge this feature.
0K] ’ Cancel] Lpply
DA-01800-001_v02 1

June 2005

NVPerfKit

To start the NVIDIA Developer Control Panel (NVDevCPL), open the
Windows Control Panel (from the Windows Start Menu) and double click on
the NVIDIA Developer Control Panel icon. Once it is open, you can select
which signals to report while the application is running. Note that turning on

signals incurs overhead so only enable signals you are interested in for the given
experiment.

I NYIDIA Developer Control Panel

Available Counters Active Counters
B] 00 o rom biches |} < Al
- R D30 frame time mSec Sk DD
NVIDIA [D30 frame tris 2fcru

Performance (R} D30 frame vidmem MB ; D30 frame FPS
gl @B DD Locked Render Targets . D3D frame m5ec in driver

i i) D3D Ocel Queres GPU

@ i @R DD 5L Linear Buffer Sync Bytes Pdd 7> i i ﬁ GPU_Graphics
i i [Bf D30 5L Linear Buffer Syncs i “ gpu_ide

Info i [D3D SLI P2P Bytes OGL
i [D3D SLI P2P transfers & cPu

- @B D3D 5Ll Render Target Sync Bytes 4 OGLFPS

@B DD 5Ll Render Target Syncs
@B DD 5L Texture Sync Bytes
- @ DD 5L Texture Syncs

GPU

‘st GPU_Graphics
(R apu_idle
[shaded oxel count ¥ Save...] [Load...] Clear

Counter Description
D30 frame num batches : D30 Number of batches

Settings

Defautt location for counter configuration files {ctry | [Set Folder... I

Before you try to sample a counter, make sure you have added it to the list of
Active Counters. The GPU can sample a pre-set number of counters per clock,
and this number can vary from GPU to GPU. If you choose more than this
number of counters, the GPU counters are sampled in a round robin fashion,
and the list on the right will show an approximately equal icon to reflect the
reduced accuracy.

If you run your application in a window, you can interactively enable/disable
GPU counters. This allows you to set your application up to sample all of the
counters of interest and only look at one or two at a time without having to
shut down the application, rerun NVDevCPL, restart, etc. This can greatly reduce
the configuration turn-around time during performance profiling runs. For a
complete list of counters and a description of their use, see Appendix B.

DA-01800-001_v02 2
June 2005

Graphing the Results

NVPerfKit

One way to see the counters is through the Windows system utility called PerfMon.
This helpful utility graphs PDH information over time. Once you have used the
NVDevCPL to enable the counters you want to sample, you can add them to the

PerfMon graph using the #+ toolbar button. You need to select one of the
NVIDIA performance objects from the drop-down list (Direct3D Driver, GPU
Performance, or OpenGL Driver), and then the instance you want to graph.

Ackion W

(2] Consale Root
: ng] Systen Monitar
&4 Performance Log

g Add Counters

. =)X

) Use local computer counters
%) Select counters from computer;

|'\'~JKIEL-DEV

d

Performance object:

NVIDIA GPU Performarce |
Logicallisk: A
kd erniony T

MBT Connection
Metwork, Interface
MDA Direct3D Driver

MDA GFLU Ferformance
MDA OpeniEL Driver
Objects

Paging File
Phyzicalllizgk

Print Queus

Process

Processar

PSiched Flow

PSched Pipe

R&S Port

RaS Total

Redirectar

3 &ll instances

%) Select instances from list

GPoo |
GPUL/E gpu_idle

Cloze

RSYF Interfaces

RSYF Service
Server
Server Work Dueues

T elephary

Terminal Services
Terminal Services Session
Thread

UDF

WMl Objects

If you want to use the counters in your own application, use the helper classes
supplied with NVPerfKit, which include a PDH interface as well as a simple, API
agnostic graphing library (see Appendix C for details). Consult the sample code for
hints on how to use these. You can also call PDH directly and use the sampled
values in any way that makes sense for your application.

