
Release 1.1
February 2003



Cg Language Toolkit
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, 
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED 
"AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH 
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF 
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes 
no responsibility for the consequences of use of such information or for any infringement of patents or 
other rights of third parties that may result from its use. No license is granted by implication or 
otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this 
publication are subject to change without notice. This publication supersedes and replaces all 
information previously supplied. NVIDIA Corporation products are not authorized for use as critical 
components in life support devices or systems without express written approval of NVIDIA 
Corporation.

Trademarks
NVIDIA and the NVIDIA logo are trademarks of NVIDIA Corporation. 

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft 
Corporation. 

OpenGL is a trademark of SGI. 

Other company and product names may be trademarks of the respective companies with which they 
are associated. 

Updates
Any changes, additions, or corrections will be posted at the NVIDIA Cg Web site:

    http://developer.nvidia.com/Cg

Refer to this site often to keep up on the latest changes and additions to the Cg language. 

Copyright
Copyright NVIDIA Corporation 2002
NVIDIA Corporation 
2701 San Tomas Expressway 

Santa Clara, CA 95050 
www.nvidia.com

http://www.nvidia.com
http://developer.nvidia.com/Cg


Table of Contents
Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Release Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Online Updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Introduction
to the Cg Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
The Cg Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Cg’s Programming Model for GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Cg Language Profiles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Declaring Programs in Cg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Program Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Working with Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Basic Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Type Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Statements and Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Control Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Function Definitions and Function Overloading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Arithmetic Operators from C  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Multiplication Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Vector Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Boolean and Comparison Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Swizzle Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Write Mask Operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Conditional Operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Texture Lookups in Advanced Fragment Profiles  . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
More Details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Cg Standard Library Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Mathematical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Geometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Texture Map Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Derivative Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Debugging Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Predefined Fragment Program Output Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
808-00504-0000-004 i
NVIDIA



Cg Language Toolkit
Using the
Cg Runtime Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Introducing the Cg Runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Benefits of the Cg Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Overview of the Cg Runtime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Core Cg Runtime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Core Cg Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Core Cg Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Core Cg Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Core Cg Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

API-Specific Cg Runtimes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Parameter Shadowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
OpenGL Cg Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Direct3D Cg Runtime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Brief Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Loading the Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Understanding simple.cg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Program Listing for simple.cg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Definitions for Structures with Varying Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Passing Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Basic Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Prepare for Lighting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Calculating the Vertex Color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Further Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Advanced Profile Sample Shaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Improved Skinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Vertex Shader Source Code for Improved Skinning  . . . . . . . . . . . . . . . . . . . . . . . . . 99

Improved Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Vertex Shader Source Code for Improved Water  . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Pixel Shader Source Code for Improved Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Melting Paint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Vertex Shader Source Code for Melting Paint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Pixel Shader Source Code for Melting Paint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

MultiPaint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Vertex Shader Source Code for MultiPaint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Pixel Shader Source Code for MultiPaint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Ray-Traced Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Vertex Shader Source Code for Ray-Traced Refraction  . . . . . . . . . . . . . . . . . . . . . . 115
Pixel Shader Source Code for Ray-Traced Refraction. . . . . . . . . . . . . . . . . . . . . . . . 116

Skin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
ii 808-00504-0000-004 
NVIDIA



 

Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
Pixel Shader Source Code for Skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

Thin Film Effect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
Vertex Shader Source Code for Thin Film Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . .124
Pixel Shader Source Code for Thin Film Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126

Car Paint 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Vertex Shader Source Code for Car Paint 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
Pixel Shader Source Code for Car Paint 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

Basic Profile Sample Shaders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Anisotropic Lighting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134
Vertex Shader Source Code for Anisotropic Lighting. . . . . . . . . . . . . . . . . . . . . . . . .135

Bump Dot3x2 Diffuse and Specular  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
Vertex Shader Source Code for Bump Dot3x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Pixel Shader Source Code for Bump Dot3x2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

Bump-Reflection Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
Vertex Shader Source Code for Bump-Reflection Mapping  . . . . . . . . . . . . . . . . . . . .141
Pixel Shader Source Code for Bump and Reflection Mapping. . . . . . . . . . . . . . . . . . .143

Fresnel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
Vertex Shader Source Code for Fresnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

Grass  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
Vertex Shader Source Code for Grass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Refraction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
Vertex Shader Source Code for Refraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Pixel Shader Source Code for Refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

Shadow Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
Vertex Shader Source Code for Shadow Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . .153
Pixel Shader Source Code for Shadow Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

Shadow Volume Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
Vertex Shader Source Code for Shadow Volume Extrusion . . . . . . . . . . . . . . . . . . . .156

Sine Wave Demo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
Vertex Shader Source Code for Sine Wave  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Matrix Palette Skinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
Vertex Shader Source Code for Matrix Palette Skinning  . . . . . . . . . . . . . . . . . . . . . .162
 808-00504-0000-004 iii
NVIDIA



Cg Language Toolkit
Appendix A 
Cg Language Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Language Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Silent Incompatibilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Similar Operations That Must be Expressed Differently . . . . . . . . . . . . . . . . . . . . . . 165
Differences from ANSI C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Detailed Language Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Profiles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
The Uniform Modifier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Function Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Overloading of Functions by Profile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Syntax for Parameters in Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Function Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Partial Support of Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Type Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Type Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Type Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Type Equivalency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Type-Promotion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Namespaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Arrays and Subscripting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Function Overloading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Use of Uninitialized Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Preprocessor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Overview of Binding Semantics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Binding Semantics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Aliasing of Semantics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Restrictions on Semantics Within a Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Additional Details for Binding Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
How Programs Receive and Return Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Minimum Requirements for if, while, and for Statements . . . . . . . . . . . . . . . . . 185
New Vector Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Arithmetic Precision and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Operator Precedence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Operator Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Cg Standard Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Vertex Program Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Mandatory Computation of Position Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
iv 808-00504-0000-004 
NVIDIA



 

Position Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
Binding Semantics for Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Fragment Program Profiles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
Binding Semantics for Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

Appendix B 
Language Profiles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
DirectX Vertex Shader 2.x Profiles (vs_2_*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196
Statements and Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
Using Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199

DirectX Pixel Shader 2.x Profiles (ps_2_*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
Language Constructs and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
Limitations in this Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203

OpenGL ARB Vertex Program Profile (arbvp1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Accessing OpenGL State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Position Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
Compatibility with the vp20 Vertex Program Profile . . . . . . . . . . . . . . . . . . . . . . . . .207
Loading Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

OpenGL ARB Fragment Program Profile (arbfp1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
Language Constructs and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
Limitations in the Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

OpenGL NV_vertex_program 2.0 Profile (vp30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
Position Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
Language Constructs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

OpenGL NV_fragment_program Profile (fp30)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
Language Constructs and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
Pack and Unpack Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220

DirectX Vertex Shader 1.1 Profile (vs_1_1)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Memory Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Language Constructs and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
 808-00504-0000-004 v
NVIDIA



Cg Language Toolkit
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

DirectX Pixel Shader 1.x Profiles (ps_1_*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Language Constructs and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Standard Library Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Auxiliary Texture Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

OpenGL NV_vertex_program 1.0 Profile (vp20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Position Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

OpenGL NV_texture_shader and NV_register_combiners Profile (fp20) . . . . . . . . . . . . 244
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Language Constructs and Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Standard Library Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Bindings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Auxiliary Texture Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Appendix C 
Nine Steps to High-Performance Cg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Appendix D 
Cg Compiler Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
vi 808-00504-0000-004 
NVIDIA



Contents, Figures, and Tables

List of Figures
Figure 1 Cg’s Model of the GPU .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2

Figure 2 The Parts of the Cg Runtime API .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .31

Figure 3 The Cg_Simple Workspace .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .89

Figure 4 The simple.cg Shader  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .90

Figure 5 Example of Improved Skinning .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .98

Figure 6 Example of Improved Water  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101

Figure 7 Example of Melting Paint   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 105

Figure 8 Example of MultiPaint  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109

Figure 9 Example of Ray-Traced Refraction   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114

Figure 10 Example of Skin  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119

Figure 11 Example of Thin Film Effect   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 124

Figure 12 Example of Car Paint 9 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 127

Figure 13 Example of Anisotropic Lighting .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134

Figure 14 Example of Bump Dot3x2 Diffuse and Specular   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 136

Figure 15 Example of Bump-Reflection Mapping .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 140

Figure 16 Example of Fresnel   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 144

Figure 17 Example of Grass   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 146

Figure 18 Example of Refraction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 149

Figure 19 Example of Shadow Mapping .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 152

Figure 20 Example of Shadow Volume Extrusion .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 155

Figure 21 Example of Sine Wave  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 158

Figure 22 Example of Matrix Palette Skinning  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 161
808-00504-0000-004 vii
NVIDIA



Cg Language Toolkit

List of Figures
viii 808-00504-0000-004 
NVIDIA



 

List of Tables
Table 1 Mathematical Functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .20

Table 2 Geometric Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .24

Table 3 Texture Map Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .25

Table 4 Derivative Functions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .27

Table 5 Debugging Function   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .28

Table 6 Type Conversions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 177

Table 7 Expanded Operators   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188

Table 8 Vertex Output Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 193

Table 9 Fragment Output Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 193

Table 10 vs_2_* Uniform Input Binding Semantics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198

Table 11 vs_2_* Varying Input Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198

Table 12 vs_2_* Varying Output Binding Semantics.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199

Table 13 ps_2_* Uniform Input Binding Semantics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202

Table 14 ps_2_* Varying Input Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202

Table 15 ps_2_* Varying Output Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202

Table 19 arbvp1 Uniform Input Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 208

Table 20 arbvp1 Varying Input Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 209

Table 21 arbvp1 Varying Output Binding Semantics.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 210

Table 22 arbfp1 Uniform Input Binding Semantics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 212

Table 23 arbfp1 Varying Input Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213

Table 24 arbfp1 Varying Output Binding Semantics.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 213

Table 25 vp30 Uniform Input Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 215

Table 26 vp30 Varying Input Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 216

Table 27 vp30 Varying Output Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 216

Table 28 fp30 Uniform Input Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 219

Table 29 fp30 Varying Input Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 219

Table 30 fp30 Varying Output Binding Semantics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 220

Table 31 vs_1_1 Uniform Input Binding Semantics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225

Table 32 vs_1_1 Varying Input Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 225

Table 33 vs_1_1 Varying Output Binding Semantics.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 226

Table 34 ps_1_x Instruction Set Modifiers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 228
808-00504-0000-004 ix
NVIDIA



Cg Language Toolkit

List of Tables
Table 35 Supported Standard Library Functions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 230

Table 36 Required Projective Texture Lookup Swizzles   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 231

Table 37 ps_1_x Uniform Input Binding Semantics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 232

Table 38 ps_1_x Varying Input Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233

Table 39 ps_1_x Varying Output Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233

Table 40 ps_1_x Auxiliary Texture Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 234

Table 41 vp20 Uniform Input Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 241

Table 42 vp20 Varying Input Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242

Table 43 vp20 Varying Output Binding Semantics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 242

Table 44 NV_texture_shader and NV_register_combiners Instruction Set Modifiers .  .  .  . 245

Table 45 Supported Standard Library Functions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247

Table 46 Required Projective Texture Lookup Swizzles   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 248

Table 47 fp20 Uniform Binding Semantics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249

Table 48 fp20 Varying Input Binding Semantics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250

Table 49 fp20 Varying Output Binding Semantics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 250

Table 50 fp20 Auxiliary Texture Functions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251
x 808-00504-0000-004 
NVIDIA



Foreword

We are in the midst of a great transition in computer graphics, both in terms of 
graphics hardware and in terms of the visual quality and authoring process for 
games, interactive applications, and animation. Graphics hardware has evolved 
from “big iron” graphics workstations costing hundreds of thousands of dollars 
to single-chip graphics processing units (GPUs) whose performance and 
features have grown to match and now even to exceed traditional workstations. 
The processing power provided by a modern GPU in a single frame rivals the 
amount of computation that used to be expended for an offline-rendered 
animation frame. Indeed, at the launch of GeForce3 on the Apple Macintosh, a 
convincing version of Pixar’s Luxo, Jr. was demonstrated running interactively 
in real-time. At the 2001 SIGGRAPH conference, an interactive version of a 
more recent film, Square Studios’ Final Fantasy, was shown running in real-
time, again on a GeForce3.
Although these feats of computation are astounding, there is much more to 
come. Today’s GPUs evolve very quickly. Typically, a product generation is 
only six months long, and with each new product generation comes a two-fold 
increase in performance. Graphics processor performance increases at 
approximately three times the rate of microprocessors-Moore’s Law cubed! In 
addition to the performance increases, each year brings new hardware features, 
supported by new application programming interfaces (APIs). This dizzying 
pace is difficult for developers to adapt to, but adapt they must.
Developers and users are demanding better rendering quality and more realistic 
imagery and experiences. Users don’t care about the details; they simply want 
games and other interactive applications to look more like movies, special 
effects, and animation. Developers want more power (always more), along with 
more flexibility in controlling the massively capable GPUs of today and 
tomorrow. APIs do not, and cannot, keep up with the rapid pace of innovation 
in GPUs. As APIs and underlying technologies change, programmers, artists, 
and software publishers struggle to adapt to the change and the churn of the 
hardware/software platform.
What’s needed is to raise the level of abstraction for interaction with GPUs. 
Continued updates and improvements to the hardware and APIs are too painful 
if developers are too “close to the metal.” This problem was exacerbated by the 
advent of programmability in GPUs. Older GPUs had a small number of 
controllable or configurable rendering paths, but the most recent technology is 
808-00504-0000-004 xi
NVIDIA



Cg Language Toolkit
highly programmable, and becoming ever more so. We can now write short 
vertex and fragment programs to be executed by the GPU. This requires great 
skill, and is only possible with short programs. 
When GPU hardware grows to allow programs of hundreds, thousands, or even 
more instructions, assembly coding will no longer be practical. Rather than 
programming each rendering state, each bit, byte, and word of data and control 
through a low-level assembly language, we want to express our ideas in a more 
straightforward form, using a high-level language.
Thus Cg, “C for Graphics,” becomes necessary and inevitable. Just as C was 
derived to expose the specific capabilities of processors while allowing higher-
level abstraction, Cg allows the same abstraction for GPUs. Cg changes the way 
programmers can program: focusing on the ideas, the concepts, and the effects 
they wish to create-not on the details of the hardware implementation. Cg also 
decouples programs from specific hardware because the language is functional, 
not hardware implementation-specific. Also, since Cg can be compiled at run 
time on any platform, operating system, and for any graphics hardware, Cg 
programs are truly portable. Finally, and perhaps best of all, Cg programs are 
future-proof and can adapt to run well on future products. The compiler can 
optimize directly for a new target GPU that perhaps did not even exist when the 
original Cg program was written.
This book is intended as an introduction to Cg, as well as a practical handbook 
to get programmers started developing in Cg. It includes a language description, 
a reference for the standard and run-time libraries, and is full of helpful 
examples. The goal for this book is to be both an introduction and a tool for the 
new user, as well as a reference and resource for developers as they become 
more proficient. 
Welcome to the world of Cg!

David Kirk 
Chief Scientist
NVIDIA Corporation
xii 808-00504-0000-004 
NVIDIA



Preface

The goal of this book is to introduce to you Cg, a new high-level language for 
graphics programming. To that end, we have organized this document into the 
following sections: 

“Introduction to the Cg Language” on page 1 
A quick introduction to the current release of Cg, with everything you need 
to know to start working it.
“Cg Standard Library Functions” on page 19
A list of the Standard Library functions, which can help to reduce your 
program development time.
“Using the Cg Runtime Library” on page 29 
An introduction to the Cg runtime APIs, which allow you to easily compile 
Cg programs and pass data to them from within applications.
“A Brief Tutorial” on page 89
A description of a simple Cg program and Microsoft Visual Studio 
workspace (both provided on the accompanying CD) that you can use to 
start experimenting with Cg.
“Advanced Profile Sample Shaders” on page 97 
A list of sample NV30 shaders, complete with source code.
“Basic Profile Sample Shaders” on page 133 
A list of sample NV2X shaders, complete with source code.
Appendix A, “Cg Language Specification” on page 165
The formal Cg language specification.
Appendix B, “Language Profiles” on page 195 
Describes features and restrictions of the currently supported language 
profiles: DirectX 8 vertex, DirectX 8 pixel, OpenGL ARB vertex, NV2X 
OpenGL vertex, NV30 OpenGL vertex, and NV30 OpenGL fragment.
Appendix C, “Nine Steps to High-Performance Cg” on page 257
Strategies for getting the most out of your Cg code.
Appendix D, “Cg Compiler Options” on page 265
A list of the various command-line options that the Cg compiler accepts.
808-00504-0000-004 xiii
NVIDIA



Cg Language Toolkit
Cg Developer’s CD
The CD provided with this book contains the entire Cg release, which 
allows you get started immediately. The readme.txt file on the CD describes 
the contents of the release in detail. 

You can begin working with Cg immediately by reading the “Introduction to 
the Cg Language” on page 1 and then going through “A Brief Tutorial” on 
page 89. Once you have a basic understanding of the Cg language, use the 
“Advanced Profile Sample Shaders” on page 97 and “Basic Profile Sample 
Shaders” on page 133 as a basis to build your own effects. 

