
 

User Guide 

NVPerfKit 
NVIDIA Performance Toolkit 

 

 

 

 



 

 

DA-01800-001_v02  i 
June 2005 NVIDIA CONFIDENTIAL 

Table of Contents 

Introduction....................................................................................................... ii 
System Requirements ............................................................................................. ii 

NVPerfKit Getting Started .................................................................................1 
Installing the Instrumented Driver and NVPerfKit .....................................................1 
Graphing the Results ..............................................................................................3 
NVIDIA Plug-in for Microsoft PIX for Windows..........................................................5 

Appendix A. Frequently Asked Questions..........................................................7 
Appendix B. Counters Reference .......................................................................8 

Direct3D Counters ..................................................................................................8 
OpenGL Counters ...................................................................................................9 
GPU Counters.......................................................................................................10 

Appendix C. Sample Code ................................................................................13 
Contact................................................................................................................14 

 

 

 

 



 

 

DA-01800-001_v02  ii 
June 2005  

 Introduction 

Please read this entire document before you get started! Important issues are 
covered in this document that will help get things running smoothly. 

NVPerfKit gives every graphics application developer access to low-level 
performance counters inside the driver and hardware counters inside the GPU itself. 
The performance counters are available in PerfMon through the Windows 
Management Instrumentation (WMI) Performance Data Helper (PDH) interface 
and in Microsoft PIX for Windows via the PIX for Windows NVIDIA Plug-in. 

The counters can be used to determine exactly how your application is using the 
GPU, identify performance issues, and confirm that performance problems have 
been resolved.  Now, for the first time ever, this confidential information is available 
to third party developers.   

NVPerfKit consists of the following components: 

 Instrumented display driver 

 PIX for Windows NVIDIA Plug-in 

 NVDevCPL Control Panel applet 

 Sample code and helper classes 

Appendix A contains a breakdown of the files that are installed on your system. 

 

System Requirements 
 

 NVIDIA instrumented display driver, version 77.40 or later on Windows XP 

 NVPerfKit signals are available on all NVIDIA GPUs listed below: 

 GeForce 6800 Ultra 

 GeForce 6800 GT 

 GeForce 6600 

 

NVPerfKit signals may or may not be available on other NVIDIA GPUs. 

 

 



 

 

DA-01800-001_v02  1 
June 2005  

NVPerfKit 
Getting Started 

Installing the Instrumented Driver 
and NVPerfKit 

Follow the instructions below to install the instrumented driver and get started using 
NVPerfKit. 

1. Install the instrument driver by unzipping the driver zip file into a directory and 
running setup.exe.  You will need to reboot following the driver installation. 

2. Install NVPerfKit, by double clicking on NVPerfKit_<version>.exe and 
following the installer prompts. 

3. Enable driver instrumentation from the ForceWare driver control panel. Check 
both the Enable driver instrumentation and Performance Data Helper (PDH) 
support check boxes. 
 

 



 NVPerfKit 

    

 

 

DA-01800-001_v02  2 
June 2005  

4. To start the NVIDIA Developer Control Panel (NVDevCPL), open the 
Windows Control Panel (from the Windows Start Menu) and double click on 
the NVIDIA Developer Control Panel icon.  Once it is open, you can select 
which signals to report while the application is running.  Note that turning on 
signals incurs overhead so only enable signals you are interested in for the given 
experiment.   
 

 
 

Before you try to sample a counter, make sure you have added it to the list of 
Active Counters. The GPU can sample a pre-set number of counters per clock, 
and this number can vary from GPU to GPU.  If you choose more than this 
number of counters, the GPU counters are sampled in a round robin fashion, 
and the list on the right will show an approximately equal icon to reflect the 
reduced accuracy.   

If you run your application in a window, you can interactively enable/disable 
GPU counters. This allows you to set your application up to sample all of the 
counters of interest and only look at one or two at a time without having to 
shut down the application, rerun NVDevCPL, restart, etc.  This can greatly reduce 
the configuration turn-around time during performance profiling runs.  For a 
complete list of counters and a description of their use, see Appendix B. 



 NVPerfKit 

    

 

 

DA-01800-001_v02  3 
June 2005  

Graphing the Results 
One way to see the counters is through the Windows system utility called PerfMon.  
This helpful utility graphs PDH information over time.  Once you have used the 
NVDevCPL to enable the counters you want to sample, you can add them to the 
PerfMon graph using the + toolbar button.  You need to select one of the 
NVIDIA performance objects from the drop-down list (Direct3D Driver, GPU 
Performance, or OpenGL Driver), and then the instance you want to graph. 
 