DA-01800-001_v02
June 2005

NVPerfKit

Following is the sample code for setting up PDH:

/1 Setup
PDH_HQUERY hQuery;
PDH COUNTER hCount er;

PDH STATUS status = PdhOpenQuery(0, 0, &Query);
PdhAddCount er (hQuery,

"\\NVI DI A GPU Per f or mance(GPUO/ % gpu_i dl e) \\ GPU
Count er Val ue", 0, & Counter));

/1l Periodically...

PDH _STATUS st atus = PdhCol | ect Quer yDat a(hQuery) ;
PDH_FMI_COUNTERVALUE cvVal ue;

PdhGet For mat t edCount er Val ue(hCount er ,
PDH_FMT_DOUBLE| PDH_FMT_NOCAP100| PDH_FMT_NGOSCALE, 0,
&cvVal ue) ;

/] cvVal ue. doubl eVal ue

DA-01800-001_v02 4
June 2005

NVPerfKit

NVIDIA Plug-in for
Microsoft PIX for Windows

NVPerfKit includes a plug-in that allows you to use all the NVPerfKit performance
counters in Microsoft PIX for Windows. This PIX plug-in enables you to display
driver and GPU counter data alongside the associated Direct3D calls for additional
correlation and performance tuning. The NVPerfKit installer places the PIX plug-
in in the appropriate directory for PIX to access it. To set up sampling, first
remember to enable the counters that you are interested in the NVDevCPL (see
Installing the Instrumented Driver and NVPerfKit above). Once this is done, you
are ready to enable the counters in PIX.

From the Experiment window in PIX, make sure you select the Advanced View
(using the More Options button from the Basic View). Select the Action Type “Set
Per-Frame Counters” in the upper combo box and then press the Customize
button. This will bring up the PIX Counters dialog with the available counter types
on the left. Open the Plug-in Counters element and the NVIDIA Performance
Counters sub element to display the counters you enabled in the NVDevCPL.
Select the counters of interest and press the Add button. These will now show up
in the data stream that PIX produces.

" ® PIX for Windows - Experiment1

Fil= Edit View SWindow Help

D st 28 » 2|

PIX Counters

| 9 Experiment? : Experiment {Advanced ¥iew)

Al available counters Chosen counters

| Triggersfactions Target Program |

il T A+ & X

-My Countersets
Direct30 Counters

= 'i' Program Stark [#- Performance Counters
" J Set Counkers: (None) Action Type: ‘SEt Per- (= Plugin Counters
= NWIDTA Perfarmance Counters
- D30 frame FPS

DD Frame maec in driver

Counterset: ‘ {Mone)

Fewer Options

Save As Counterset..,

Description of selecked counter

D30 Last frame mSec spent in D30 driver

DA-01800-001_v02 5

June 2005

NVPerfKit

Here is an example of PIX for Windows output:

PIX for Windows - Runi
File Edit

View Window Help

0 sec 2 sec 4 sec 6 sec 8 sec 10 sec 12 sec 14 sec 16 sec

CPU

Frame 814
GPU
| 1 g e o LT R P .4 T YO A T O T ol g1 o v A ot T [T
®ag [o30 frame msec md v [100% <] ;o ide o[100% Buration V[100% || 6r0zsez [100%
<® Runi: Events
ED Event StertTime | Frame| Duration | FPS | D30 frame | % gpu_idle
mSec in driver
s

797 ~Frame 795 6629808128 795 7918080 1263 5.0 5.6 -
798 ' -Frame 796 6637821952 796 7801344 128.2 4.0 6.1

799 Frame 797 6645718528 797 8314880 120.3 5.0 6.2

800, Frame 798 6654128640 798 6852608 145.9 5.0 7.7

801 Frame 799 6661131776 799 6975488 143.4 5.0/ 4.4

802 Frame 800 6668203520 800 7318528 136.6 5.0 4.6

803 ~Frame 801 6675618304 801 6633472 150.8 4.0 53

804 Frame 802 65682345984 802 7113728 140.6 5.0 34

805 Frame 803 6689555456 803 7066112 141.5 5.0 4.9

806 ~Frame 804 6696716800 804 9037312 110.7 5.0 82 =
807 -Frame 805 6705850368 805 7121920 140.4 5.0 4.6