Release Notes
Release notes for Cg are now contained in a separate document that is part of 
the Cg distribution.
Please report any bugs, issues, and feedback to NVIDIA by e-mailing 
cgsupport@nvidia.com. We will expeditiously address any reported problems.

Online Updates
Any changes, additions, or corrections are posted at the NVIDIA Cg Web site: 
http://developer.nvidia.com/Cg
Refer to this site often to keep up on the latest changes and additions to the Cg 
language. Information on how to report any bugs you may find in the release is 
also available on this site. 
xiv 808-00504-0000-004 
NVIDIA

http://developer.nvidia.com/Cg


Introduction
to the Cg Language

Historically, graphics hardware has been programmed at a very low level. Fixed-
function pipelines were configured by setting states such as the texture-
combining modes. More recently, programmers configured programmable 
pipelines by using programming interfaces at the assembly language level. In 
theory, these low-level programming interfaces provided great flexibility. In 
practice, they were painful to use and presented a serious barrier to the effective 
use of hardware.
Using a high-level programming language, rather than the low-level languages of 
the past, provides several advantages:

A high-level language speeds up the tweak-and-run cycle when a shader is 
developed. The ultimate test for a shader is “Does it look right?” To that 
end, the ability to quickly prototype and modify a shader is crucial to the 
rapid development of high-quality effects.
The compiler optimizes code automatically and performs low-level tasks, 
such as register allocation, that are tedious and prone to error.
Shading code written in a high-level language is much easier to read and 
understand. It also allows new shaders to be easily created by modifying 
previously written shaders. What better way to learn than from a shader 
written by the best artists and programmers?
Shaders written in a high-level language are portable to a wider range of 
hardware platforms than shaders written in assembly code.

This chapter introduces Cg (C for Graphics), a new high-level language tailored 
for programming GPUs. Cg offers all the advantages just described, allowing 
programmers to finally combine the inherent power of the GPU with a 
language that makes GPU programming easy.

The Cg Language
Cg is based on C, but with enhancements and modifications that make it easy to 
write programs that compile to highly optimized GPU code. Cg code looks 
808-00504-0000-004 1
NVIDIA



Cg Language Toolkit
almost exactly like C code, with the same syntax for declarations, function calls, 
and most data types. 
Before describing the Cg language in detail, it is important to explain the reason 
for some of the differences that exist between Cg and C. Fundamentally, it 
comes down to the difference in the programming models for GPUs and for 
CPUs. 

Cg’s Programming Model for GPUs
CPUs normally have only one programmable processor. In contrast, GPUs 
have at least two programmable processors, the vertex processor and the 
fragment processor, plus other non-programmable hardware units. The 
processors, the non-programmable parts of the graphics hardware, and the 
application are all linked through data flows. Figure 1 illustrates Cg’s model of 
the GPU. 

Figure 1 Cg’s Model of the GPU

The Cg language allows you to write programs for both the vertex processor 
and the fragment processor. We refer to these programs as vertex programs and 
fragment programs, respectively. (Fragment programs are also known as pixel 
programs or pixel shaders, and we use these terms interchangeably in this 
document.) Cg code can be compiled into GPU assembly code, either on 
demand at run time or beforehand. 
2 808-00504-0000-004 
NVIDIA



 Introduction to the Cg Language
Cg makes it easy to combine a Cg fragment program with a handwritten vertex 
program, or even with the non-programmable OpenGL or DirectX vertex 
pipeline. Likewise, a Cg vertex program can be combined with a handwritten 
fragment program, or with the non-programmable OpenGL or DirectX 
fragment pipeline.

Cg Language Profiles
Because all CPUs support essentially the same set of basic capabilities, the C 
language supports this set on all CPUs. However, GPU programmability has 
not quite yet reached this same level of generality. For example, the current 
generation of programmable vertex processors supports a greater range of 
capabilities than do the programmable fragment processors. Cg addresses this 
issue by introducing the concept of language profiles. A Cg profile defines a 
subset of the full Cg language that is supported on a particular hardware 
platform or API. The current release of the Cg compiler supports the following 
profiles: 

DirectX 9 vertex shaders 
Runtime profiles: CG_PROFILE_VS_2_X 

CG_PROFILE_VS_2_0 
Compiler options: -profile vs_2_x 

-profile vs_2_0

DirectX 9 pixel shaders
Runtime profiles: CG_PROFILE_PS_2_X 

CG_PROFILE_PS_2_0 
Compiler options: -profile ps_2_x 

-profile ps_2_0

OpenGL ARB vertex programs 
Runtime profile: CG_PROFILE_ARBVP1 
Compiler option: -profile arbvp1 
OpenGL ARB fragment programs
Runtime profile: CG_PROFILE_ARBFP1 
Compiler option: -profile arbfp1 
OpenGL NV30 vertex programs 
Runtime profile: CG_PROFILE_VP30 
Compiler option: -profile vp30 
OpenGL NV30 fragment programs
Runtime profile: CG_PROFILE_FP30 
Compiler option: -profile fp30 
 808-00504-0000-004 3
NVIDIA



Cg Language Toolkit
DirectX 8 vertex shaders 
Runtime profile: CG_PROFILE_VS_1_1 
Compiler option: -profile vs_1_1 
DirectX 8 pixel shaders 
Runtime profiles: CG_PROFILE_PS_1_3 

CG_PROFILE_PS_1_2 
CG_PROFILE_PS_1_1 

Compiler options: -profile ps_1_3 
-profile ps_1_2
-profile ps_1_1

OpenGL NV2X vertex programs 
Runtime profile: CG_PROFILE_VP20 
Compiler option: -profile vp20 
OpenGL NV2X fragment programs 
Runtime profile: CG_PROFILE_FP20 
Compiler option: -profile fp20 

The DirectX 9 profiles (vs_2_x and ps_2_x), OpenGL ARB profiles (arbfp1 
and arbvp1), and NV30 OpenGL profiles (fp30 and vp30) generally support 
longer, more complex programs and offer more features and functionality to 
the developer. These are referred to as advanced profiles.
The DirectX 8 profiles (vs_1_1 and ps_1_3) and NV2X OpenGL profiles 
(fp20 and vp20) have more restrictions on program length and available 
features, especially in fragment programs. These are referred to as basic profiles.
See “Language Profiles” on page 195 for detailed descriptions of these and 
related profiles.

Declaring Programs in Cg
CPU code generally consists of one program specified by main() in C. In 
contrast, a Cg program can have any name. A program is defined using the 
following syntax: 

Program Inputs and Outputs
The programmable processors in GPUs operate on streams of data. The vertex 
processor operates on a stream of vertices, and the fragment processor operates 
on a stream of fragments.

<return-type> <program-name>(<parameters>)[: <semantic-name>]
{ /* ... */ }
4 808-00504-0000-004 
NVIDIA



 Introduction to the Cg Language
A programmer can think of the main program as being executed just once on a 
CPU. In contrast, a program is executed repeatedly on a GPU—once for each 
element of data in a stream. The vertex program is executed once for each vertex, 
and the fragment program is executed once for each fragment.
The Cg language adds several capabilities to C to support this stream-based 
programming model. For new Cg programmers, these capabilities often take 
some time to understand because they have no direct correspondence to C 
capabilities. However, the sample programs later in this document demonstrate 
that it really is easy to use these capabilities in Cg programs.

Two Kinds of Program Inputs

A Cg program can consume two different kinds of inputs: 
Varying inputs are used for data that is specified with each element of the 
stream of input data. For example, the varying inputs to a vertex program 
are the per-vertex values that are specified in vertex arrays. For a fragment 
program, the varying inputs are the interpolants, such as texture 
coordinates.
Uniform inputs are used for values that are specified separately from the main 
stream of input data, and don’t change with each stream element. For 
example, a vertex program typically requires a transformation matrix as a 
uniform input. Often, uniform inputs are thought of as graphics state.

Varying Inputs to a Vertex Program

A vertex program typically consumes several different per-vertex (varying) 
inputs. For example, the program might require that the application specify the 
following varying inputs for each vertex, typically in a vertex array:

Model space position 
Model space normal vector 
Texture coordinate 

In a fixed-function graphics pipeline, the set of possible per-vertex inputs is 
small and predefined. This predefined set of inputs is exposed to the application 
through the graphics API. For example, OpenGL 1.4 provides the ability to 
specify a vertex array of normal vectors.
In a programmable graphics pipeline, there is no longer a small set of 
predefined inputs. It is perfectly reasonable for the developer to write a vertex 
program that uses a per-vertex refractive index value as long as the application 
provides this value with each vertex.
Cg provides a flexible mechanism for specifying these per-vertex inputs in the 
form of a set of predefined names. Each program input must be bound to a 
 808-00504-0000-004 5
NVIDIA



Cg Language Toolkit
name from this set. In the following structure, the vertex program definition 
binds its parameters to the predefined names POSITION, NORMAL, TANGENT, and 
TEXCOORD3. The application must provide the vertex array data associated with 
these predefined names.

We refer to the predefined names as binding semantics. The following set of 
binding semantics is supported in all Cg vertex program profiles. Some Cg 
profiles support additional binding semantics.

The binding semantic POSITION0 is equivalent to the binding semantic 
POSITION; likewise, the other binding semantics have similar equivalents.
In the OpenGL Cg profiles, binding semantics implicitly specify the mapping of 
varying inputs to particular hardware registers. However, in DirectX-based Cg 
profiles there is no such implied mapping.
Binding semantics may be specified directly on program parameters rather than 
on struct elements. Thus, the following vertex program definition is legal:  

struct myinputs {
  float3 myPosition       : POSITION;
  float3 myNormal         : NORMAL;
  float3 myTangent        : TANGENT;
  float  refractive_index : TEXCOORD3; 
};

outdata foo(myinputs indata) {
  /* ... */
  // Within the program, the parameters are referred to as
  // “indata.myPosition”, “indata.myNormal”, and so on.
  /* ... */
}

POSITION BLENDWEIGHT 
NORMAL TANGENT 
BINORMAL PSIZE 
BLENDINDICES TEXCOORD0—TEXCOORD7 

outdata foo(float3 myPosition       : POSITION,
            float3 myNormal         : NORMAL,
            float3 myTangent        : TANGENT,
            float  refractive_index : TEXCOORD3) {
  /* ... */ 
  // Within the program, the parameters are referred to by
  // their variable names: “myPosition”, “myNormal”, 
  // “myTangent”, and “refractive_index”.
  /* ... */ 
}

6 808-00504-0000-004 
NVIDIA



 Introduction to the Cg Language
Varying Outputs to and from Vertex Programs

The outputs of a vertex program pass through the rasterizer and are made 
available to a fragment program as varying inputs. For a vertex program and 
fragment program to interoperate, they must agree on the data being passed 
between them.
As it does with the data flow between the application and vertex program, Cg 
uses binding semantics to specify the data flow between the vertex program and 
fragment program.
This example shows the use of binding semantics for vertex program output:

And, this example shows how to use this same data as the input to a fragment 
program:

The following binding semantics are available in all Cg vertex profiles for 
output from vertex programs: POSITION, PSIZE, FOG, COLOR0–COLOR1, and 
TEXCOORD0–TEXCOORD7. 
All vertex programs must declare and set a vector output that uses the 
POSITION binding semantic. This value is required for rasterization.

// Vertex program
struct myvf {
  float4 pout         : POSITION; // Used for rasterization
  float4 diffusecolor : COLOR0;
  float4 uv0          : TEXCOORD0;
  float4 uv1          : TEXCOORD1; 
};
myvf foo(/* ... */) {
  myvf outstuff;
  /* ... */
  return outstuff; 
}

// Fragment program
struct myvf {
  float4 diffusecolor : COLOR0;
  float4 uv0          : TEXCOORD0;
  float4 uv1          : TEXCOORD1; 
};
fragout bar(myvf indata) {
  float4 x = indata.uv0;
  /* ... */ 
}

 808-00504-0000-004 7
NVIDIA



Cg Language Toolkit
To ensure interoperability between vertex programs and fragment programs, 
both must use the same struct for their respective outputs and inputs. For 
example 

Note that values associated with some vertex output semantics are intended for 
and are used by the rasterizer. These values cannot actually be used in the 
fragment program, even though they appear in the input struct. For example, 
the indata.pos value associated with the POSITION fragment semantic may 
not be read in the fragmain shader.

Varying Outputs from Fragment Programs

Binding semantics are always required on the outputs of fragment programs. 
Fragment programs are required to declare and set a vector output that uses the 
COLOR semantic. This value is usually used by the hardware as the final color of 
the fragment. Some fragment profiles also support the DEPTH output semantic, 
which allows the depth value of the fragment to be modified.
As with vertex programs, fragment programs may return their outputs in the 
body of a structure. However, it is usually more convenient to either declare 
outputs as out parameters:

struct myvert2frag {
  float4 pos : POSITION;
  float4 uv0 : TEXCOORD0;
  float4 uv1 : TEXCOORD1;
};

// Vertex program
myvert2frag vertmain(...) {
  myvert2frag outdata;
  /* ... */
  return outdata;
}

// Fragment program
void fragmain(myvert2frag indata ) {
  float4 tcoord = indata.uv0;
  /* ... */
}

void main(/* ... */,
  out float4 color : COLOR, out float depth : DEPTH) {
  /* ...*/
  color = diffuseColor * /* ...*/;
  depth = /*...*/;  
}

8 808-00504-0000-004 
NVIDIA



 Introduction to the Cg Language
or to associate a semantic with the return value of the shader:

The following example shows a simple vertex program that calculates diffuse 
and specular lighting. Two structures for varying data, appin and vertout, are 
also declared. Don’t worry about understanding exactly what the program is 
doing—the goal is simply to give you an idea of what Cg code looks like. “A 
Brief Tutorial” on page 89 explains this shader in detail.

float4 main(/* ... */) : COLOR {
  /* ... */
  return diffuseCOlor * /* ... */;   
}

// Define inputs from application.
struct appin
{
  float4 Position     : POSITION;
  float4 Normal       : NORMAL;
};

// Define outputs from vertex shader.
struct vertout
{
  float4 HPosition    : POSITION;
  float4 Color        : COLOR;
};

vertout main(appin IN, 
             uniform float4x4 ModelViewProj,
             uniform float4x4 ModelViewIT,
             uniform float4 LightVec)
{
  vertout OUT;

  // Transform vertex position into homogenous clip-space.
  OUT.HPosition = mul(ModelViewProj, IN.Position);

  // Transform normal from model-space to view-space.
  float3 normalVec = normalize(mul(ModelViewIT,
                                   IN.Normal).xyz);

  // Store normalized light vector.
  float3 lightVec = normalize(LightVec.xyz);

  // Calculate half angle vector.     
  float3 eyeVec = float3(0.0, 0.0, 1.0);
  float3 halfVec = normalize(lightVec + eyeVec);
 808-00504-0000-004 9
NVIDIA



Cg Language Toolkit
Working with Data
Like C, Cg supports features that create and manipulate data:

Basic types
Structures
Arrays
Type conversions

Basic Data Types
Cg supports six basic data types:

float 
A 32-bit IEEE floating point (s23e8) number that has one sign bit, a 23-bit 
mantissa, and an 8-bit exponent. This type is supported in all profiles, 

  
  // Calculate diffuse component.
  float diffuse = dot(normalVec, lightVec);

  // Calculate specular component.
  float specular = dot(normalVec, halfVec);
  
  // Use the lit function to compute lighting vector from
  // diffuse and specular values.
  float4 lighting = lit(diffuse, specular, 32);

  // Blue diffuse material
  float3 diffuseMaterial = float3(0.0, 0.0, 1.0);

  // White specular material
  float3 specularMaterial = float3(1.0, 1.0, 1.0);

  // Combine diffuse and specular contributions and
  // output final vertex color.
  OUT.Color.rgb = lighting.y * diffuseMaterial +
                  lighting.z * specularMaterial;
  OUT.Color.a = 1.0;

  return OUT;
}

10 808-00504-0000-004 
NVIDIA



 Introduction to the Cg Language
although the DirectX 8 pixel profiles implement it with reduced precision 
and range for some operations.
half 
A 16-bit IEEE-like floating point (s10e5) number. 
int 
A 32-bit integer. Profiles may omit support for this type or have the option 
to treat int as float.
fixed 
A 12-bit fixed-point number (s1.10) number. It is supported in all fragment 
profiles.
bool 
Boolean data is produced by comparisons and is used in if and conditional 
operator (?:) constructs. This type is supported in all profiles.
sampler* 
The handle to a texture object comes in six variants: sampler, sampler1D, 
sampler2D, sampler3D, samplerCUBE, and samplerRECT. These types are 
supported in all pixel and fragment profiles, with one exception: 
samplerRECT is not supported in the DirectX profiles.

Cg also includes built-in vector data types that are based on the basic data types. 
A sample of these built-in vector data types includes (but is not limited to) the 
following: 

Additional support is provided for matrices of up to four-by-four elements. 
Here are some examples of matrix declarations:

Note that the multi-dimensional array float M[4][4] is not type-equivalent to 
the matrix float4x4 M.
There are no unions or bit fields in Cg at present.