 
 

If you want to use the counters in your own application, use the helper classes 
supplied with NVPerfKit, which include a PDH interface as well as a simple, API 
agnostic graphing library (see Appendix C for details).  Consult the sample code for 
hints on how to use these.  You can also call PDH directly and use the sampled 
values in any way that makes sense for your application.   



 NVPerfKit 

    

 

 

DA-01800-001_v02  4 
June 2005  

Following is the sample code for setting up PDH: 

// Setup 
PDH_HQUERY hQuery; 
PDH_COUNTER hCounter; 
 
PDH_STATUS status = PdhOpenQuery(0,0,&hQuery); 
PdhAddCounter(hQuery,  
"\\NVIDIA GPU Performance(GPU0/% gpu_idle)\\GPU 
Counter Value",0,&hCounter)); 
 
// Periodically... 
PDH_STATUS status = PdhCollectQueryData(hQuery); 
PDH_FMT_COUNTERVALUE cvValue; 
PdhGetFormattedCounterValue(hCounter, 
PDH_FMT_DOUBLE|PDH_FMT_NOCAP100|PDH_FMT_NOSCALE,0, 
&cvValue); 
 
// cvValue.doubleValue 
 



 NVPerfKit 

    

 

 

DA-01800-001_v02  5 
June 2005  

NVIDIA Plug-in for 
Microsoft PIX for Windows 

NVPerfKit includes a plug-in that allows you to use all the NVPerfKit performance 
counters in Microsoft PIX for Windows.  This PIX plug-in enables you to display 
driver and GPU counter data alongside the associated Direct3D calls for additional 
correlation and performance tuning.  The NVPerfKit installer places the PIX plug-
in in the appropriate directory for PIX to access it.  To set up sampling, first 
remember to enable the counters that you are interested in the NVDevCPL (see 
Installing the Instrumented Driver and NVPerfKit above).  Once this is done, you 
are ready to enable the counters in PIX. 

From the Experiment window in PIX, make sure you select the Advanced View 
(using the More Options button from the Basic View).  Select the Action Type “Set 
Per-Frame Counters” in the upper combo box and then press the Customize 
button.  This will bring up the PIX Counters dialog with the available counter types 
on the left.   Open the Plug-in Counters element and the NVIDIA Performance 
Counters sub element to display the counters you enabled in the NVDevCPL.  
Select the counters of interest and press the Add button.  These will now show up 
in the data stream that PIX produces. 
 

 
 



 NVPerfKit 

    

 

 

DA-01800-001_v02  6 
June 2005  

Here is an example of PIX for Windows output: 

 

 
 

 



 

 

DA-01800-001_v02  7 
June 2005  

Appendix A. 
Frequently Asked Questions 

 
 

 

 

 

What are all of these files and where are they installed? 
 c:\windows\system32 

 NVPMAPI driver (Standard ForceWare driver with additional instrumentation) 
 nvpmapi.dll (PDH implementation) 
 nvprfsmb.h (PDH implementation) 
 nvprfctr.ini (PDH implementation) 
 nvdevcpl.cpl (Driver Control Panel) 
 nvdevtray.dll (Tray extension) 
 
c:\Program Files\NVIDIA Corporation\NVIDIA NVPerfKit 
 samples\OpenGL\*.* 
 samples\Direct3D\*.* 
 samples\common\*.* 

What does this error message mean, “HW necessary for GPU counters 
is unavailable, HW counters are disabled.” 
 Not all GPUs have the features necessary to provide the GPU counter data.  

NVPerfKit signals are available on all NVIDIA GPUs listed under System 
Requirements.  NVPerfKit signals may or may not be available on other GPUs. 

Can I run NVPerfKit with multiple monitors? 
 NVPerfKit is currently not enabled to run in a multiple monitor setup.   

We are investigating ways to implement this feature. 

What does this error message mean, “Performance monitoring has 
been disabled by PDH.”? 

PDH has a safe guard mechanism that can disable a data provider.  If 
NVDevCPL detects this flag, you have the option of resetting it.  We have not 
seen this happen in any released version of NVPerfKit, only during testing. 