808 Frame 806 6713068032 806 7250432 137.9 5.0 4.4

809 -Frame 807 6720414720 807 7277056 137.4 5.0 4.4

810, ~Frame 808 6727787520 808 7070208 141.4 4.0 51

811 Frame 809 6734054496 809 7003248 141.0 5.0/ 4.0

812 Frame 810 6742142976 810 7429632 134.6 5.0 4.9

813 ~Frame 811 6749669376 811 7179264 139.3 5.0 4.6

814 -Frame 812 6756943360 312 6984192 143.2 5 U 4 1

815 Frame 813 5754022784 7223415 138.3

T T T

817 Frame 815 57752U572U 15 5951U72 146.0

818 Frame 816 6785154560 816 7203328 138.8 4 D 4 3

819 ~Frame 817 6792453632 817 7422464 134.7 6.0 4.7

820 Frame 818 6800030720 818 7127552 140.3 5.0 4.7

821 Frame 819 6807253504 819 6977024 143.3 4.0 33 @

Read NUM

DA-01800-001_v02

June 2005

Appendix A.
Frequently Asked Questions

What are all of these files and where are they installed?
c:\windows\system32
NVPMAPI driver (Standard ForceWare driver with additional instrumentation)
nvpmapi.dll (PDH implementation)
nvprfsmb.h (PDH implementation)
nvprfctr.ini (PDH implementation)
nvdevcpl.cpl (Driver Control Panel)
nvdevtray.dll (Tray extension)

c:\Program Files\NVIDIA Corporation\NVIDIA NVPerfKit
samples\OpenGL*.*
samples\Direct3D*.*
samples\common*.*

What does this error message mean, "HW necessary for GPU counters
is unavailable, HW counters are disabled.”
Not all GPUs have the features necessary to provide the GPU counter data.

NVPerfKit signals are available on a// NVIDIA GPUs listed under System
Requirements. NVPerfKit signals may or may not be available on other GPUs.

Can I run NVPerfKit with multiple monitors?

NVPerfKit is currently not enabled to run in a multiple monitor setup.
We are investigating ways to implement this feature.

What does this error message mean, “Performance monitoring has
been disabled by PDH.”?

PDH has a safe guard mechanism that can disable a data provider. If
NVDevCPL detects this flag, you have the option of resetting it. We have not
seen this happen in any released version of NVPerfKit, only during testing.

I have discovered a problem that is not listed above. Who should I

call?
We want to make sure NVPerKit is a useful tool for developers analyzing their
applications. Please let us know if you encounter any problems or think of
additional features that would be helpful while using NVPerfKit.
Contact us at: NVPerfKit@nvidia.com
DA-01800-001_v02 7

June 2005

Appendix B.
Counters Reference

There two types of counters available through NVPerfKit. Hardware counters
provide data directly from various points inside the GPU, while the software
counters, both OpenGL and Direct3D, give insight into the state and performance
of the driver. All of the GPU counters give results accumulated from the previous
time it was sampled. For instance, the triangle_count gives the number of triangles
rendered since the last sample was taken. If you are using perfmon to sample these
counters, you need to remember that it will be sampling once per second, so to get
the average number of triangles per frame you need to divide by the average frame
rate during that time. Once you integrate the counters into your own application,
and can sample on a per frame basis, the numbers can then correlated to a given
frame.

All of the softwate/driver counters represent a per frame accounting. These
counters are accumulated and updated in the driver per frame, so even if you sample
at a sub frame rate frequency, the software counters will hold the same data (from
the previous frame) until the end of the current frame.