Type Conversions
Type conversions in Cg work largely as they do in C. Type conversions may be 
explicitly specified using the C (newtype) cast operator.

float4 float3 float2 float1 
bool4 bool3 bool2 bool1

float1x1 matrix1; // One element matrix 
float2x3 matrix2; // Two-by-three matrix (six elements)
float4x2 matrix3; // Four-by-two matrix  (eight elements)
float4x4 matrix4; // Four-by-four matrix (sixteen elements)
 808-00504-0000-004 11
NVIDIA



Cg Language Toolkit
Cg automatically performs type promotion in mixed-type expressions, just as C 
does. For example, the expression floatvar * halfvar is compiled as 
floatvar * (float) halfvar.
Cg uses different type-promotion rules than C does in one case: A constant 
without an explicit type suffix does not cause type promotion. CG compiles the 
expression halfvar * 2.0 as halfvar * (half) 2.0. 
In contrast, C would compile it as ((double) halfvar) * 2.0. Cg uses 
different rules than C to minimize inadvertent type promotions that cause 
computations to be performed in slower, high-precision arithmetic. If the C 
behavior is desired, the constant should be explicitly typed to force the type 
promotion: halfvar * 2.0f is compiled as ((float) halfvar) * 2.0f. 
Cg uses the following type suffixes for constants:

f for float 
h for half 
x for fixed 

Structures
Cg supports structures the same way C does. Cg adopts the C++ convention of 
implicitly performing a typedef based on the tag name when a struct is 
declared:

Arrays
Arrays are supported in Cg and are declared just as in C. Because Cg does not 
support pointers, arrays must always be defined using array syntax rather than 
pointer syntax: 

Basic profiles place substantial restrictions on array declaration and usage. 
General-purpose arrays can only be used as uniform parameters to a vertex 
program. The intent is to allow an application to pass arrays of skinning 
matrices and arrays of light parameters to a vertex program.
The most important difference from C is that arrays are first-class types. That 
means array assignments actually copy the entire array, and arrays that are 

struct mystruct {
  /* ... */ };
mystruct s; // Define “s” as a “mystruct”.

// Declare a function that accepts an array 
// of five skinning matrices.
returnType foo(float4x4 mymatrix[5]) {/* ... */};
12 808-00504-0000-004 
NVIDIA



 Introduction to the Cg Language
passed as parameters are passed by value (the entire array is copied before 
making any changes), rather than by reference.

Statements and Operators
Cg supports the following types of statements and operators:

Control flow
Function definitions and function overloads
Arithmetic operators from C
Multiplication function
Vector constructor
Boolean and comparison operators
Swizzle operator
Write mask operator
Conditional operator

Control Flow
Cg uses the following C control constructs:

Function calls and the return statement
if/else 
while 
for 

These control constructs require that their conditional expressions be of type 
bool. Because Cg expressions like i <= 3 are of type bool, this change from 
C is normally not apparent.
The vs_2_x and vp30 profiles support branch instructions, so for and while 
loops are fully supported in these profiles. In other profiles, for and while 
loops may only be used if the compiler can fully unroll them (that is, if the 
compiler can determine the iteration count at compile time). Likewise, return 
can only appear as the last statement in a function in these profiles. 
Function recursion (and co-recursion) is forbidden in Cg.
The switch, case, and default keywords are reserved, but they are not 
supported by any profiles in the current release of the Cg compiler.
 808-00504-0000-004 13
NVIDIA



Cg Language Toolkit
Function Definitions and Function Overloading
To pass a modifiable function parameter in C, the programmer must explicitly 
use pointers. C++ provides a built-in pass-by-reference mechanism that avoids 
the need to explicitly use pointers, but this mechanism still implicitly assumes 
that the hardware supports pointers. Cg must use a different mechanism 
because the vertex and fragment hardware of the GPU does not support the use 
of pointers. Cg passes modifiable function parameters by value-result, instead of 
by reference. The difference between these two methods is subtle; it is only 
apparent when two function parameters are aliased by a function call. In Cg, the 
two parameters have separate storage in the function, whereas in C++ they 
would share storage.
To reinforce this distinction, Cg uses a different syntax than C++ to declare 
function parameters that are modified:

Cg supports function overloading by the number of operands and by operand 
type. The choice of a function is made by matching one operand at a time, 
starting at the first operand. The formal language specification provides more 
details on the matching rules, but it is not normally necessary to study them 
because the overloading generally works in an intuitive manner. For example, 
the following code declares two versions of a function, one that takes two bool 
operands, and one that takes two float operands:

Arithmetic Operators from C
Cg includes all the standard C arithmetic operators (+, -, *, /) and allows the 
operators to be used on vectors as well as on scalars. The vector operations are 
always performed in elementwise fashion. For example, 

These operators can also be used in a form that mixes scalar and vector—the 
scalar is “smeared” to create a vector of the necessary size to perform an 
elementwise operation. Thus, 

The built-in arithmetic operators do not currently support matrix operands. It is 
important to remember that matrices are not the same as vectors, even if their 
dimensions are the same.

function blah1(out   float x); // x is output-only
function blah2(inout float x); // x is input and output
function blah3(in    float x); // x is input-only
function blah4(float x); // x is input-only (default, as in C)

bool same(float a, float b)  { return (a == b);}
bool same(bool  a, bool  b)  { return (a == b);}

float3(a, b, c) * float3(A, B, C) equals float3(a*A, b*B, c*C) 

a * float3(A, B, C) is equal to float3(a*A, a*B, a*C) 
14 808-00504-0000-004 
NVIDIA



 Introduction to the Cg Language
Multiplication Functions
Cg’s mul() functions are for multiplying matrices by vectors, and matrices by 
matrices: 

It is important to use the correct version of mul(). Otherwise, you are likely to 
get unexpected results. More detail on the mul() functions are provided in “Cg 
Standard Library Functions” on page 19.

Vector Constructor
Cg allows vectors (up to size 4) to be constructed using the following notation:

The vector constructor can appear anywhere in an expression.

Boolean and Comparison Operators
Cg includes three of the standard C boolean operators: 

In C, these operators consume and produce values of type int, but in Cg they 
consume and produce values of type bool. This difference is not normally 
noticeable, except when declaring a variable that will hold the value of a 
boolean expression. Cg also supports the C comparison operators, which 
produce values of type bool: 

// Matrix by column-vector multiply
matrix-column vector: mul(M, v);

// Row-vector by matrix multiply
row vector-matrix: mul(v, M);

// Matrix by matrix multiply
matrix-matrix: mul(M, N);

y = x * float4(3.0, 2.0, 1.0, -1.0);

&& logical AND
|| logical OR
! logical negation

< less than
<= less than or equal to
!= inequality
== equality
>= greater than or equal to
> greater than
 808-00504-0000-004 15
NVIDIA



Cg Language Toolkit
Unlike C, Cg allows all boolean operators to be applied to vectors, in which case 
boolean operations are performed in an elementwise fashion. The result of such 
a boolean expression is a vector of bool elements with that number of elements 
being the same as the two source vectors. Also unlike C, the logical AND (&&) 
and logical OR (||) operators cannot be used for short-circuiting evaluation; 
side effects of both sides of these expressions always occur, regardless of the 
value of the boolean expression.

Swizzle Operator
Cg has a swizzle operator (.) that allows the components of a vector to be 
rearranged to form a new vector. The new vector need not be the same size as 
the original vector—elements can be repeated or omitted. The characters x, y, 
z, and w represent the first, second, third, and fourth components of the original 
vector, respectively. The characters r, g, b, and a can be used for the same 
purpose. Because the swizzle operator is implemented efficiently in the GPU 
hardware, its use is usually free. 
The following are some examples of swizzling: 

The swizzle operator can also be used to create a vector from a scalar: 

The precedence of the swizzle operator is the same as that of the array 
subscripting operator ([]).

Write Mask Operator
The write mask operator (.) is placed on the left hand side of an assignment 
statement. It can be used to selectively overwrite the components of a vector. It 
is illegal to specify a particular component more than once in a write mask, or to 
specify a write mask when initializing a variable as part of a declaration. 
The following is an example of a write mask:

The write mask operator can be a powerful tool for generating efficient code 
because it maps well to the capabilities of GPU hardware. The precedence of 
the write mask operator is the same as that of the swizzle operator.

float3(a, b, c).zyx  yields float3(c, b, a) 
float4(a, b, c, d).xxyy yields float4(a, a, b, b)
float2(a, b).yyxx  yields float4(b, b, a, a)
float4(a, b, c, d).w  yields d 

a.xxxx yields float4(a, a, a, a) 

float4 color   = float4(1.0, 1.0, 0.0, 0.0);
       color.a = 1.0;  // Set alpha to 1.0, leaving RGB alone.
16 808-00504-0000-004 
NVIDIA



 Introduction to the Cg Language
Conditional Operator
Cg includes C’s if/else conditional statement and conditional operator (?:). 
With the conditional operator, the control variable may be a bool vector. If so, 
the second and third operands must be similarly sized vectors, and selection is 
performed on an elementwise basis. Unlike C, any side effects associated with 
the second and third operands always occur, regardless of the conditional. 
As an example, the following would be a very efficient way to implement a 
vector clamp function, if the min() and max() functions did not exist:

Texture Lookups in Advanced Fragment Profiles
Cg’s advanced fragment profiles provide a variety of texture lookup functions. 
Please note that Cg uses a different set of texture lookup functions for basic 
fragment profiles because of the restricted pixel programmability of that 
hardware. Basic fragment profile lookup functions aren’t discussed in this 
introductory chapter.
Advanced fragment profile texture lookup functions always require at least two 
parameters:

Texture sampler
A texture sampler is a variable with the type sampler, sampler1D, 
sampler2D, sampler3D, samplerCUBE, or samplerRECT and represents 
the combination of a texture image with a filter, clamp, wrap, or similar 
configuration. Texture sampler variables cannot be set directly within the 
Cg language; instead, they must be provided by the application as uniform 
parameters to a Cg program.
Texture coordinate
Depending on the type of texture lookup, the coordinate may be a scalar, a 
two-vector, a three-vector, or a four-vector.

The following fragment program uses the tex2D() function to perform a 2D 
texture lookup to determine the fragment’s RGBA color.

float3 clamp(float3 x, float minval, float maxval) {
  x = (x < minval.xxx) ? minval.xxx : x;
  x = (x > maxval.xxx) ? maxval.xxx : x;
  return x; 
}

void applytex(uniform sampler2D mytexture,
                      float2    uv       : TEXCOORD0,
              out     float4    outcolor : COLOR) {
  outcolor = tex2D(mytexture, uv); 
}

 808-00504-0000-004 17
NVIDIA



Cg Language Toolkit
Cg provides a wide variety of texture-lookup functions, a sample of which is 
given below. For a complete list see “Texture Map Functions” on page 25.

Standard nonprojective texture lookup:

Standard projective texture lookup: 

Nonprojective texture lookup with user-specified filter kernel size:

The filter size is specified by providing the derivatives of the texture 
coordinates with respect to pixel coordinates x (dsdx) and y (dsdy). For 
more information see “Texture Map Functions” on page 25.
Shadowmap lookup:

In these functions, the z component of the texture coordinate holds a 
depth value to be compared against the shadowmap. Shadowmap lookups 
require the associated texture unit to be configured by the application for 
depth compare texturing; otherwise, no depth comparison is actually 
performed.

More Details 
The purpose of this chapter has been to give you a brief overview of Cg, so that 
you can get started quickly and experiment to gain hands-on experience. If you 
would like some more detail about any of the language features described in this 
chapter, see “Cg Language Specification” on page 165. 

tex2D   (sampler2D   tex, float2 s); 
texRECT (samplerRECT tex, float2 s); 
texCUBE (samplerCUBE tex, float3 s); 

tex2Dproj   (sampler2D   tex, float3 sq);
texRECTproj (samplerRECT tex, float3 sq)
texCUBEproj (samplerCUBE tex, float4 sq);

tex2D   (sampler2D tex, float2 s, 
         float2 dsdx, float2 dsdy);
texRECT (samplerRECT tex, float2 s, 
         float2 dsdx, float2 dsdy);
texCUBE (samplerCUBE tex, float3 s, 
         float3 dsdx, float3 dsdy);

tex2Dproj (sampler2D   tex, float4 szq);
tex2DRECT (samplerRECT tex, float4 szq); 
18 808-00504-0000-004 
NVIDIA



Cg Standard Library Functions

Cg provides a set of built-in functions and predefined structures with binding 
semantics to simplify GPU programming. These functions are similar in spirit 
to the C standard library, providing a convenient set of common functions. In 
many cases, the functions map to a single native GPU instruction, meaning they 
are executed very quickly. Of those functions that map to multiple native GPU 
instructions, you may expect the most useful to become more efficient in the 
near future. 
Although customized versions of specific functions can be written for 
performance or precision reasons, it is generally wiser to use the standard library 
functions when possible. The standard library functions will continue to be 
optimized for future GPUs, meaning that a shader written today will 
automatically be optimized for the latest architectures at compile time. 
Additionally, the standard library provides a convenient unified interface for 
both vertex and fragment programs. 
This section describes the contents of the Cg Standard Library, including 

Mathematical functions
Geometric functions 
Texture map functions
Derivative functions 
Predefined helper struct types

Where appropriate, functions are overloaded to support scalar and vector 
variations when the input and output types are the same. 

Mathematical Functions
Table 1 lists the mathematical functions that the Cg Standard Library provides. 
The list includes functions useful for trigonometry, exponentiation, rounding, 
808-00504-0000-004 19
NVIDIA



Cg Language Toolkit
and vector and matrix manipulations, among others. All functions work on 
scalars and vectors of all sizes, except where noted. 

Table 1 Mathematical Functions

Mathematical Functions

Function Description

abs(x) Absolute value of x 

acos(x) Arccosine of x in range [0,π], x in [-1,1]

all(x) Returns true if every component of x is not equal to 0.
Returns false otherwise. 

any(x) Returns true if any component of x is not equal to 0.
Returns false otherwise.

asin(x) Arcsine of x in range [-π/2,π/2];
x should be in [-1,1].

atan(x) Arctangent of x in range [-π/2,π/2]

atan2(y, x) Arctangent of y/x in range [-π,π]

ceil(x) Smallest integer not less than x 

clamp(x, a, b) x clamped to the range [a,b] as follows:
• Returns a if x is less than a.
• Returns b if x is greater than b.
• Returns x otherwise.

cos(x) Cosine of x 

cosh(x) Hyperbolic cosine of x 

cross(a, b) Cross product of vectors a and b;
a and b must be 3-component vectors.

degress(x) Radian-to-degree conversion

determinant(M) Determinant of matrix M 

dot(a, b) Dot product of vectors a and b 

exp(x) Exponential function ex 

exp2(x) Exponential function 2x 

floor(x) Largest integer not greater than x 
20 808-00504-0000-004 
NVIDIA



 Cg Standard Library Functions
fmod(x, y) Remainder of x/y, with the same sign as x.
If y is zero, the result is implementation-defined.

frac(x) Fractional part of x 

frexp(x, out exp) Splits x into a normalized fraction in the interval [1/2, 
1), which is returned, and a power of 2, which is stored 
in exp.
If x is zero, both parts of the result are zero.

isfinite(x) Returns true if x is finite

isinf(x) Returns true if x is infinite

isnan(x) Returns true if x is NaN (not a number)

ldexp(x, n) x * 2n 

lerp(a, b, f) Linear interpolation: (1-f)*a + b*f where a and b 
are matching vector or scalar types. Parameter f can be 
either a scalar or a vector of the same type as a and b.

lit(ndotl, ndoth, m) Computes lighting coefficients for ambient, diffuse, and 
specular light contributions. Returns a 4-vector as 
follows:
• The x component of the result vector contains the 

ambient coefficient, which is always 1.0.
• The y component contains the diffuse coefficient 

which is zero if (n  l) < 0; otherwise (n  l). 
• The z component contains the specular coefficient 

which is zero if either (n  l) < 0 or (n  h) < 0; 
(n  h)m otherwise.