I have discovered a problem that is not listed above.  Who should I 
call? 
 We want to make sure NVPerKit is a useful tool for developers analyzing their 

applications.  Please let us know if you encounter any problems or think of 
additional features that would be helpful while using NVPerfKit.  
Contact us at:  NVPerfKit@nvidia.com 



 

 

DA-01800-001_v02  8 
June 2005  

Appendix B. 
Counters Reference 

There two types of counters available through NVPerfKit.  Hardware counters 
provide data directly from various points inside the GPU, while the software 
counters, both OpenGL and Direct3D, give insight into the state and performance 
of the driver.  All of the GPU counters give results accumulated from the previous 
time it was sampled.  For instance, the triangle_count gives the number of triangles 
rendered since the last sample was taken.  If you are using perfmon to sample these 
counters, you need to remember that it will be sampling once per second, so to get 
the average number of triangles per frame you need to divide by the average frame 
rate during that time.  Once you integrate the counters into your own application, 
and can sample on a per frame basis, the numbers can then correlated to a given 
frame. 

All of the software/driver counters represent a per frame accounting.  These 
counters are accumulated and updated in the driver per frame, so even if you sample 
at a sub frame rate frequency, the software counters will hold the same data (from 
the previous frame) until the end of the current frame. 

Also, counters can be reported in one of two methods: raw and percentage.  Raw is 
a count of events (triangles, milliseconds, pixels, etc.) since the last call.  Percentage 
counters are divided by the number of cycles since the last sample since they are 
event counts based on the clock rate.  gpu_idle is a example, since it counts the 
number of clock ticks that the GPU was idle since the last call.  When divided by 
the total number of clock ticks, you get a % of time that the GPU was idle. 

The table below shows a description of the available software and hardware 
counters.  A # next a counter denotes a raw counter, while a % denotes a 
percentage counter. 

When configuring your application to use PDH counters, you need to know the 
official name of the counter and how to construct the identifier string for PDH.  
The tables below show the performance counters available in each counter domain.  

The syntax for counters is: 

\\Machine\PerfObject(ParentInstance/ObjectInstance#I
nstanceIndex)\\Counter Type 

Direct3D Counters 
All of the Table 1 lists the Direct3D counter names and descriptions. 

Table 1. Direct3D Counters 



 NVPerfKit 

    

 

 

DA-01800-001_v02  9 
June 2005  

Direct3D Counter Description Official Name 
FPS (#) D3D frame FPS 

Frame Time (1/FPS) (#) D3D frame time mSec 

Driver Time (#) D3D frame mSec in driver 

Driver Sleep Time (all reasons) (#) D3D frame mSec Sleeping 

Driver Sleep Time (waiting on GPU) (#) D3D CPU Wait Total 

Driver Sleep Time (index buffer locking) (#) D3D CPU Wait - IB Lock 

Driver Sleep Time (vertex buffer locking) (#) D3D CPU Wait - VB Lock 

Triangle Count (#) D3D frame tris 

Batch Count (#) D3D frame num batches 

Locked Render Targets Count (#) D3D Locked Render Targets 

Number of Occlusion Queries(#) D3D Occl Queries 

AGP/PCIE Memory Used in Integer MB (#) D3D frame agpmem MB 

AGP/PCIE Memory Used in Bytes (#) D3D frame agpmem bytes 

Video Memory Used in Integer MB (#) D3D frame vidmem MB 

Video Memory Used in Bytes (#) D3D frame vidmem bytes 

Total Number of GPU to GPU Transfers (#) D3D SLI P2P transfers 

Total Byte Count for GPU to GPU Transfers (#) D3D SLI P2P Bytes 

Number of IB/VB GPU to GPU Transfers (#) D3D SLI Linear Buffer Syncs 

Byte Count of IB/VB GPU to GPU Transfers (#) D3D SLI Linear Buffer Sync Bytes 

Number of Render Target Syncs (#) D3D SLI Render Target Syncs 

Byte Count of Render Target Syncs (#) D3D SLI Render Target Sync Bytes 

Number of Texture Syncs (#) D3D SLI Texture Syncs 

Byte Count of Texture Syncs (#) D3D SLI Texture Sync Bytes 

Syntax: 
  \\NVIDIA Direct3D Driver(CPU/Counter name\\D3D Counter Value 

Example: FPS 
  \\NVIDIA Direct3D Driver(CPU/D3D frame FPS\\D3D Counter Value 

 

 

OpenGL Counters 
Table 2 lists the OpenGL counter names and descriptions. 