Also, counters can be reported in one of two methods: raw and percentage. Raw is
a count of events (triangles, milliseconds, pixels, etc.) since the last call. Percentage
counters are divided by the number of cycles since the last sample since they are
event counts based on the clock rate. gpu_idle is a example, since it counts the
number of clock ticks that the GPU was idle since the last call. When divided by
the total number of clock ticks, you get a % of time that the GPU was idle.

The table below shows a description of the available software and hardware
counters. A # next a counter denotes a raw counter, while a % denotes a
petrcentage counter.

When configuring your application to use PDH counters, you need to know the
official name of the counter and how to construct the identifier string for PDH.
The tables below show the performance counters available in each counter domain.

The syntax for counters is:

\'\ Machi ne\ Per f Cbj ect (Par ent | nst ance/ Qbj ect | nst ance#l
nst ancel ndex) \\ Count er Type

Direct3D Counters

All of the Table 1 lists the Direct3D counter names and descriptions.

Table 1. Direct3D Counters

DA-01800-001_v02 8
June 2005

NVPerfKit

Direct3D Counter Description

Official Name

FPS (#)

D3D frame FPS

Frame Time (1/FPS) (#)

D3D frame time mSec

Driver Time (#)

D3D frame mSec in driver

Driver Sleep Time (all reasons) (#)

D3D frame mSec Sleeping

Driver Sleep Time (waiting on GPU) (#)

D3D CPU Wait Total

Driver Sleep Time (index buffer locking) (#)

D3D CPU Wait - IB Lock

Driver Sleep Time (vertex buffer locking) (#)

D3D CPU Wait - VB Lock

Triangle Count (#)

D3D frame tris

Batch Count (#)

D3D frame num batches

Locked Render Targets Count (#)

D3D Locked Render Targets

Number of Occlusion Queries(#)

D3D Occl Queries

AGP/PCIE Memory Used in Integer MB (#)

D3D frame agpmem MB

AGP/PCIE Memory Used in Bytes (#)

D3D frame agpmem bytes

Video Memory Used in Integer MB (#)

D3D frame vidmem MB

Video Memory Used in Bytes (#)

D3D frame vidmem bytes

Total Number of GPU to GPU Transfers (#)

D3D SLI P2P transfers

Total Byte Count for GPU to GPU Transfers (#)

D3D SLI P2P Bytes

Number of IB/VB GPU to GPU Transfers (#)

D3D SLI Linear Buffer Syncs

Byte Count of IB/VB GPU to GPU Transfers (#)

D3D SLI Linear Buffer Sync Bytes

Number of Render Target Syncs (#)

D3D SLI Render Target Syncs

Byte Count of Render Target Syncs (#)

D3D SLI Render Target Sync Bytes

Number of Texture Syncs (#)

D3D SLI Texture Syncs

Byte Count of Texture Syncs (#)

D3D SLI Texture Sync Bytes

Syntax:

\\NVIDIA Direct3D Driver(CPU/Counter name\\D3D Counter Value

Example: FPS

\\NVIDIA Direct3D Driver(CPU/D3D frame FPS\\D3D Counter Value

OpenGL Counters

Table 2 lists the OpenGL counter names and descriptions.

DA-01800-001_v02

Table 2. OpenGL Counters

OpenGL Counter Description

Official Name

FPS (#)

OGL FPS

Frame Time (1/FPS) (#)

OGL frame time mSec

Driver Sleep Time (driver waits for GPU) (#)

OGL frame mSec Sleeping

% of the Frame Time driver is waiting (%)

OGL % driver waiting

AGP/PCIE Memory Used in Integer MB (#)

OGL AGP/PCI-E usage (MB)

AGP/PCIE Memory Used in bytes (#)

OGL AGP/PCI-E usage (bytes)

Video Memory Used in Integer MB (#)

OGL vidmem usage (MB)

Video Memory Used in bytes (#)

OGL vidmem usage (bytes)

Syntax:

\\NVIDIA OpenGL Driver(CPU/Counter name\\OGL Counter Value

Example: FPS:

\\NVIDIA OpenGL Driver(CPU/OGL FPS\\OGL Counter Value

GPU Counters

Table 3 lists the GPU counter names and descriptions.