• The w component is 1.0.
There is no vectorized version of this function

log(x) Natural logarithm ln(x);
x must be greater than zero.

log2(x) Base 2 logarithm of x;
x must be greater than zero.

log10(x) Base 10 logarithm of x;
x must be greater than zero.

max(a, b) Maximum of a and b 

Table 1 Mathematical Functions (continued)

Mathematical Functions

Function Description
 808-00504-0000-004 21
NVIDIA



Cg Language Toolkit
min(a, b) Minimum of a and b 

modf(x, out ip) Splits x into integral and fractional parts, each with the 
same sign as x.
Stores the integral part in ip and returns the fractional 
part.

mul(M, N) Matrix product of matrix M and matrix N, as shown 
below:

If M has size AxB, and N has size BxC, returns                     
a matrix of size AxC.

mul(M, v) Product of matrix M and column vector v, as shown 
below:

If M is an AxB matrix and v is an Bx1 vector, returns an 
Ax1 vector.

mul(v, M) Product of row vector v and matrix M, as shown below:

If v is a 1xA vector and M is an AxB matrix, returns a 
1xB vector.

noise(x) Either a 1-, 2-, or 3-dimensional noise function 
depending on the type of its argument.
The returned value is between zero and one and is 
always the same for a given input value.

pow(x, y) xy 

radians(x) Degree-to-radian conversion

Table 1 Mathematical Functions (continued)

Mathematical Functions

Function Description

mul(M, N) =

M
11
M

21
M

31
M

41
M12 M22 M32 M42
M

13
M

23
M

33
M

43
M

14
M

24
M

34
M

44

N
11
N

21
N

31
N

41
N12 N22 N32 N42
N

13
N

23
N

33
N

43
N

14
N

23
N

34
N

44

mul(M, v) =

M11 M21 M31 M41
M

12
M

22
M

32
M

42
M13 M23 M33 M43
M14 M24 M34 M44

V1
V

2
V3
V4

mul(v, M) =

M
11
M

21
M

31
M

41
M12 M22 M32 M42
M

13
M

23
M

33
M

43
M

14
M

24
M

34
M

44

[V1 V2 V3 V4]
22 808-00504-0000-004 
NVIDIA



 Cg Standard Library Functions
round(x) Closest integer to x 

rsqrt(x) Reciprocal square root of x;
x must be greater than zero.

sign(x)  1 if x > 0; 
-1 if x < 0; 
 0 otherwise.

sin(x) Sine of x 

sincos(float x, 
out s, out c)

s is set to the sine of x, and c is set to the cosine of x. 
If sin(x) and cos(x) are both needed, this function 
is more efficient than calculating each individually.

sinh(x) Hyperbolic sine of x 

smoothstep(min,
max, x)

For values of x between min and max, returns a 
smoothly varying value that ranges from 0 at x = min 
to 1 at x = max. x is clamped to the range [min,max] 
and then the interpolation formula is evaluated:
-2*((x-min)/(max-min))3 + 3*((x-min)/(max-min))2

step(a, x) 0 if x < a; 
1 if x >= a.

sqrt(x) Square root of x;
x must be greater than zero.

tan(x) Tangent of x 

tanh(x) Hyperbolic tangent of x 

transpose(M) Matrix transpose of matrix M. If M is an AxB matrix, the 
transpose of M is a BxA matrix whose first column is 
the first row of M, whose second column is the second 
row of M, whose third column is the third row of M, and 
so on.

Table 1 Mathematical Functions (continued)

Mathematical Functions

Function Description
 808-00504-0000-004 23
NVIDIA



Cg Language Toolkit
Geometric Functions
Table 2 presents the geometric functions that are provided in the Cg Standard 
Library. 

Table 2 Geometric Functions

Geometric Functions

Function Description

distance(pt1, pt2) Euclidean distance between points pt1 and pt2 

faceforward(N, I, Ng) N if dot(Ng,I) < 0; 
otherwise, -N.

length(v) Euclidean length of a vector

normalize(v) Returns a vector of length 1 that points in the same 
direction as vector v. 

reflect(i, n) Computes reflection vector from entering ray 
direction i and surface normal n. 
Only valid for 3-component vectors.

refract(i, n, eta) Given entering ray direction i, surface normal n, 
and relative index of refraction eta, computes 
refraction vector. If the angle between i and n is 
too large for a given eta, returns (0,0,0).
Only valid for 3-component vectors.
24 808-00504-0000-004 
NVIDIA



 Cg Standard Library Functions
Texture Map Functions
Table 3 presents the texture functions that are provided in the Cg Standard 
Library. These texture functions are fully supported by the ps_2, arbfp1, and 
fp30 profiles and will also be supported by all future profiles that have texture-
mapping capabilities. All of the functions in Table 3 return a float4 value. 
Because of the limited pixel programmability of older hardware, the ps_1 and 
fp20 profiles use a different set of texture-mapping functions. See “Language 
Profiles” on page 195 for more information.

Table 3 Texture Map Functions 

Texture Map Functions

Function Description

tex1D(sampler1D tex, float s)

1D nonprojective

tex1D(sampler1D tex, float s, float dsdx, float dsdy)

1D nonprojective with derivatives

tex1D(sampler1D tex, float2 sz)

1D nonprojective depth compare

tex1D(sampler1D tex, float2 sz, float dsdx, float dsdy)

1D nonprojective depth compare with derivatives

tex1Dproj(sampler1D tex, float2 sq)

1D projective

tex1Dproj(sampler1D tex, float3 szq)

1D projective depth compare

tex2D(sampler2D tex, float2 s)

2D nonprojective

tex2D(sampler2D tex, float2 s, float2 dsdx, float2 dsdy)

2D nonprojective with derivatives

tex2D(sampler2D tex, float3 sz)

2D nonprojective depth compare
 808-00504-0000-004 25
NVIDIA



Cg Language Toolkit
tex2D(sampler2D tex, float3 sz, float2 dsdx, float2 dsdy)

2D nonprojective depth compare with derivatives

tex2Dproj(sampler2D tex, float3 sq)

2D projective

tex2Dproj(sampler2D tex, float4 szq)

2D projective depth compare

texRECT(samplerRECT tex, float2 s)

2D RECT nonprojective 

texRECT(samplerRECT tex, float2 s, float2 dsdx, float2 dsdy)

2D RECT nonprojective with derivatives 

texRECT(samplerRECT tex, float3 sz)

2D RECT nonprojective depth compare 

texRECT(samplerRECT tex, float3 sz, float2 dsdx, float2 dsdy)

2D RECT nonprojective depth compare with derivatives 

texRECTproj(samplerRECT tex, float3 sq)

2D RECT projective 

texRECTproj(samplerRECT tex, float3 szq)

2D RECT projective depth compare

tex3D(sampler3D tex, float3 s)

3D nonprojective

tex3D(sampler3D tex, float3 s, float3 dsdx, float3 dsdy)

3D nonprojective with derivatives

tex3Dproj(sampler3D tex, float4 szq)

3D projective depth compare

Table 3 Texture Map Functions  (continued)

Texture Map Functions

Function Description
26 808-00504-0000-004 
NVIDIA



 Cg Standard Library Functions
In the table, the name of the second argument to each function indicates how 
its values are used when performing the texture lookup: s indicates a 1-, 2-, or 
3-component texture coordinate; z indicates a depth comparison value for 
shadowmap lookups; q indicates a perspective value and is used to divide the 
texture coordinate, s, before the texture lookup is performed.
For convenience, the standard library also defines versions of the texture 
functions prefixed with h4, such as h4tex2D(), that return half4 values and 
prefixed with x4, such as x4tex2D(), that return fixed4 values.
When the texture functions that allow specifying a depth comparison value are 
used, the associated texture unit must be configured for depth compare 
texturing. Otherwise, no depth comparison is actually performed.

Derivative Functions
Table 4 presents the derivative functions that are supported by the Cg Standard 
Library. Vertex profiles are not required to support these functions. 

texCUBE(samplerCUBE tex, float3 s)

Cubemap nonprojective

texCUBE(samplerCUBE tex, float3 s, float3 dsdx, float3 dsdy)

Cubemap nonprojective with derivatives

texCUBEproj(samplerCUBE tex, float4 sq)

Cubemap projective 

Table 3 Texture Map Functions  (continued)

Texture Map Functions

Function Description

Table 4 Derivative Functions

Derivative Functions

Function Description

ddx(a) Approximate partial derivative of a with respect to 
screen-space x coordinate. 

ddy(a) Approximate partial derivative of a with respect to 
screen-space y coordinate.
 808-00504-0000-004 27
NVIDIA



Cg Language Toolkit
Debugging Function
Table 5 presents the debugging function that is supported by the Cg Standard 
Library. Vertex profiles are not required to support this function. 

The debug function is intended to allow a program to be compiled twice—once 
with the DEBUG option and once without. By executing both programs, you can 
obtain one frame buffer containing the final output of the program and a 
second containing an intermediate value to be examined for debugging.

Predefined Fragment Program Output Structures
A number of helper structure types for use in fragment programs are predefined 
in the standard library. Variables of these types can be used to hold the outputs 
of a fragment program. Their use is strictly optional.
For the ps_1 and fp20 profiles, the fragout structure is defined as follows:

The ps_2, arbfp1, and fp30 profiles have two fragment output types defined: 

Table 5 Debugging Function

Debugging Function

Function Description

void debug(float4 x) If the compiler’s DEBUG option is specified, calling 
this function causes the value x to be copied to the 
COLOR output of the program, and execution of the 
program is terminated.
If the compiler’s DEBUG option is not specified, this 
function does nothing.

struct fragout  {
  float4 col : COLOR;  
};

struct fragout  {
  half4 col   : COLOR;
  float depth : DEPTH; 
};
struct fragout_float  {
  float4 col   : COLOR;
  float  depth : DEPTH;  
};
28 808-00504-0000-004 
NVIDIA



Using the
Cg Runtime Library

This chapter describes the Cg Runtime Library. It assumes that you have some 
basic knowledge of the Cg language, as well as the OpenGL or Direct3D APIs, 
depending on which one you use in your applications.
The first section “Introducing the Cg Runtime” on page 29 talks about the 
benefits of using the Cg Runtime Library and gives a brief overview of how it is 
used in an application. The next two sections, “Core Cg Runtime” on page 34 
and “API-Specific Cg Runtimes” on page 45, give an exhaustive description of 
the APIs composing the Cg Runtime.

Introducing the Cg Runtime
Cg programs are lines of code that describe shading, but they need the support 
of applications to create images. To interface Cg programs with applications, 
you must do two things:
1. Compile the programs for the correct profile. In other words, compile the 

programs into a form that is compatible with the 3D API used by the 
application and the underlying hardware.

2. Link the programs to the application program. This allows the application 
to feed varying and uniform data to the programs.

You have two choices as to when to perform these operations. You can 
perform them at compile time, when the application program is compiled into 
an executable, or you can perform them at run time, when the application is 
actually executed. The Cg runtime is an application programming interface that 
allows an application to compile and link Cg programs at run time.

Benefits of the Cg Runtime

Future Compatibility

Most applications need to run on a range of profiles. If an application 
precompiles its Cg programs (the compile-time choice), it must store a 
compiled version of each program for each profile. This is reasonable for one 
808-00504-0000-004 29
NVIDIA



Cg Language Toolkit
program, but is cumbersome for an application that uses many programs. 
What’s worse, the application is frozen in time. It supports only the profiles that 
existed when it was compiled; it cannot take advantage of the optimizations that 
future compilers could offer. 
In contrast, programs compiled by applications at run time

Benefit from future compiler optimizations for the existing profiles
Run on future profiles corresponding to new 3D APIs or to hardware that 
did not exist at the time the Cg programs were written

No Dependency Limitations

If you link a Cg program to the application when it is compiled, the application 
is too dependent on the result of the compilation. The application program has 
to refer to the Cg program input parameters by using the hardware register 
names that are output by the Cg compiler. This approach is awkward for two 
reasons:

The register names can’t be easily matched to the corresponding 
meaningful names in the Cg program without looking at the compiler 
output. 
Register allocations can change each time the Cg program, the Cg compiler, 
or the compilation profile changes. This means you have the inconvenience 
of updating the application each time as well.

In contrast, linking a Cg program to the application program at run time 
removes the dependency on the Cg compiler. With the runtime, you need to 
alter the application code only when you add, delete, or modify Cg input 
parameters.

Input Parameter Management

The Cg runtime also offers additional facilities to manage the input parameters 
of the Cg program. In particular, it makes data types such as arrays and matrices 
easier to deal with.  These additional functions also encompass the necessary 
3D API calls to minimize code length and reduce programmer errors.

Overview of the Cg Runtime
The Cg runtime API consists of three parts (Figure 2):

A core set of functions and structures that encapsulates the entire 
functionality of the runtime
A set of functions specific to OpenGL built on top of the core set
A set of functions specific to Direct3D built on top of the core set
30 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
To make it easier for application writers, the OpenGL and Direct3D runtime 
libraries adopt the philosophy and data structure style of their respective API.

Figure 2 The Parts of the Cg Runtime API

The rest of the section provides instructions for using the Cg runtime in the 
framework of an application. Each step includes source code for OpenGL and 
Direct3D programming. 
Functions that involve only pure Cg resource management belong to the core 
runtime and have a cg prefix. In these cases, the same code is used for OpenGL 
and Direct3D. 
When functions from the OpenGL or Direct3D Cg runtimes are used, notice 
that the API name is indicated by the function name. Functions belonging to 
the OpenGL Cg runtime library have a cgGL prefix, and functions in the 
Direct3D Cg runtime library have a cgD3D prefix.
There are actually two Direct3D Cg runtime libraries: One for Direct3D 8 and 
one for Direct3D 9. Functions belonging to the Direct3D 8 Cg runtime have a 
cgD3D8 prefix, and functions belonging to the Direct3D 9 Cg runtime have a 
cgD3D9 prefix. Because most of the functions are identical between the two 
runtimes, we describe the Direct3D 9 Cg runtime with the understanding that 
the description applies to the Direct3D 8 Cg runtime as well, unless otherwise 
indicated.
The same prefix convention used for the function names is also used for the 
type names, macro names and enumerant values.
 808-00504-0000-004 31
NVIDIA



Cg Language Toolkit
Header Files

Here is how to include the core Cg runtime API into your C or C++ program:

Here is how to include the OpenGL Cg runtime API:

Here is how to include the Direct3D 9 Cg runtime API:

And, here is how to include the Direct3D 8 Cg runtime API:

Creating a Context

A context is a container for multiple Cg programs. It holds the Cg programs, as 
well as their shared data. 
Here’s how to create a context: 

Compiling a Program

Compile a Cg program by adding it to a context with cgCreateProgram(): 

CG_SOURCE indicates that myVertexProgramString, a string argument, 
contains Cg source code, not precompiled object code. Indeed, the Cg runtime 
also lets you create a program from precompiled object code, if you want to.
CG_PROFILE_ARBVP1 is the profile the program is to be compiled to. The 
“main” parameter gives the name of the function to use as the main entry point 
when the program is executed. Lastly, args is a null-terminated list of null-
terminated strings that is passed as an argument to the compiler.

Loading a Program

After you compile a program, you need to pass the resulting object code to the 
3D API that you’re using. For this, you need to invoke the Cg runtime’s API-
specific functions.
The Direct3D-specific functions require the Direct3D device structure in order 
to make the necessary Direct3D calls. The application passes it to the runtime 
using the following call:

#include <Cg/cg.h>

#include <Cg/cgGL.h>

#include <Cg/cgD3D9.h>

#include <Cg/cgD3D8.h>

CGcontext context = cgCreateContext();

CGprogram program = cgCreateProgram(context, 
                            CG_SOURCE, myVertexProgramString,
                            CG_PROFILE_ARBVP1, "main", args);

cgD3D9SetDevice(Device); 
32 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
You must do this every time a new Direct3D device is created, typically only at 
the beginning of the application.
You can then load a Cg program in this way for the Direct3D 9 Cg runtime: 

or this way for the Direct3D 8 Cg runtime:

The parameter vertexDeclaration is the Direct3D 8 vertex declaration array 
that describes where to find the necessary vertex attributes in the vertex 
streams. (See “Expanded Interface Program Execution” on page 74 for the 
details on the arguments to cgD3D8LoadProgram()and 
cgD3D9LoadProgram()).
In OpenGL, the equivalent call is

Modifying Program Parameters

The runtime gives you the option of modifying the values of your program 
parameters. The first step is to get a handle to the parameter:

The variable “myParameter” is the name of the parameter as it appears in the 
program source code.
The second step is to set the parameter value. The function used depends on 
the parameter type.
Here is an example in OpenGL:

Here is the same example in Direct3D:

These function calls assign the four floating-point values contained in the array 
value to the parameter myParameter, which is assumed to be of type float4.
In both APIs, there are variants of these calls to set matrices, arrays, textures, 
and texture states.

Executing a Program

Before you can execute a program in OpenGL, you must enable its 
corresponding profile:

cgD3D9LoadProgram(program, CG_FALSE, 0);

cgD3D8LoadProgram(program, CG_FALSE, 0, 0, vertexDeclaration);

cgGLLoadProgram(program); 

CGparameter myParameter = cgGetNamedParameter(
                                    program, "myParameter"); 

cgGLSetParameter4fv(myParameter, value); 

cgD3D9SetUniform(myParameter, value); 

cgGLEnableProfile(CG_PROFILE_ARBVP1); 
 808-00504-0000-004 33
NVIDIA



Cg Language Toolkit
In Direct3D, nothing explicitly needs to be done to enable a specific profile.
Next, you bind the program to the current state. This means that in subsequent 
drawing calls the program is executed for every vertex in the case of a vertex 
program and for every fragment in the case of a fragment program.
Here’s how to bind a program in OpenGL:

Here’s how to bind a program in Direct3D:

You can only bind one vertex and one fragment program at a time for a 
particular profile. Therefore, the same vertex program is executed until another 
vertex program is bound. Similarly, the same fragment program is executed as 
long as no other fragment program is bound.
In OpenGL, you disable profiles by the following call:

Disabling a profile also disables the execution of the corresponding vertex or 
fragment program.