 NVPerfKit 

    

 

 

DA-01800-001_v02  10 
June 2005  

 

Table 2. OpenGL Counters 

OpenGL Counter Description Official Name 
FPS (#) OGL FPS 

Frame Time (1/FPS) (#) OGL frame time mSec 

Driver Sleep Time (driver waits for GPU) (#) OGL frame mSec Sleeping 

% of the Frame Time driver is waiting (%) OGL % driver waiting 

AGP/PCIE Memory Used in Integer MB (#) OGL AGP/PCI-E usage (MB) 

AGP/PCIE Memory Used in bytes (#) OGL AGP/PCI-E usage (bytes) 

Video Memory Used in Integer MB (#) OGL vidmem usage (MB) 

Video Memory Used in bytes (#) OGL vidmem usage (bytes) 

Syntax: 
  \\NVIDIA OpenGL Driver(CPU/Counter name\\OGL Counter Value 

Example: FPS: 
  \\NVIDIA OpenGL Driver(CPU/OGL FPS\\OGL Counter Value 

GPU Counters 
Table 3 lists the GPU counter names and descriptions. 

Table 3. GPU Counters 

GPU Counter Description Official Name 
GPU Idle (%) gpu_idle 

Pixel Shader Utilization (%) pixel_shader_busy 

Shader Stalls (%) shader_waits_for_texture 

Texture Stalls (%) texture_waits_for_ shader 

ROP Stalls (%) shader_waits_for_rop 

FastZ Utilization (#) fast_z_count 

Vertex Attribute Count (#) vertex_attribute_count 

Pixel Count (#) shaded_pixel_count 

Vertex Count (#) vertex_count 

Triangle Count (#) triangle_count 

Primitive Count (#) Primitive_count 

Culled Primitive Count (#) culled_primitive_count 

Syntax: 
  \\NVIDIA GPU Performance(GPU0/Counter name\\GPU Counter Value 



 NVPerfKit 

    

 

 

DA-01800-001_v02  11 
June 2005  

Example: GPU Idle: 
  \\NVIDIA GPU Performance(GPU0/% gpu_idle\\GPU Counter Value 

 

This block diagram shows where in the GPU pipeline each counter falls. 

 

 
 

gpu_idle: This is the % of time the GPU is idle since the last call.  Obviously, 
having the GPU idle at all is a waste of valuable resources.  In general, you want to 
balance the GPU and CPU work loads so that no one resource is starved for work.  
Time management or using multithreading in your application can help balance 
CPU based tasks (world management, etc.) with the rendering pipeline. 

vertex_attribute_count: The number of vertex attributes that are fetched and 
passed to the geometry unit is returned in this counter.  A large the number of 

Vertex Setup 

 

Vertex 
Shader 

Pixel Shader 

Texture 

culled_primitive_count 

primitive_count 

triangle_count 

vertex_count 

vertex_shader_busy 

pixel_shader_busy 

Raster 

fast_z_count 

shaded_pixel_count 

shader_waits_for_texture 

Frame 
Buffer 

gpu_idle 

vertex_attribute_count 

shader_waits_for_rop 



 NVPerfKit 

    

 

 

DA-01800-001_v02  12 
June 2005  

attributes (or unaligned vertices) can hurt vertex cache performance and reduce the 
overall vertex processing capabilities of the pipeline. 

culled_primitive_count: Returns the number of primitives culled in primitive 
setup.  If you are performing viewport culling, this gives you an indication of the 
accuracy of the algorithm being used, and can give you an idea if you need to 
improve this culling.  This includes primitives culled when using backface culling.  
Drawing a fully visible sphere on the screen should cull half of the triangles if 
backface culling is turned on and all the triangles are ordered consistently (CW or 
CCW). 

vertex_shader_busy: This is the % of time that vertex shader unit 0 was busy.  If 
this value is high but, for instance, pixel_shader_busy is low, it is an indication that 
you may be vertex/geometry bound.  This can be from geometry that is too detailed 
or even from vertex programs that are overly complex and need to be simplified.  In 
addition, taking advantage of the post T&L cache (by reducing vertex size and using 
indexed primitives) can prevent processing the same vertices multiple times. 

primitive_count:  Returns the number of primitives processed in the geometry 
subsystem.  This experiment counts points, lines, and triangles.  To count only 
triangles, use the triangle_count counter.  Balance these counts with the number of 
pixels being drawn to see if you need to simplify your geometry and use 
bump/displacement maps. 

triangle_count: Returns the number of triangles processed in the geometry 
subsystem 

vertex_count: Returns the number of unique vertices transformed by the geometry.  
This can give you an idea of how good your vertex sharing is from the use of 
strips/fans/etc. 

fast_z_count: This returns the number of blocks that were processed through the 
GPU’s fastZ hardware.  If you are doing z only passes, this will let you know if you 
are utilizing the hardware optimally. 

shaded_pixel_count: Counts the number of pixels generated by the rasterizer and 
sent to the pixel shader units.   

shader_waits_for_texture: This is the amount of time that the pixel shader unit 
was stalled waiting for a texture fetch.  Texture stalls usually happen if textures don’t 
have mipmaps, if a high level of anisotropic filtering is used, or even for bad 
coherency in accessing textures. 

pixel_shader_busy: This returns the % of time that pixel shader unit 0 was busy 
and is an indication of if you are pixel bound.  This can happen in high resolution 
settings, when pixel programs are very complex 

shader_waits_for_rop: This is the % of time that the pixel shader is stalled by the 
raster operations unit (ROP), waiting to blend a pixel and write it to the frame 
buffer.  If the application is performing a lot of alpha blending, or even if the 
application has a lot of overdraw (the same pixel being written multiple times, 
unblended) this can be a performance bottleneck. 