DA-01800-001_v02
June 2005

Table 3. GPU Counters

GPU Counter Description

Official Name

GPU Idle (%)

gpu_idle

Pixel Shader Utilization (%)

pixel_shader_busy

Shader Stalls (%)

shader_waits_for_texture

Texture Stalls (%)

texture_waits_for_ shader

ROP Stalls (%)

shader_waits_for_rop

FastZ Utilization (#)

fast_z_count

Vertex Attribute Count (#)

vertex_attribute_count

Pixel Count (#)

shaded_pixel_count

Vertex Count (#)

vertex_count

Triangle Count (#)

triangle_count

Primitive Count (#)

Primitive_count

Culled Primitive Count (#)

culled_primitive_count

Syntax:

\\NVIDIA GPU Performance(GPUQ/Counter nhame\\GPU Counter Value

NVPerfKit

10

DA-01800-001_v02
June 2005

Example: GPU Idle:

NVPerfKit

\\NVIDIA GPU Petformance(GPUO/% gpu_idle\\GPU Countetr Value

This block diagram shows where in the GPU pipeline each counter falls.

Vertex Setup

A 4

Vertex

Sha(m/

A 4

Raster

Texture

//

Pixel Shader

A

/]

Frame
Buffer

gpu_idle

vertex_attribute_count

vertex_shader_busy

culled_primitive_count
primitive_count
triangle_count

vertex_count

fast_z_count

shaded_pixel_count

shader_waits_for_texture

pixel_shader_busy

shader_waits_for_rop

gpu_idle: This is the % of time the GPU is idle since the last call. Obviously,
having the GPU idle at all is a waste of valuable resources. In general, you want to
balance the GPU and CPU work loads so that no one resource is starved for work.
Time management or using multithreading in your application can help balance
CPU based tasks (world management, etc.) with the rendering pipeline.

vertex_attribute_count: The number of vertex attributes that are fetched and
passed to the geometry unit is returned in this counter. A large the number of

11

DA-01800-001_v02
June 2005

NVPerfKit

attributes (or unaligned vertices) can hurt vertex cache performance and reduce the
overall vertex processing capabilities of the pipeline.

culled_primitive_count: Returns the number of primitives culled in primitive
setup. 1If you are performing viewport culling, this gives you an indication of the
accuracy of the algorithm being used, and can give you an idea if you need to
improve this culling. This includes primitives culled when using backface culling.
Drawing a fully visible sphere on the screen should cull half of the triangles if
backface culling is turned on and all the triangles are ordered consistently (CW or

CCW).

vertex_shader_busy: This is the % of time that vertex shader unit 0 was busy. If
this value is high but, for instance, pixel_shader_busy is low, it is an indication that
you may be vertex/geometry bound. This can be from geometry that is too detailed
or even from vertex programs that are overly complex and need to be simplified. In
addition, taking advantage of the post T&L cache (by reducing vertex size and using
indexed primitives) can prevent processing the same vertices multiple times.

primitive_count: Returns the number of primitives processed in the geometry
subsystem. This experiment counts points, lines, and triangles. To count only
triangles, use the triangle_count counter. Balance these counts with the number of
pixels being drawn to see if you need to simplify your geometry and use
bump/displacement maps.

triangle_count: Returns the number of triangles processed in the geometry
subsystem

vertex_count: Returns the number of unique vertices transformed by the geometry.
This can give you an idea of how good your vertex sharing is from the use of
strips/fans/etc.

fast_z_count: This returns the number of blocks that were processed through the
GPU’s fastZ hardware. If you are doing z only passes, this will let you know if you
are utilizing the hardware optimally.

shaded_pixel_count: Counts the number of pixels generated by the rasterizer and
sent to the pixel shader units.