Releasing Resources

When your application is ready to close, it is good programming practice to free 
resources that you’ve acquired. 
Because the Direct3D runtime keeps an internal reference to the Direct3D 
device, you must tell it to release this reference when you are done using the 
runtime. This is done with the following call: 

To free resources allocated for a program, call this function: 

To free resources allocated for a context, use this function:

Note that destroying a context destroys all the programs it contains as well.

Core Cg Runtime
The core Cg runtime provides all the functions necessary to manage Cg 
programs from within the application. It makes no assumption about which 3D 
API the applications uses, so that any application could easily ignore the API-
specific Cg runtime libraries and content itself with the core Cg runtime.

cgGLBindProgram(program); 

cgD3D9BindProgram(program); 

cgGLDisableProfile(CG_PROFILE_ARBVP1); 

cgD3D9SetDevice(0); 

cgDestroyProgram(program); 

cgDestroyContext(context); 
34 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
The core Cg runtime is built around three main concepts: context, program, 
and parameter, which are represented by the CGcontext, CGprogram, and 
CGparameter object types. Those concepts are hierarchically related one to 
each other: a program has several parameters, a context contains several 
programs, and the application can define several contexts. 

Note:   In the future, it will also be possible to define parameters at the level of the 
context so that they are shared among all the programs of a context.

The next sections go over those three basic object types and the related 
functions. The three object types have some points in common:

The use of CGbool, which is an integer type equal to either CG_TRUE or 
CG_FALSE

The use of CGenum, which is an enumerate type used to specify various 
enumerate values that are not necessarily related
The convention that functions that return a value of type CGcontext, 
CGprogram, CGparameter, or const char* indicate failure by returning 
zero

Core Cg Context
Cg provides functions for creating, destroying, and querying contexts.

Context Creation and Destruction

Programs can only be created as part of a context that acts as a program 
container. A context is created by calling cgCreateContext():

A context is destroyed by cgDestroyContext():

Context Query

To check whether a context handle references a valid context or not, use 
cgIsContext(): 

Core Cg Program
There are Cg functions for creating, destroying, iterating over, and querying 
programs.

CGcontext cgCreateContext(); 

void cgDestroyContext(CGcontext context); 

CGbool cgIsContext(CGcontext context); 
 808-00504-0000-004 35
NVIDIA



Cg Language Toolkit
Program Creation and Destruction

A program is created by calling either cgCreateProgram(): 

or cgCreateProgramFromFile():

These functions create a program object, add it to the specified context and 
compile the associated source code. For both of them,

context is a valid context handle.
profile is an enumerant specifying the profile to which the program must 
be compiled.
entry is the name of the function that must be considered as the main 
entry point by the compiler. If the value is zero, the name main is used.
args is a pointer to a null-terminated array of null-terminated strings that 
are passed as arguments to the compiler. The pointer may itself be null.

The only difference between the two functions is how program is interpreted. 
For cgCreateProgramFromFile(), program is a string containing the name of 
a file containing source code; for cgCreateProgram(), program directly 
contains source code. If the enumerant programType is equal to CG_SOURCE, 
the source code is Cg source code; if it is equal to CG_OBJECT, the source code is 
precompiled object code and does not require any further compilation.
The CGprogram handle returned by cgCreateProgramFromFile() is valid if it 
is different from zero, which means that the program has been successfully 
created and compiled. The program is destroyed by passing its handle to 
cgDestroyProgram():

CGprogram cgCreateProgram(CGcontext    context, 
                          CGenum       programType,
                          const char*  program,
                          CGprofile    profile,
                          const char*  entry,
                          const char** args);

CGprogram cgCreateProgramFromFile(CGcontext    context, 
                                  CGenum       programType,
                                  const char*  program,
                                  CGprofile    profile,
                                  const char*  entry,
                                  const char** args);

void cgDestroyProgram(CGprogram program); 
36 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Note:   In the future, it will be possible to modify a program that has been created by 
cgCreateProgram() or cgCreateProgramFromFile() through the 
runtime—by changing the variability or the semantics of some parameters, for 
example—so that it will need to be recompiled. 

A call to cgIsProgramCompiled() determines whether a program needs to be 
recompiled:

To recompile a program, use cgCompileProgram():

A useful function in this context is cgCopyProgram():

This function creates a new program object that is a copy of program and adds 
it to the same context. So, you can have several versions of the same original 
program, each of them modified in a particular way. 

Program Iteration

The programs within a context are sequentially ordered and can be iterated over 
by using  cgGetFirstProgram() and cgGetNextProgram():

The first program of the sequence is retrieved by cgGetFirstProgram(). If 
the context is invalid or does not contain any program, the function returns 
zero. Given a program, cgGetNextProgram() returns the program 
immediately next in the sequence, or zero if there is none. Here is how those 
two functions would typically be used given a valid context named context: 

Nothing is guaranteed regarding the order of the programs in the sequence or 
how cgGetFirstProgram() and cgGetNextProgram() behave when 
programs are created or destroyed during iteration.

Program Query

Program queries encompass validity, compilation results, and attributes.

CGbool cgIsProgramCompiled(CGprogram program);

cgCompileProgram(CGprogram program); 

CGprogram cgCopyProgram(CGprogram program); 

CGprogram cgGetFirstProgram(CGcontext context);
CGprogram cgGetNextProgram(CGprogram program); 

CGprogram program = cgGetFirstProgram(context);
while (program != 0) {
  /* Here is the code that handles the program */
  program = cgGetNextProgram(program);
}

 808-00504-0000-004 37
NVIDIA



Cg Language Toolkit
Program Validity

Use cgIsProgram() to check whether a program handle references a valid 
program:

Compilation Result

You can query the result of the compilation resulting from the last call to 
cgCreateProgram() for a given context by using cgGetLastListing():

If no call to cgCreateProgram() has been made for the context, 
cgGetLastListing() returns zero. Otherwise, it returns a string containing 
the output you would typically get from the command-line version of the 
compiler.

Program Attributes

To retrieve the context the program belongs to, use cgGetProgramContext():

Retrieving the profile the program has been compiled to is done with 
cgGetProgramProfile():

The function pair cgGetProfile() and cgGetProfileString() allows you 
to find the correspondence between a profile enumerant and its corresponding 
string:

If the string passed to cgGetProfile() does not correspond to any profile, 
CG_PROFILE_UNKNOWN is returned.
The function cgGetProgramString() retrieves various strings related to the 
program depending on the value of the enumerant stringType:

The variable stringType can have any of these values:
CG_PROGRAM_SOURCE: The original Cg source program is returned.
CG_PROGRAM_ENTRY: The main entry point of the Cg source program is 
returned.
CG_PROGRAM_PROFILE: The profile string is returned.
CG_COMPILED_PROGRAM: The resulting compiled program is returned.

CGbool cgIsProgram(CGprogram program);

const char* cgGetLastListing(CGcontext context);

CGcontext cgGetProgramContext(CGprogram program); 

CGprofile cgGetProgramProfile(CGprogram program);

CGprofile   cgGetProfile(const char* profileString);
const char* cgGetProfileString(CGprofile profile);

const char* cgGetProgramString(CGprogram program, 
                               CGenum stringType);
38 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Core Cg Parameter
Cg functions exist for retrieving and querying parameters.

Parameter Retrieval

Parameter retrieval can be either iterative or direct.

Iteration

A program has a sequence of parameters that can be iterated over by using 
cgGetFirstParameter() and cgGetNextParameter():

A call to cgGetFirstParameter() returns the first parameter of the sequence. 
If the program is invalid or does not contain any parameter, the call returns 
zero. Given a parameter, cgGetNextParameter() returns the parameter 
immediately next in the sequence or zero if there is none. The namespace 
argument of cgGetFirstParameter() specifies the name space of the 
parameters returned by this function and subsequent calls to 
cgGetNextParameter(). Every parameter belongs to a particular name space 
that defines its scope. For now, the scope of any parameter is limited to the 
program it belongs to, so that the only possible value for namespace is 
CG_PROGRAM. 

Note:  In the future, other name spaces, such as the context, may be defined, in which 
case cgGetFirstParameter() and cgGetNextParameter() will 
allow you to iterate through all the parameters of a program that are within the 
scope of the context.

Here is how those two functions would typically be used given a valid program 
called program: 

These functions don’t give access to the fields of a structure parameter (type 
CG_STRUCT) or the elements of an array parameter (type CG_ARRAY).

CGparameter cgGetFirstParameter(CGprogram program, 
                                CGenum namespace);
CGparameter cgGetNextParameter(CGparameter parameter);

CGparameter parameter = cgGetFirstParameter(program, 
                                            CG_PROGRAM);
while (parameter != 0) {
  /* Here is the code that handles the parameter */
  parameter = cgGetNextParameter(parameter);
}

 808-00504-0000-004 39
NVIDIA



Cg Language Toolkit
To get access to the fields of a structure, you use 
cgGetFirstStructParameter() along with cgGetNextParameter(): 

If parameter is not of type CG_STRUCT, cgGetFirstStructParameter() 
returns zero. 
To get access to the elements of an array, you use cgGetArrayDimension(), 
cgGetArraySize(), cgGetArrayParameter(), and cgGetNextParameter(): 

These three functions return 0 if parameter is not of type CG_ARRAY. Function 
cgGetArrayDimension() gives the dimension of the array. It returns 1 for 
float4 array[10], 2 for float4 array[10][100], and so on. Next, 
cgGetArraySize() gives the size of every dimension. For example, for float4 
array[10][100], cgGetArraySize(array,0) returns 10 and 
cgGetArraySize(array,1) returns 100. An array, anArray, has 
cgGetArraySize(anArray,0) elements. If its dimension is greater than one, 
those elements are themselves arrays.
Here is how all these iteration functions would typically be used given a valid 
program named program:

CGparameter cgGetFirstStructParameter(
              CGparameter parameter);

int cgGetArrayDimension(CGparameter parameter);
int cgGetArraySize(CGparameter parameter, int dimension);
CGparameter cgGetArrayParameter(CGparameter parameter, 
                                int index);

void IterateProgramParameters(CGprogram program) {
  RecurseProgramParameters(cgGetFirstParameter(program, 
                                               CG_PROGRAM));
}
 
void RecurseProgramParameters(CGparameter parameter) {
  if (parameter == 0)
    return;
  do {
    switch(cgGetParameterType(parameter)) {
      case CG_STRUCT:
        RecurseProgramParameters(
          cgGetFirstStructParameter(parameter));
        break;
      case CG_ARRAY:
        int arraySize = cgGetArraySize(parameter, 0);
        for (int i = 0; i < arraySize; ++i)
          RecurseProgramParameters(
            cgGetArrayParameter(parameter, i));
        break;
40 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
If you do not need to know how the parameters are organized in terms of 
structure and arrays, you can also iterate through all of them using 
cgGetFirstLeafParameter() and cgGetNextLeafParameter():

These functions iterate through all the simple parameters, structure fields and 
array elements that are input to the program. Nothing is guaranteed regarding 
the order of the parameters in the sequence.

Direct Retrieval

Any parameter of a program can be retrieved directly by using its name with 
cgGetNamedParameter():

If the program has no parameter corresponding to name, 
cgGetNamedParameter() returns zero.
The Cg syntax is used to retrieve structure fields or array elements. Let’s take 
the following code snippet as an example: 

The following are valid names for retrieving the corresponding parameter:

      default:
        /* Here is the code that handles the parameter */
        break;
    }
  } while((parameter = cgGetNextParameter(parameter))!= 0);
}

CGparameter cgGetFirstLeafParameter(CGprogram program, 
                                    CGenum namespace);
CGparameter cgGetNextLeafParameter(CGparameter parameter);

CGparameter cgGetNamedParameter(CGprogram program,
                                const char* name);

struct FooStruct {
  float4 A;
  float4 B;
};
struct BarStruct {
  FooStruct Foo[2];
};
void main(BarStruct Bar[3]) {
  // ...
}

“Bar”
“Bar[1]”
“Bar[1].Foo”
“Bar[1].Foo[0]”
“Bar[1].Foo[0].B”
 808-00504-0000-004 41
NVIDIA



Cg Language Toolkit
Parameter Query

Parameter queries encompass validity, references, and attributes.

Parameter Validity

The function cgIsParameter() allows you to check whether a parameter 
handle references a valid parameter or not:

A parameter handle becomes invalid when the program or the context of the 
program it corresponds to is destroyed.

Parameter References

A parameter that is referenced by the original Cg source code may be optimized 
out of the compiled program by the compiler, in which case the application can 
simply ignore it and not set its value. Calling cgIsParameterReferenced() 
allows you to check whether a parameter is actually used by the final compiled 
program:

No error is generated if you set the value of a parameter that is not referenced.

Parameter Attributes

The program that the parameter corresponds to is found using 
cgGetParameterProgram():

To determine whether the parameter is varying, uniform, or constant, 
cgGetParameterVariability() is used:

The call returns CG_VARYING if the parameter is a varying parameter, 
CG_UNIFORM if the parameter is a uniform parameter, or CG_CONSTANT if the 
parameter is a constant parameter. A constant parameter is a parameter whose 
value never changes for the life of a compiled program, so that changing its 
value requires recompiling the program. For some profiles, the compiler has to 
add some that correspond to literal constant values in the code.
To obtain the parameter direction, use cgGetParameterDirection():

It returns CG_IN if the parameter is an input parameter, CG_OUT if the parameter 
is an output parameter, or CG_INOUT if the parameter is both an input and an 
output parameter.

CGbool cgIsParameter(CGparameter parameter);

CGbool cgIsParameterReferenced(CGparameter parameter);

CGprogram cgGetParameterProgram(CGparameter parameter);

CGenum cgGetParameterVariability(CGparameter parameter);

CGenum cgGetParameterDirection(CGparameter parameter);
42 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
The parameter type is retrieved by cgGetParameterType():

One of five types is returned: (1) CG_STRUCT if the parameter is a structure, (2) 
CG_ARRAY if the parameter is an array, (3) CG_HALF* if the parameter is a half-
based type, (4) CG_FLOAT* if the parameter is a float-based type, or (5) 
CG_SAMPLER* if the parameter is a sampler-based type.
The pair of functions cgGetType() and cgGetTypeString() indicates the 
correspondence between a type enumerant and its corresponding string:

If the string passed to cgGetType() does not correspond to any type, 
CG_UNKNOWN_TYPE is returned.
Function cgGetParameterName() retrieves the parameter name:

Use cgGetParameterSemantic() to retrieve the parameter semantic string:

If the parameter does not have any semantic, an empty string is returned.
There is a one-to-one correspondence between a set of predefined semantics 
(POSITION, COLOR, and so on) and hardware resources (registers, texture units, 
and so on). In the Cg runtime, a hardware resource is represented by the type 
CGresource and cgGetParameterResource() retrieves the resource assigned 
to a parameter:

If the parameter does not have any associated resource, 
cgGetParameterResource() returns CG_UNDEFINED.
The two functions cgGetResource() and cgGetResourceString() allow 
you to determine the correspondence between a resource enumerant and its 
corresponding string:

If the string passed to cgGetResource() does not correspond to any resource, 
CG_UNDEFINED is returned.
Using cgGetParameterBaseResource() allows you to retrieve the base 
resource for a parameter in a Cg program:

CGtype cgGetParameterType(CGparameter parameter);

CGtype cgGetType(const char* typeString);
const char* cgGetTypeString(CGtype type);

const char* cgGetParameterName(CGparameter parameter);

const char* cgGetParameterSemantic(CGparameter parameter);

CGresource cgGetParameterResource(CGparameter parameter);

CGresource  cgGetResource(const char* resourceString);
const char* cgGetResourceString(CGresource resource);

CGresource cgGetParameterBaseResource(
             CGparameter parameter);
 808-00504-0000-004 43
NVIDIA



Cg Language Toolkit
The base resource is the first resource in a set of sequential resources. For 
example, if a given parameter has a resource equal to CG_TEXCOORD7, its base 
resource is CG_TEXCOORD0. Only parameters with resources whose name ends 
with a number have a base resource. All other parameters return CG_UNDEFINED 
when cgGetParameterBaseResource() is called. 
Function cgGetParameterResourceIndex() retrieves the numerical portion 
of the resource:

For example, if the resource for a given parameter is CG_TEXCOORD7, 
cgGetParameterResourceIndex() returns 7.
The cgGetParameterValues() function retrieves the default or constant value 
of a uniform parameter:

It retrieves the default value if valueType is equal to CG_DEFAULT and the 
constant value if valueType is equal to CG_CONSTANT. The components of the 
value are returned in row-major order as a pointer to an array containing type 
double elements. After cgGetParameterValues() is called, the number of 
components available in the array is pointed to by numberOfValuesReturned.