 



 

 

DA-01800-001_v02  13 
June 2005  

Appendix C. 
Sample Code 

The sample code provided with NVPerfKit illustrates how to implement support 
for the performance counters in your application via PDH.   

Note: PDH is the Performance Data Helper interface provided by Microsoft and 
used by perfmon.exe and others. 

The purpose of this sample code is twofold: 

 Provide code you can copy/paste into your own applications 
 Demonstrate the performance issues associated with using the performance 

counters 

To use this sample code, you must have installed an instrumented driver and also 
enabled performance instrumentation in the display driver control panel.  You must 
also use the NVIDIA Developer Control Panel to enable the following counters: 

 gpu_idle 
 D3D frame mSec in driver 
 OGL FPS 

The OpenGL Demo draws a simple tessellated sphere.  The number of tessellations 
varies smoothly each frame, except every 100th frame it draws the sphere very 
highly tessellated for that single frame (the D3D demo currently doesn’t draw any 
geometry). While this is happening, the OpenGL Demo displays the values of the 
counters in various ways on the screen. 

The code accompanying this demo includes source code for 3 helper classes and 
examples of how to use them. 

 CPDHHelper wraps some of the Win32 PDH library’s calls for simpler usage.   
 CTrace is similar to a hybrid Queue and CircularQueue (it can be used 

both ways).  It is for storing values read from the CPDHHelper so that a 
counter’s history can be available.   

 CTraceDisplay is a helper class for displaying the trace data in a variety of 
manners. 



 NVPerfKit 

    

 

 

DA-01800-001_v02  14 
June 2005  

Use CPDHHelper::add() and the identifier string for each counter you want 
to monitor.  The construction of this string is a bit ugly, so please pay attention to 
how this is done in the demo. Open perfmon.exe (supplied with windows) and use 
the add feature to add a new counter. Inspection of the displayed counter name and 
information along with comparison to the sample strings should be sufficient for 
your usage.  MSDN has further information about the construction of the string, in 
addition to a few macros and other tools to help with it. 

Once counters are added to CPDHHelper, call sample() to retrieve values.  Then 
call value(i) where i is the number of the counter you want to read (0 based, in 
the order you added them).  This returns a win32 structure.  The “doubleValue” 
entry is demonstrated in the Demo code, but you may prefer others. 

Values are insert()’d into a CTrace.  Values can be read out either via the 
[] operator or the () operator.  One streams the data, the other wraps it, in wrap-
around style. 

CTraceDisplay can display data in a variety of ways.  LINE_STREAM uses the 
[] operator for a streaming plot.  There are also BAR and NEEDLE methods.  Play 
around and use your favorites.  The display’s are in a bounding box provided at 
creation time or later, with 0,0 being the bottom left corner of the window.  A 
background color may be selected, including alpha values.  You can enable blending 
in the mode of your choice if you want to be able to “see through” the displayed 
trace.  CTraceDisplay has sub classes for Direct3D and OpenGL to implement 
some API specific calls. 

Further details are in the sample code. 

 

Contact  
Please let us know if you encounter any problems or think of additional features that 
would improve NVPerfKit.  You can reach us at the following Email address: 

   NVPerfKit@nvidia.com 

 

 

 

 

 



 

NVIDIA Corporation 
2701 San Tomas Expressway 

Santa Clara, CA 95050 
www.nvidia.com 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, 
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) 
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, 
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS 
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A 
PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation 
assumes no responsibility for the consequences of use of such information or for any 
infringement of patents or other rights of third parties that may result from its use. No license is 
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation. 
Specifications mentioned in this publication are subject to change without notice. This 
publication supersedes and replaces all information previously supplied. NVIDIA Corporation 
products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

 

Trademarks 

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in 
the United States and other countries. Other company and product names may be trademarks of 
the respective companies with which they are associated.  

 

Copyright 

© 2005 NVIDIA Corporation.  All rights reserved 