shader_waits_for_texture: This is the amount of time that the pixel shader unit
was stalled waiting for a texture fetch. Texture stalls usually happen if textures don’t
have mipmaps, if a high level of anisotropic filtering is used, or even for bad
coherency in accessing textures.

pixel_shader_busy: This returns the % of time that pixel shader unit 0 was busy
and is an indication of if you are pixel bound. This can happen in high resolution
settings, when pixel programs are very complex

shader_waits_for_rop: This is the % of time that the pixel shader is stalled by the
raster operations unit (ROP), waiting to blend a pixel and write it to the frame
buffer. If the application is performing a lot of alpha blending, or even if the
application has a lot of overdraw (the same pixel being written multiple times,
unblended) this can be a performance bottleneck.

12

Appendix C.
Sample Code

The sample code provided with NVPerfKit illustrates how to implement support
for the performance counters in your application via PDH.

Note: PDH is the Performance Data Helper interface provided by Microsoft and
used by perfmon.exe and others.

The purpose of this sample code is twofold:

Provide code you can copy/paste into your own applications

Demonstrate the performance issues associated with using the performance
counters

To use this sample code, you must have installed an instrumented driver and also
enabled performance instrumentation in the display driver control panel. You must
also use the NVIDIA Developer Control Panel to enable the following counters:

gpu_idle
D3D frame mSec in driver
OGL FPS

The OpenGL Demo draws a simple tessellated sphere. The number of tessellations
varies smoothly each frame, except every 100th frame it draws the sphere very
highly tessellated for that single frame (the D3D demo currently doesn’t draw any
geometry). While this is happening, the OpenGL Demo displays the values of the
counters in various ways on the screen.

The code accompanying this demo includes source code for 3 helper classes and
examples of how to use them.

CPDHHel per wraps some of the Win32 PDH library’s calls for simpler usage.

CTr ace is similar to a hybrid Queue and CGi r cul ar Queue (it can be used
both ways). It is for storing values read from the CPDHHel per so that a
counter’s history can be available.

CTraceDi spl ay is a helper class for displaying the trace data in a variety of
manners.

DA-01800-001_v02 13
June 2005

Contact

DA-01800-001_v02
June 2005

NVPerfKit

Use CPDHHel per: : add() and the identifier string for each counter you want
to monitor. The construction of this string is a bit ugly, so please pay attention to
how this is done in the demo. Open perfmon.exe (supplied with windows) and use
the add feature to add a new counter. Inspection of the displayed counter name and
information along with comparison to the sample strings should be sufficient for
your usage. MSDN has further information about the construction of the string, in
addition to a few macros and other tools to help with it.

Once counters are added to CPDHHel per , call sample() to retrieve values. Then
call value(i) wherei is the number of the counter you want to read (0 based, in
the order you added them). This returns a win32 structure. The “doubleValue”
entry is demonstrated in the Demo code, but you may prefer others.

Values are i nsert ()’ d intoa CTrace. Values can be read out either via the
[] operator or the () operator. One streams the data, the other wraps it, in wrap-
around style.

CTraceDi spl ay can display data in a variety of ways. LI NE_STREAMuses the
[]1 operator for a streaming plot. There are also BAR and NEEDLE methods. Play
around and use your favorites. The display’s are in a bounding box provided at
creation time or later, with 0,0 being the bottom left corner of the window. A
background color may be selected, including alpha values. You can enable blending
in the mode of your choice if you want to be able to “see through” the displayed
trace. CTraceDi spl ay has sub classes for Direct3D and OpenGL to implement
some API specific calls.

Further details are in the sample code.

Please let us know if you encounter any problems or think of additional features that
would improve NVPerfKit. You can reach us at the following Email address:

NVPerfKit@nvidia.com

14

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “"MATERIALS")
ARE BEING PROVIDED "“AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright
© 2005 NVIDIA Corporation. All rights reserved

<
AVIDIA.

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
www.nvidia.com