Core Cg Error
The core Cg runtime reports an error by setting a global variable containing the 
error code. You query it, as well as the corresponding error string, as follows:

Each time an error occurs, the core Cg runtime also calls a callback function, 
optionally provided by the application, that usually calls cgGetError(): 

Here is the list of all the CGerror errors specific to the core Cg runtime:
CG_NO_ERROR: Returned when no error has occurred.
CG_COMPILER_ERROR: Returned when the compiler generated an error. A 
call to cgGetLastListing() should be made to get more details on the 
actual compiler error.

unsigned long cgGetParameterResourceIndex(
                CGparameter parameter);

const double* cgGetParameterValues(CGparameter parameter,                   
               CGenum valueType, int* numberOfValuesReturned);

CGerror error = cgGetError();
const char* errorString = cgGetErrorString(error);

void MyErrorCallback() {
  const char* errorString = cgGetErrorString(cgGetError()); 
}
cgSetErrorCallback(MyErrorCallback); 
44 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
CG_INVALID_PARAMETER_ERROR: Returned when the parameter used is 
invalid.
CG_INVALID_PROFILE_ERROR: Returned when the profile is not supported.
CG_INVALID_VALUE_TYPE_ERROR: Returned when an unknown value type 
is assigned to a parameter.
CG_NOT_MATRIX_PARAM_ERROR: Returned when the parameter is not of a 
matrix type.
CG_INVALID_ENUMERANT_ERROR: Returned when the enumerant parameter 
has an invalid value.
CG_NOT_4x4_MATRIX_ERROR: Returned when the parameter must be a 4x4 
matrix type.
CG_FILE_READ_ERROR: Returned when the file cannot be read.
CG_FILE_WRITE_ERROR: Returned when the file cannot be written.
CG_MEMORY_ALLOC_ERROR: Returned when a memory allocation fails.
CG_INVALID_CONTEXT_HANDLE_ERROR: Returned when an invalid context 
handle is used.
CG_INVALID_PROGRAM_HANDLE_ERROR: Returned when an invalid program 
handle is used.
CG_INVALID_PARAM_HANDLE_ERROR: Returned when an invalid parameter 
handle is used.
CG_UNKNOWN_PROFILE_ERROR: Returned when the specified profile is 
unknown.
CG_VAR_ARG_ERROR: Returned when the variable arguments are specified 
incorrectly.
CG_INVALID_DIMENSION_ERROR: Returned when the dimension value is 
invalid.
CG_ARRAY_PARAM_ERROR: Returned when the parameter must be an array.
CG_OUT_OF_ARRAY_BOUNDS_ERROR: Returned when the index into an array 
is out of bounds.

API-Specific Cg Runtimes
Each API-specific Cg runtimes provides an additional set of functions on top 
of the core Cg runtime to ease the integration of Cg to an application based on 
this API. They essentially interface between the core runtime data structures 
and the API data structures to provide the following facilities:
 808-00504-0000-004 45
NVIDIA



Cg Language Toolkit
Setting the parameter values: A distinction is made between texture, matrix, 
array, vector and scalar values as those various types are handled differently 
by each API and have different data structures.
Executing the program: Program execution is divided into program loading 
(passing the result of the Cg compiler to the API) and program binding 
(setting the program as the one to execute for any subsequent draw calls). 
This is because those two operations are usually done at a different time: A 
program is loaded each time it is recompiled and it is bound each time it 
needs to be executed for a particular draw call.

Parameter Shadowing
When the value of a uniform parameter is set by some function of the OpenGL 
Cg runtime, it is actually stored internally (or shadowed) by either the Cg or the 
OpenGL runtime so that it does not need to be reset every time the program is 
about to be executed. This behavior is referred to as parameter shadowing.
If the Direct3D Cg runtime expanded interface (described in “Direct3D 
Expanded Interface” on page 69) is used, parameter shadowing can be turned 
on or off on a per-program basis. When parameter shadowing is turned off for 
a given program and the value of any of its uniform parameters is set by some 
function of the Direct3D Cg runtime, it is immediately downloaded to the GPU 
constant memory (the memory containing the values of all the uniform 
parameters). When parameter shadowing is turned on, the value is shadowed 
instead and no Direct3D call is made at the time it is set; only when the program 
is bound are all of its parameters actually downloaded to the constant memory. 
This means that a parameter value set after binding the program is not used 
during the execution of the program until the next time the program is bound. 
Parameter shadowing applies to all parameter settings including texture state 
stage and texture mode.
Disabling parameter shadowing allows the runtime to consume less memory, 
but forces the application to do the work of making sure that the constant 
memory contains all the right values every time it activates a program.

OpenGL Cg Runtime
This section discusses setting parameters and program execution for the 
OpenGL Cg runtime. 

Setting Parameters in OpenGL

In accordance with the OpenGL convention, many of the functions described 
below come in two versions: a version operating on float values, marked with 
an f, and a version operating on double values, marked with a d.
46 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Setting Uniform Scalar and Uniform Vector Parameters

To set the values of scalar parameters or vector parameters, use the 
cgGLSetParameter functions: 

The digit in the name of those functions indicates how many scalar values are 
set by the function. The v suffix is for functions that operate on an array of 
values as opposed to individual arguments.
If more values are set than the parameter requires, the extra values are ignored. 
If less values are set than the parameter requires, the last value is smeared. The 
cgGLSetParameter functions may be called for either uniform or varying 

void cgGLSetParameter1f(CGparameter parameter,  float x);
void cgGLSetParameter1fv(CGparameter parameter, 
                         const float* array);
void cgGLSetParameter1d(CGparameter parameter,  double x);
void cgGLSetParameter1dv(CGparameter parameter, 
                         const double* array);

void cgGLSetParameter2f(CGparameter parameter,  float x, 
                        float y);
void cgGLSetParameter2fv(CGparameter parameter, 
                         const float* array);
void cgGLSetParameter2d(CGparameter parameter,  double x, 
                        double y);
void cgGLSetParameter2dv(CGparameter parameter, 
                         const double* array);

void cgGLSetParameter3f(CGparameter parameter, float x, 
                        float y, float z);
void cgGLSetParameter3fv(CGparameter parameter, 
                         const float* array);
void cgGLSetParameter3d(CGparameter parameter, double x, 
                        double y, double z);
void cgGLSetParameter3dv(CGparameter parameter, 
                         const double* array);

void cgGLSetParameter4f(CGparameter parameter, float x, 
                        float y, float z, float w);
void cgGLSetParameter4fv(CGparameter parameter, 
                         const float* array);
void cgGLSetParameter4d(CGparameter parameter, double x, 
                        double y, double z, double w);
void cgGLSetParameter4dv(CGparameter parameter, 
                         const double* array); 
 808-00504-0000-004 47
NVIDIA



Cg Language Toolkit
parameters. When called for a varying parameter, the appropriate immediate 
mode OpenGL entry point is called.
The corresponding parameter value retrieval functions are as follows: 

Setting Uniform Matrix Parameters

The cgGLSetMatrixParameter functions are used to set any matrix: 

The matrix is passed as an array of floating point values whose size matches the 
number of coefficients of the matrix. The r suffix is for functions that assume 
the matrix is laid out in row order, and the c suffix is for functions that assume 
the matrix is laid out in column order.
The corresponding parameter value retrieval functions are

Use cgGLSetStateMatrixParameter() to set a OpenGL 4x4 state matrix: 

The variable stateMatrixType is an enumerate type specifying the state matrix 
to be used to set the parameter:

CG_GL_MODELVIEW_MATRIX for the current model-view matrix

cgGLGetParameter1f(CGparameter parameter, float*  array);
cgGLGetParameter1d(CGparameter parameter, double* array);
cgGLGetParameter2f(CGparameter parameter, float*  array);
cgGLGetParameter2d(CGparameter parameter, double* array);
cgGLGetParameter3f(CGparameter parameter, float*  array);
cgGLGetParameter3d(CGparameter parameter, double* array);
cgGLGetParameter4f(CGparameter parameter, double* array);
cgGLGetParameter4d(CGparameter parameter, type*   array); 

void cgGLSetMatrixParameterfr(CGparameter parameter,
                              const float* matrix);
void cgGLSetMatrixParameterfc(CGparameter parameter, 
                              const float* matrix);
void cgGLSetMatrixParameterdr(CGparameter parameter,     
                              const double* matrix);
void cgGLSetMatrixParameterdc(CGparameter parameter, 
                              const double* matrix); 

void cgGLGetMatrixParameterfr(CGparameter parameter, 
                              float* matrix);
void cgGLGetMatrixParameterfc(CGparameter parameter,
                              float* matrix);
void cgGLGetMatrixParameterdr(CGparameter parameter,
                              double* matrix);
void cgGLGetMatrixParameterdc(CGparameter parameter,
                              double* matrix); 

void cgGLSetStateMatrixParameter(CGparameter parameter, 
       GLenum stateMatrixType, GLenum transform);
48 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
CG_GL_PROJECTION_MATRIX for the current projection matrix
CG_GL_TEXTURE_MATRIX for the current texture matrix
CG_GL_MODELVIEW_PROJECTION_MATRIX for the concatenated model-
view and projection matrices

The variable transform is an enumerate type specifying a transformation 
applied to the state matrix before it is used to set the parameter value:

CG_GL_MATRIX_IDENTITY for applying no transformation at all
CG_GL_MATRIX_TRANSPOSE for transposing the matrix
CG_GL_MATRIX_INVERSE for inverting the matrix
CG_GL_MATRIX_INVERSE_TRANSPOSE for inverting and transposing the 
matrix

Setting Uniform Arrays of Scalar, Vector, and Matrix Parameters

To set the values of arrays of uniform scalar or vector parameters, use the 
cgGLSetParameterArray functions: 

void cgGLSetParameterArray1f(CGparameter parameter, 
       long startIndex, long numberOfElements,
       const float* array);
void cgGLSetParameterArray1d(CGparameter parameter,
       long startIndex, long numberOfElements,
       const double* array);
void cgGLSetParameterArray2f(CGparameter parameter, 
       long startIndex, long numberOfElements, 
       const float* array);
void cgGLSetParameterArray2d(CGparameter parameter, 
       long startIndex, long numberOfElements,
       const double* array);
void cgGLSetParameterArray3f(CGparameter parameter, 
       long startIndex, long numberOfElements,
       const float* array);
void cgGLSetParameterArray3d(CGparameter parameter,
       long startIndex, long numberOfElements,
       const double* array);
void cgGLSetParameterArray4f(CGparameter parameter,
       long startIndex, long numberOfElements,
       const float* array);
void cgGLSetParameterArray4d(CGparameter parameter,
       long startIndex, long numberOfElements,
       const double* array);
 808-00504-0000-004 49
NVIDIA



Cg Language Toolkit
The digit in the name of those functions indicates the type of the parameter 
array elements: 1 for arrays of float1, 2 for arrays of float2, and so on. The 
variables startIndex and numberOfElements specify which elements of the 
array parameter are set: They are the numberOfElements elements of the 
indices that range from startIndex to startIndex+numberOfElements-1. 
Passing a value of 0 for numberOfElements tells the functions to set all the 
values starting at index startIndex up to the last valid index of the array, 
namely cgGetArraySize(parameter,0)-1. This is equivalent to setting 
numberOfElements to cgGetArraySize(parameter,0)-startIndex. The 
parameter array is an array of scalar values. It must have numberOfElements 
for the cgGLSetParameterArray1 functions, 2*numberOfElements for the 
cgGLSetParameterArray2 functions, and so on.
The corresponding parameter value retrieval functions are as follows: 

Similar functions exist to set the values of arrays of uniform matrix parameters: 

void cgGLGetParameterArray1f(CGparameter parameter,
      long startIndex, long numberOfElements, float* array);
void cgGLGetParameterArray1d(CGparameter parameter, 
      long startIndex, long numberOfElements, double* array);
void cgGLGetParameterArray2f(CGparameter parameter, 
      long startIndex, long numberOfElements, float* array);
void cgGLGetParameterArray2d(CGparameter parameter, 
      long startIndex, long numberOfElements, double* array);
void cgGLGetParameterArray3f(CGparameter parameter, 
      long startIndex, long numberOfElements, float* array);
void cgGLGetParameterArray3d(CGparameter parameter, 
      long startIndex, long numberOfElements, double* array);
void cgGLGetParameterArray4f(CGparameter parameter, 
      long startIndex, long numberOfElements, float* array);
void cgGLGetParameterArray4d(CGparameter parameter, 
      long startIndex, long numberOfElements, double* array);

void cgGLSetMatrixParameterArrayfr(CGparameter parameter, 
       long startIndex, long numberOfElements, 
       const float* array);
void cgGLSetMatrixParameterArrayfc(CGparameter parameter, 
       long startIndex, long numberOfElements,
       const float* array);
void cgGLSetMatrixParameterArraydc(CGparameter parameter, 
       long startIndex, long numberOfElements,
       const double* array);
void cgGLSetMatrixParameterArraydc(CGparameter parameter, 
       long startIndex, long numberOfElements, 
       const double* array);
50 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
and to query those values: 

The c and r suffixes have the same meaning as they do for the 
cgGLSetMatrixParameter functions.

Setting Varying Parameters

The values of fragment program varying parameters are set as the result of the 
interpolation across the triangles performed by the GPU, so only the values of 
vertex program varying parameters are set by the application.
Setting a vertex varying parameter requires two steps.
The first step consists in passing a pointer to an array containing the values for 
each vertex. This is done using cgGLSetParameterPointer(): 

The variable size indicates the number of values per vertex that are stored in 
array. It is equal to 1, 2, 3, or 4. If fewer values are set than the parameter 
requires, the non-specified values default to 0 for x, y, and z, and 1 for w. 
The enumerate type type specifies the data type of the values stored in array: 
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE.
The parameter stride is the byte offset between any two consecutive vertices. 
Passing a value of zero for stride is equivalent to passing a byte offset equal to 
size multiplied by the size of type in bytes; in other words, it means that there 
is no gap between two consecutive vertex values. Note that the minimum size 
for array is implicitly defined by the biggest vertex index specified in the 
triangles drawn.
The second step consists in enabling the varying parameter for a specific 
drawing call: 

The equivalent disabling function is 

void cgGLGetMatrixParameterArrayfr(CGparameter parameter, 
      long startIndex, long numberOfElements, float* array);
void cgGLGetMatrixParameterArrayfc(CGparameter parameter, 
      long startIndex, long numberOfElements, float* array);
void cgGLGetMatrixParameterArraydc(CGparameter parameter, 
      long startIndex, long numberOfElements, double* array);
void cgGLGetMatrixParameterArraydc(CGparameter parameter, 
      long startIndex, long numberOfElements, double* array);

void cgGLSetParameterPointer(CGparameter parameter, 
       GLint size, GLenum type, GLsizei stride, 
       GLvoid* array); 

void cgGLEnableClientState(CGparameter parameter);

void cgGLDisableClientState(CGparameter parameter); 
 808-00504-0000-004 51
NVIDIA



Cg Language Toolkit
Another way to set vertex varying parameter is to use the cgGLSetParameter 
functions. When a cgGLSetParameter function is called for a varying 
parameter, the appropriate immediate-mode OpenGL entry point is called. The 
cgGLGetParameter functions do not apply to varying parameters.

Setting Sampler Parameters

Setting a sampler parameter requires two steps.
The first step consists in assigning an OpenGL texture object to the sampler 
parameter using 

where textureName is the OpenGL texture name.
The second step consists of enabling the sampler parameter for a specific 
drawing call: 

Function cgGLEnableTextureParameter() must be called after 
cgGLSetTextureParameter() and before the actual drawing call.
The equivalent disabling function is 

You can retrieve the texture object assigned to a sampler parameter using 

You can retrieve the OpenGL enumerant for the texture unit associated with a 
sampler parameter using:

The returned enumerant has the form GL_TEXTURE#_ARB where # is the texture 
unit index.

OpenGL Profile Support

A convenient function is provided that gives the best available profile for vertex 
or fragment programs depending on the available OpenGL extensions.

Parameter profileType is equal to CG_GL_VERTEX or CG_GL_FRAGMENT. 
Function cgGLGetLatestProfile() may be used in conjunction with 
cgCreateProgram() or cgCreateProgramFromFile() to ensure that the best 
available vertex and fragment profiles are used for compilation. This allows you 
to make your application future-ready, because the Cg programs are 
automatically compiled for the best profiles that are available at runtime, even if 
these profiles did not exist at the time the application was written. Another 

void cgGLSetTextureParameter(CGparameter parameter, 
                             GLuint textureName);

void cgGLEnableTextureParameter(CGparameter parameter);

void cgGLDisableTextureParameter(CGparameter parameter); 

GLuint cgGLGetTextureParameter(CGparameter parameter);

GLenum cgGLGetTextureEnum(CGparameter parameter);

CGprofile cgGLGetLatestProfile(CGGLenum profileType);
52 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
function that allows you optimal compilation is cgGLSetOptimalOptions(). It 
sets implicit compiler arguments that are appended to the argument list passed 
to cgCreateProgram() or cgCreateProgramFromFile().

OpenGL Program Execution

All programs must be loaded before they can be bound. To load a program use 
cgGLLoadProgram(): 

Binding a program only works if its profile is enabled. This is done by calling 
cgGLEnableProfile() with the program profile:

The binding itself is done using cgGLBindProgram():

Only one vertex program and one fragment program can be bound at any given 
time, so binding a program implicitly unbinds any other program of that type.
Profiles are disabled using cgGLDisableProfile():

Some profiles may not be supported on some systems. For example, a given 
profile is not supported if the OpenGL extensions it requires are not available. 
You can check if a profile is supported by using cgGLIsProfileSupported(): 

It returns CG_TRUE if profile is supported and CG_FALSE otherwise.

OpenGL Program Examples

This section presents code that illustrates how to use functions from the 
OpenGL Cg interface to make Cg programs work with OpenGL. The vertex 
and fragment programs below are used in “OpenGL Application” on page 54.

OpenGL Vertex Program

The following Cg code is assumed to be in a file called VertexProgram.cg. 

void cgGLSetOptimalOptions(CGprofile profile);

void cgGLLoadProgram(CGprogram program);

void cgGLEnableProfile(CGprofile profile);

void cgGLBindProgram(CGprogram program);

void cgGLDisableProfile(CGprofile profile);

CGbool cgGLIsProfileSupported(CGprofile profile);

void VertexProgram(
  in float4 position   : POSITION,
  in float4 color      : COLOR0,
  in float4 texCoord   : TEXCOORD0,
  out float4 positionO : POSITION,
  out float4 colorO    : COLOR0,
  out float4 texCoordO : TEXCOORD0,
 808-00504-0000-004 53
NVIDIA



Cg Language Toolkit
OpenGL Fragment Program

The following Cg code is assumed to be in a file called FragmentProgram.cg. 

OpenGL Application

This C code links the previous vertex and fragment programs to the application. 

  const uniform float4x4 ModelViewMatrix )
{
  positionO = mul(position, ModelViewMatrix);
  colorO = color;
  texCoordO = texCoord;
}

void FragmentProgram(
  in float4 color     : COLOR0,
  in float4 texCoord  : TEXCOORD0,
  out float4 colorO   : COLOR0,
  const uniform sampler2D BaseTexture,
  const uniform float4 SomeColor)
{
  colorO = color * tex2D(BaseTexture, texCoord) + SomeColor;
}

#include <cg/cg.h>
#include <cg/cgGL.h>

float* vertexPositions;  // Initialized somewhere else
float* vertexColors;     // Initialized somewhere else
float* vertexTexCoords;  // Initialized somewhere else
GLuint texture;          // Initialized somewhere else
float constantColor[];   // Initialized somewhere else
CGcontext context;
CGprogram vertexProgram, fragmentProgram;
CGprofile vertexProfile, fragmentProfile;
CGparameter position, color, texCoord, baseTexture, someColor, 
            modelViewMatrix;

// Called at initialization
void CgGLInit()
{
  // Create context
  context = cgCreateContext();

  // Initialize profiles and compiler options
  vertexProfile = cgGLGetLatestProfile(CG_GL_VERTEX);
  cgGLSetOptimalOptions(vertexProfile);
54 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
  fragmentProfile = cgGLGetLatestProfile(CG_GL_FRAGMENT);
  cgGLSetOptimalOptions(fragmentProfile);

  // Create the vertex program
  vertexProgram = cgCreateProgramFromFile(
                    context, CG_SOURCE, "VertexProgram.cg",
                    vertexProfile, "VertexProgram", 0);

  // Load the program
  cgGLLoadProgram(vertexProgram);

  // Create the fragment program
  fragmentProgram = cgCreateProgramFromFile(
                    context, CG_SOURCE, "FragmentProgram.cg",
                    fragmentProfile, "FragmentProgram", 0);

  // Load the program
  cgGLLoadProgram(fragmentProgram);

  // Grab some parameters.
  position = cgGetNamedParameter(vertexProgram, "position");
  color = cgGetNamedParameter(vertexProgram, "color");
  texCoord = cgGetNamedParameter(vertexProgram, "texCoord");
  modelViewMatrix = cgGetNamedParameter(vertexProgram,
                                        "ModelViewMatrix");
  baseTexture = cgGetNamedParameter(fragmentProgram,
                                    "BaseTexture");
  someColor = cgGetNamedParameter(fragmentProgram,
                                  "SomeColor");

  // Set parameters that don't change:
  // They can be set only once because of parameter shadowing.
  cgGLSetTextureParameter(baseTexture, texture);
  cgGLSetParameter4fv(someColor, constantColor);
}

// Called to render the scene
void Display() 
{
  // Set the varying parameters
  cgGLEnableClientState(position);
  cgGLSetParameterPointer(position, 3, GL_FLOAT, 0, 
                          vertexPositions);
  cgGLEnableClientState(color);
 808-00504-0000-004 55
NVIDIA



Cg Language Toolkit
  cgGLSetParameterPointer(color, 1, GL_FLOAT, 0, 
                          vertexColors);
  cgGLEnableClientState(texCoord);
  cgGLSetParameterPointer(texCoord, 2, GL_FLOAT, 0, 
                          vertexTexCoords);

  // Set the uniform parameters that change every frame 
  cgGLSetStateMatrixParameter(modelViewMatrix,
                            CG_GL_MODELVIEW_PROJECTION_MATRIX,
                            CG_GL_MATRIX_IDENTITY); 

  // Enable the profiles
  cgGLEnableProfile(vertexProfile);
  cgGLEnableProfile(fragmentProfile); 

  // Bind the programs
  cgGLBindProgram(vertexProgram);
  cgGLBindProgram(fragmentProgram);

  // Enable texture
  cgGLEnableTextureParameter(baseTexture);

  // Draw scene
  // ...

  // Disable texture
  cgGLDisableTextureParameter(baseTexture);

  // Disable the profiles
  cgGLDisableProfile(vertexProfile);
  cgGLDisableProfile(fragmentProfile);

  // Set the varying parameters
  cgGLDisableClientState(position);
  cgGLDisableClientState(color);
  cgGLDisableClientState(texCoord);
}

// Called before application shuts down
void CgShutdown()
{
  // This frees any runtime resource.
  cgDestroyContext(context);
}

56 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
OpenGL Error Reporting

Here is the list of the CGerror errors specific to the OpenGL Cg runtime:
CG_PROGRAM_LOAD_ERROR: Returned when the program could not be 
loaded.
CG_PROGRAM_BIND_ERROR: Returned when the program could not be 
bound.
CG_PROGRAM_NOT_LOADED_ERROR: Returned when the program must be 
loaded before the operation may be used.
CG_UNSUPPORTED_GL_EXTENSION_ERROR: Returned when an unsupported 
Open GL extension is required to perform the operation.

Any OpenGL Cg runtime function can generate an OpenGL error in addition 
to the Cg-specific error. These errors are checked in Cg, as in any OpenGL 
application, by using glGetError().

Direct3D Cg Runtime
The Direct3D Cg runtime is composed of two interfaces:

Minimal interface: This interface makes no Direct3D calls itself and should be 
used when you prefer to keep the Direct3D code in the application itself.
Expanded interface: This interface makes the Direct3D calls necessary to 
provide enhanced program and parameter management and should be used 
when you prefer to let the Cg runtime manage the Direct3D shaders.

Direct3D Minimal Interface

The minimal interface simply supplies convenient functions to convert some 
information provided by the core runtime to information specific to Direct3D.

Vertex Declaration

In Direct3D, you have to supply a vertex declaration that establishes a mapping 
between the vertex shader input registers and the data provided by the 
application as data streams. In Direct3D 9, this vertex declaration is bound to 
the current state the same way the vertex shader is (see the Direct3D 9 
documentation on IDirect3DDevice9::CreateVertexDeclaration() and 
IDirect3DDevice9::SetVertexDeclaration() for a detailed explanation). 
In Direct3D 8, the vertex declaration is required at the time you create the 
vertex shader (for more information, see the Direct3D 8 documentation on 
IDirect3DDevice8::CreateVertexShader()).
 808-00504-0000-004 57
NVIDIA



Cg Language Toolkit
A data stream is basically an array of data structures. Each of those structures is 
of a particular type called the vertex format of the stream. Here is an example of a 
vertex declaration for Direct3D 9:

Here is an example of a vertex declaration for Direct3D 8:

Both declarations tell the Direct3D runtime to find (1) the positions of the 
vertices in stream 0 as the first three floating point values of the vertex format, 
(2) the normals as the next three floating point values following the three 
floating point values in stream 0, and (3) the texture coordinates as the two 
floating point values located at an offset equal to twice the size of a DWORD from 
the end of the normal data in stream 0. The tangents are provided in stream 1 as 
a second texture coordinate set that is found as the first three floating point 
values of the vertex format.
To get a vertex declaration from a Cg vertex program for the Direct3D 9 Cg 
runtime use cgD3D9GetVertexDeclaration():

const D3DVERTEXELEMENT9 declaration[] = {
  { 0, 0 * sizeof(float),
    D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_POSITION, 0 }, // Position
  { 0, 3 * sizeof(float),
    D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_NORMAL, 0 }, // Normal
  { 0, 8 * sizeof(float),
    D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_TEXCOORD, 0 }, // Base texture
  { 1, 0 * sizeof(float),
    D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_TEXCOORD, 1 }, // Tangent
  D3DD3CL_END()
};

const DWORD declaration[] = {
  D3DVSD_STREAM(0),
  D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3), // Position
  D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT_FLOAT3),   // Normal
  D3DVSD_SKIP(2),      // Skip the diffuse and specular color
  D3DVSD_REG(D3DVSDE_TEXCOORD0, 
             D3DVSDT_FLOAT2), // Base texture
  D3DVSD_STREAM(1),    // Tangent basis stream
  D3DVSD_REG(D3DVSDE_TEXCOORD1, D3DVSDT_FLOAT3),// Tangent 
  D3DVSD_END()
};

CGbool cgD3D9GetVertexDeclaration(CGprogram program,
         D3DVERTEXELEMENT9 declaration[MAXD3DDECLLENGTH]);
58 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
MAXD3DDECLLENGTH is a Direct3D 9 constant that gives the maximum length of 
a Direct3D 9 declaration. If no declaration can be derived from the program, 
cgD3D9GetVertexDeclaration() fails and returns CG_FALSE.
To get a vertex declaration from a Cg vertex program for the Direct3D 8 Cg 
runtime use cgD3D8GetVertexDeclaration():

MAX_FVF_DECL_SIZE is a Direct3D constant that gives the maximum length of 
a Direct3D declaration. If no declaration can be derived from the program, 
cgD3D8GetVertexDeclaration() fails and returns CG_FALSE.
The declaration returned by cgD3D9GetVertexDeclaration() or 
cgD3D8GetVertexDeclaration() is for a single stream, so that for the 
following program 

it is equivalent to

for the Direct3D 9 Cg runtime, and it is equivalent to 

for the Direct3D 8 Cg runtime.

CGbool cgD3D8GetVertexDeclaration(CGprogram program, 
         DWORD declaration[MAX_FVF_DECL_SIZE]);

void main(in  float4 position : POSITION, 
          in  float4 color    : COLOR0,
          in  float4 texCoord : TEXCOORD0,
          out float4 hpos     : POSITION)
{ } 

const D3DVERTEXELEMENT9 declaration[] = {
  { 0, 0 * sizeof(float),
    D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_POSITION, 0 },
  { 0, 4 * sizeof(float),
    D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_COLOR, 0 },
  { 0, 8 * sizeof(float),
    D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_TEXCOORD, 0 },
  D3DD3CL_END()
};

const DWORD declaration[] = {
  D3DVSD_STREAM(0),
  D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT4),
  D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_FLOAT4),
  D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT4),
  D3DVSD_END()
};
 808-00504-0000-004 59
NVIDIA



Cg Language Toolkit
Usually though, you want to apply a vertex program to geometric data that 
come in multiple streams or with specific vertex formats. In this case, the vertex 
declaration is based on the vertex formats rather than the program. To see if it is 
compatible with the program, use cgD3D9ValidateVertexDeclaration(), 

for the Direct3D 9 Cg runtime or cgD3D8ValidateVertexDeclaration(), 

for the Direct3D 8 Cg runtime.
A call to cgD3D9ValidateVertexDeclaration() or 
cgD3D8ValidateVertexDeclaration() returns CG_TRUE if the vertex 
declaration is compatible with the program. A Direct3D 9 declaration is 
compatible with the program if the declaration has an entry matching every 
varying input parameter used by the program. A Direct3D 8 declaration is 
compatible with the program if the declaration has a D3DVSD_REG() macro call 
matching every varying input parameter used by the program. For the program 

the following Direct3D 9 vertex declaration is valid:

and the following Direct3D 8 vertex declaration is valid: 

CGbool cgD3D9ValidateVertexDeclaration(CGprogram program,    
         const D3DVERTEXELEMENT9* declaration);

CGbool cgD3D8ValidateVertexDeclaration(CGprogram program,   
         const DWORD* declaration);

void main(float4 position : POSITION,
          float4 color : COLOR0,
          float4 texCoord : TEXCOORD0)
{ }

const D3DVERTEXELEMENT9 declaration[] = {
  { 0, 0 * sizeof(float),
    D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_POSITION, 0 },
  { 0, 3 * sizeof(float),
    D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_COLOR, 0 },
  { 1, 4 * sizeof(float),
    D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
    D3DDECLUSAGE_TEXCOORD, 0 },
  D3DD3CL_END()
};

DWORD declaration[] = {
  D3DVSD_STREAM(0),
  D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
  D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
  D3DVSD_STREAM(1),
  D3DVSD_SKIP(4),
60 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
This is true because D3DDECLUSAGE_POSITION and D3DVSDE_POSITION match 
the hardware register associated with the predefined semantic POSITION, 
D3DDECLUSAGE_DIFFUSE and D3DVSDE_DIFFUSE match the register associated 
with COLOR0, and D3DDECLUSAGE_TEXCOORD0 and D3DVSDE_TEXCOORD0 match 
the register associated with TEXCOORD0.
The above declarations can also be written the following way using 
cgD3D9ResourceToDeclUsage() or cgD3D8ResourceToInputRegister():

If it is possible to do so, the functions cgD3D9ResourceToDeclUsage() and 
cgD3D8ResourceToInputRegister() convert a CGresource enumerated 
type into a Direct3D vertex shader input register:

If the resource is not a vertex shader input resource, the call to 
cgD3D9ResourceToDeclUsage() returns CGD3D9_INVALID_REG and the call 
to cgD3D8ResourceToInputRegister() returns CGD3D8_INVALID_REG.

  D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2),
  D3DVSD_END()
};

const D3DVERTEXELEMENT9 declaration[] = {
  { 0, 0 * sizeof(float),
    D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
    cgD3D9ResourceToDeclUsage(CG_POSITION), 0 },
  { 0, 3 * sizeof(float),
    D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
    cgD3D9ResourceToDeclUsage(CG_COLOR0), 0 },
  { 1, 4 * sizeof(float),
    D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
    cgD3D9ResourceToDeclUsage(CG_TEXCOORD0), 0 },
  D3DD3CL_END()
};

DWORD declaration[] = {
  D3DVSD_STREAM(0),
  D3DVSD_REG(cgD3D8ResourceToInputRegister(CG_POSITION), 
                                           D3DVSDT_FLOAT3),
  D3DVSD_REG(cgD3D8ResourceToInputRegister(CG_COLOR0), 
                                           D3DVSDT_D3DCOLOR),
  D3DVSD_STREAM(1),
  D3DVSD_SKIP(4),
  D3DVSD_REG(cgD3D8ResourceToInputRegister(CG_TEXCOORD0),
                                           D3DVSDT_FLOAT2),
  D3DVSD_END()
};

BYTE  cgD3D9ResourceToDeclUsage(CGresource resource);
DWORD cgD3D8ResourceToInputRegister(CGresource resource);
 808-00504-0000-004 61
NVIDIA



Cg Language Toolkit
To write the vertex declarations described above based on the program 
parameters, which eliminates the reference to any semantic, use 
cgD3D9ResourceToDeclUsage() or cgD3D8ResourceToInputRegister():

The size specified as the second argument of the D3DVSD_REG() macro call of a 
Direct3D 8 declaration does not need to match the size of the corresponding 
parameter for the vertex declaration to be valid. Those sizes are specified to 
describe how the data is laid out in the streams, not to perform any type 
checking with the shader code. The data referred to by a D3DVSD_REG() macro 

CGparameter position =
               cgGetNamedParameter(program, "position");
CGparameter color =
               cgGetNamedParameter(program, "color");
CGparameter texCoord =
               cgGetNamedParameter(program, "texCoord");

const D3DVERTEXELEMENT9 declaration[] = {
  { 0, 0 * sizeof(float),
    D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
    cgD3D9ResourceToDeclUsage( 
      cgGetParameterResource(position)),
    cgGetParameterResourceIndex(position) },
  { 0, 3 * sizeof(float),
    D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
    cgD3D9ResourceToDeclUsage(cgGetParameterResource(color)),
    cgGetParameterResourceIndex(color) },
  { 1, 4 * sizeof(float),
    D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
    cgD3D9ResourceToDeclUsage( 
      cgGetParameterResource(texCoord)),
    cgGetParameterResourceIndex(texCoord) },
  D3DD3CL_END()
};

DWORD declaration[] = {
  D3DVSD_STREAM(0),
  D3DVSD_REG(cgD3D8ResourceToInputRegister(
           cgGetParameterResource(position)), D3DVSDT_FLOAT3),
  D3DVSD_REG(cgD3D8ResourceToInputRegister( 
           cgGetParameterResource(color)), D3DVSDT_D3DCOLOR),
  D3DVSD_STREAM(1),
  D3DVSD_SKIP(4),
  D3DVSD_REG(cgD3D8ResourceToInputRegister( 
           cgGetParameterResource(texCoord)), D3DVSDT_FLOAT2),
  D3DVSD_END()
};
62 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
call is expanded to the four floating point values of the corresponding hardware 
register, and the missing values are set to 0 for x, y, and z, and to 1 for w.

Minimal Interface Type Retrieval

Use cgD3D9TypeToSize() to retrieve the size of a CGtype enumerated type in 
terms of floating-point numbers:

More precisely, it is the number of floating-point values required to store a 
parameter of type type. This function does not apply to some types, like the 
sampler types, in which case it returns zero. It is useful because applications 
can determine how many floating-point values they have to provide to set the 
value of a given parameter.

Minimal Interface Program Examples

In this section we provide some code samples that illustrate how and when to 
use functions from the minimal interface to make Cg programs work with 
Direct3D. To enhance clarity, the examples do very little error checking, but a 
production application should check the return values of all Cg functions. The 
vertex and fragment programs below are referenced in “Direct3D 9 
Application” on page 64 and “Direct3D 8 Application” on page 67.
Vertex Program

The following Cg code is assumed to be in a file called VertexProgram.cg. 

Fragment Program

The following Cg code is assumed to be in a file called FragmentProgram.cg. 

DWORD cgD3D9TypeToSize(CGtype type);

void VertexProgram(
  in  float4 position  : POSITION,
  in  float4 color     : COLOR0,
  in  float4 texCoord  : TEXCOORD0,
  out float4 positionO : POSITION,
  out float4 colorO    : COLOR0,
  out float4 texCoordO : TEXCOORD0,
  const uniform float4x4 ModelViewMatrix)
{
  positionO = mul(position, ModelViewMatrix);
  colorO = color;
  texCoordO = texCoord;
}

void FragmentProgram(
  in  float4 color    : COLOR0,
  in  float4 texCoord : TEXCOORD0,
  out float4 colorO   : COLOR0,
 808-00504-0000-004 63
NVIDIA



Cg Language Toolkit
Direct3D 9 Application

The following C code links the previous vertex and fragment programs to the 
Direct3D 9 application. 

  const uniform sampler2D BaseTexture,
  const uniform float4 SomeColor)
{
  colorO = color * tex2D(BaseTexture, texCoord) + SomeColor;
}

#include <cg/cg.h>
#include <cg/cgD3D9.h>

IDirect3DDevice9*  device;  // Initialized somewhere else
IDirect3DTexture9* texture; // Initialized somewhere else
D3DXMATRIX matrix;          // Initialized somewhere else
D3DXCOLOR constantColor;    // Initialized somewhere else
CGcontext context;
CGprogram vertexProgram, fragmentProgram;
IDirect3DVertexDeclaration9* vertexDeclaration;
IDirect3DVertexShader9* vertexShader;
IDirect3DPixelShader9* pixelShader;
CGparameter baseTexture, someColor, modelViewMatrix;

// Called at application startup
void OnStartup()
{
  // Create context
  context = cgCreateContext();
}

// Called whenever the Direct3D device needs to be created
void OnCreateDevice() 
{
  // Create the vertex shader
  vertexProgram = cgCreateProgramFromFile(context, CG_SOURCE,
   "VertexProgram.cg", CG_PROFILE_VS_2_0, "VertexProgram", 0);
  CComPtr<ID3DXBuffer> byteCode;
  const char* progSrc = cgGetProgramString(vertexProgram, 
                          CG_COMPILED_PROGRAM);
  D3DXAssembleShader(progSrc, strlen(progSrc), 0, 0, 0, 
                     &byteCode, 0);
  // If your program uses explicit binding semantics (like 
  // this one), you can create a vertex declaration 
  // using those semantics.
  const D3DVERTEXELEMENT9 declaration[] = {
64 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
    { 0, 0 * sizeof(float),
      D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
      D3DDECLUSAGE_POSITION, 0 },
    { 0, 3 * sizeof(float),
      D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
      D3DDECLUSAGE_COLOR, 0 },
    { 0, 4 * sizeof(float),
      D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
      D3DDECLUSAGE_TEXCOORD, 0 },
    D3DD3CL_END()
  };
  // Make sure the resulting declaration is compatible with 
  // the shader. This is really just a sanity check.
  assert(cgD3D9ValidateVertexDeclaration(vertexProgram, 
                                         declaration));
  device->CreateVertexDeclaration(
            declaration, &vertexDeclaration);
  device->CreateVertexShader(
            byteCode->GetBufferPointer(), &vertexShader);

  // Create the pixel shader.
  fragmentProgram = cgCreateProgramFromFile(context,
                     CG_SOURCE, "FragmentProgram.cg", 
                     CG_PROFILE_PS_2_0, "FragmentProgram", 0);
{
  CComPtr<ID3DXBuffer> byteCode;
  const char* progSrc = cgGetProgramString(fragmentProgram, 
                          CG_COMPILED_PROGRAM);
  D3DXAssembleShader(progSrc, strlen(progSrc), 0, 0, 0, 
                     &byteCode, 0);
  device->CreatePixelShader(byteCode->GetBufferPointer(), 
                            &pixelShader)
}

  // Grab some parameters.
  modelViewMatrix = cgGetNamedParameter(vertexProgram, 
                                        "ModelViewMatrix");
  baseTexture = cgGetNamedParameter(fragmentProgram, 
                                    "BaseTexture");
  someColor = cgGetNamedParameter(fragmentProgram, 
                                  "SomeColor");

  // Sanity check that parameters have the expected size
  assert(cgD3D9TypeToSize(cgGetParameterType( 
                                     modelViewMatrix)) == 16);
 808-00504-0000-004 65
NVIDIA



Cg Language Toolkit
  assert(cgD3D9TypeToSize(cgGetParameterType(someColor))
         == 4);
}

// Called to render the scene
void OnRender() 
{
  // Get the Direct3D resource locations for parameters
  // This can be done earlier and saved 
  DWORD modelViewMatrixRegister = 
                 cgGetParameterResourceIndex(modelViewMatrix);
  DWORD baseTextureUnit = 
          cgGetParameterResourceIndex(baseTexture);
  DWORD someColorRegister = 
          cgGetParameterResourceIndex(someColor);

  // Set the Direct3D state. 
  device->SetVertexShaderConstantF(modelViewMatrixRegister, 
                                   &matrix, 4);
  device->SetPixelShaderConstantF(someColorRegister, 
                                  &constantColor, 1);
  device->SetVertexDeclaration(vertexDeclaration);
  device->SetTexture(baseTextureUnit, texture);
  device->SetVertexShader(vertexShader);
  device->SetPixelShader(pixelShader);

  // Draw scene.
  // ...
}

// Called before the device changes or is destroyed
void OnDestroyDevice() {
  vertexShader->Release();
  pixelShader->Release();
  vertexDeclaration->Release();
}

// Called before application shuts down
void OnShutdown() {
  // This frees any core runtime resources.
  // The minimal interface has no dynamic storage to free.
  cgDestroyContext(context);
}

66 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Direct3D 8 Application

The following C code links the previous vertex and fragment programs to the 
Direct3D 8 application.
#include <cg/cg.h>
#include <cg/cgD3D8.h>

IDirect3DDevice8*  device;  // Initialized somewhere else
IDirect3DTexture8* texture; // Initialized somewhere else
D3DXMATRIX matrix;          // Initialized somewhere else
D3DXCOLOR constantColor;    // Initialized somewhere else
CGcontext context;
CGprogram vertexProgram, fragmentProgram;
DWORD vertexShader, pixelShader;
CGparameter baseTexture, someColor, modelViewMatrix;

// Called at application startup
void OnStartup()
{
  // Create context
  context = cgCreateContext();
}

// Called whenever the Direct3D device needs to be created
void OnCreateDevice() 
{
  // Create the vertex shader
  vertexProgram = cgCreateProgramFromFile(context, CG_SOURCE,
   "VertexProgram.cg", CG_PROFILE_VS_1_1, "VertexProgram", 0);
  CComPtr<ID3DXBuffer> byteCode;
  const char* progSrc = cgGetProgramString(vertexProgram, 
                          CG_COMPILED_PROGRAM);
  // Normally, you also grab the constants and prepend them
  // to your vertex declaration. Not shown here for brevity.
  D3DXAssembleShader(progSrc, strlen(progSrc), 0, 0, 0, 
                     &byteCode, 0);
  // If your program uses explicit binding semantics (like 
  // this one), you can create a vertex declaration 
  // using those semantics.
  DWORD declaration[] = {
    D3DVSD_STREAM(0),
    D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
    D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
    D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2),
    D3DVSD_END()
  }
 808-00504-0000-004 67
NVIDIA



Cg Language Toolkit
  // Make sure the resulting declaration is compatible with 
  // the shader. This is really just a sanity check.
  assert(cgD3D8ValidateVertexDeclaration(vertexProgram, 
                                         declaration));
  // Create the shader handle using the declaration.
  device->CreateVertexShader(declaration,  
              byteCode->GetBufferPointer(), &vertexShader, 0);

  // Create the pixel shader.
  fragmentProgram = cgCreateProgramFromFile(context,
                     CG_SOURCE, "FragmentProgram.cg", 
                     CG_PROFILE_PS_1_1, "FragmentProgram", 0);
{
  CComPtr<ID3DXBuffer> byteCode;
  const char* progSrc = cgGetProgramString(fragmentProgram, 
  CG_COMPILED_PROGRAM);
  D3DXAssembleShader(progSrc, strlen(progSrc), 0, 0, 0, 
                     &byteCode, 0);
  device->CreatePixelShader(byteCode->GetBufferPointer(), 
                            &pixelShader);
}

  // Grab some parameters.
  modelViewMatrix = cgGetNamedParameter(vertexProgram, 
                                        "ModelViewMatrix");
  baseTexture = cgGetNamedParameter(fragmentProgram, 
                                    "BaseTexture");
  someColor = cgGetNamedParameter(fragmentProgram, 
                                  "SomeColor");

  // Sanity check that parameters have the expected size
  assert(cgD3D8TypeToSize(cgGetParameterType( 
                                     modelViewMatrix)) == 16);
  assert(cgD3D8TypeToSize(cgGetParameterType(someColor))
          == 4);
}

// Called to render the scene
void OnRender() 
{
  // Get the Direct3D resource locations for parameters
  // This can be done earlier and saved 
  DWORD modelViewMatrixRegister = 
                 cgGetParameterResourceIndex(modelViewMatrix);
68 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Direct3D Expanded Interface

If you use the expanded interface for a program, in order to avoid any 
unfortunate inconsistencies it is advisable to stick with the expanded interface 
for all shader-related operations that can be performed through its functions, 
such as shader setting, shader activation, and parameter setting—including 
setting texture stage states.

Setting the Direct3D Device

The expanded interface encapsulates more functionality than the minimal 
interface to ease program and parameter management. It does this by making 
the appropriate Direct3D calls at the appropriate times. Because some of these 
calls require the Direct3D device, it must be communicated to the Cg runtime: 

  DWORD baseTextureUnit = 
          cgGetParameterResourceIndex(baseTexture);
  DWORD someColorRegister = 
          cgGetParameterResourceIndex(someColor);

  // Set the Direct3D state. 
  device->SetVertexShaderConstant(modelViewMatrixRegister, 
                                  &matrix, 4);
  device->SetPixelShaderConstant(someColorRegister, 
                                 &constantColor, 1);
  device->SetTexture(baseTextureUnit, texture);
  device->SetVertexShader(vertexShader);
  device->SetPixelShader(pixelShader);

  // Draw scene.
  // ...
}

// Called before the device changes or is destroyed
void OnDestroyDevice() {
  device->DeleteVertexShader(vertexShader);
  device->DeletePixelShader(pixelShader);
}

// Called before application shuts down
void OnShutdown() {
  // This frees any core runtime resources.
  // The minimal interface has no dynamic storage to free.
  cgDestroyContext(context);
}

HRESULT cgD3D9SetDevice(IDirect3DDevice9* device);
 808-00504-0000-004 69
NVIDIA



Cg Language Toolkit
You can get the Direct3D device currently associated with the runtime using 
cgD3D9GetDevice():

When cgD3D9SetDevice() is called with zero as an input, all Direct3D 
resources used by the expanded interface are released. Since a Direct3D device 
is destroyed only when all references to it are removed, the application should 
call cgD3D9SetDevice() with zero as an input when it is done with a Direct3D 
device so that it gets destroyed when the application shuts down. Otherwise, 
Direct3D does not shut down properly and reports memory leaks to the debug 
console.
Note that calling cgD3D9SetDevice() with zero as an input does not affect the 
Cg core runtime resources in any way: all the related core runtime handles (of 
type CGprogram, CGparameter, and so on) remain valid.
If you call cgD3D9SetDevice() a second time with a different device, all 
programs managed by the old device are rebuilt using the new device.

Responding to Lost Direct3D Devices

The expanded interface may hold references to Direct3D resources that need to 
be recreated in response to a lost device. In particular, certain sampler 
parameters might need to be released before a Direct3D device can be reset 
from a lost state. The expanded interface is holding a reference to a texture that 
needs to be reset in response to a lost device if both of the following are true for 
a texture:

It was created in the D3DPOOL_DEFAULT pool. 
It was bound to a sampler parameter (using cgD3D9SetTexture()) of a 
program for which parameter shadowing is enabled. 

In this case, the parameter must be set to zero (using cgD3D9SetTexture()) to 
remove the expanded interface’s reference to that texture so it can be destroyed 
and the Direct3D device can be reset from a lost state. Later, after resetting the 
Direct3D device and recreating the texture, it needs to be re-bound to the 
sampler parameter. For example, 

IDirect3DDevice9* cgD3D9GetDevice();

IDirect3DDevice9* device; // Initialized elsewhere
IDirect3DTexture9* myDefaultPoolTexture;
CGprogram program;

void OneTimeLoadScene()
{
  // Load the program with cgD3D9LoadProgram and 
  // enable parameter shadowing
  /* ... */
  cgD3D9LoadProgram(program, TRUE, 0, 0, 0);
70 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
See the Direct3D documentation for a full explanation of lost devices and how 
to properly handle them.

  /* ... */
  // Bind sampler parameter
  GCparameter parameter;
  parameter = cgGetParameterByName(program, "MySampler");
  cgD3D9SetTexture(parameter, myDefaultPoolTexture);
}

void OnLostDevice()
{
  // First release all necessary resources
  PrepareForReset();
  // Next actually reset the D3D device 
  device->Reset( /* ... */ );
  // Finally recreate all those resource
  OnReset();
}

void PrepareForReset()
{
  /* ... */
  // Release expanded interface reference
  cgD3D9SetTexture(mySampler, 0);
  // Release local reference
  // and any other references to the texture
  myDefaultPoolTexture->Release();
  /* ... */
}

void OnReset()
{
  // Recreate myDefaultPoolTexture in D3DPOOL_DEFAULT
  /* ... */
  // Since the texture was just recreated,
  // it must be re-bound to the parameter
  GCparameter parameter;
  parameter = cgGetParameterByName(prog, "MySampler");
  cgD3D9SetTexture(mySampler, myDefaultPoolTexture);
  /* ... */
}

 808-00504-0000-004 71
NVIDIA



Cg Language Toolkit
Setting Expanded Interface Parameters

This section discusses setting the various types of parameters of the expanded 
interface, including uniform scalar, uniform vector, uniform matrix, uniform 
arrays of the three previous types, and sampler.
Setting Uniform Scalar, Vector, and Matrix Parameters 

The function cgD3D9SetUniform() sets floating-point parameters like float3 
and float4x3:

The amount of data required depends on the type of parameter, but is always 
specified as an array of one or more floating point values. The type is void* so 
a user-defined structure that is compatible can be passed in without type 
casting. Here is some code illustrating the use of cgD3D9SetUniform() for 
setting a vectorParam of type float3, matrixParam of type float2x3, and 
arrayParam of type float2x2[3]: 

As mentioned previously, cgD3D9TypeToSize() can be used to determine how 
many values are required for setting a parameter of a particular type.
For convenience, there is also a function to set a parameter from a 4x4 matrix 
of type D3DMATRIX: 

The upper-left portion of the matrix is extracted to fit the size of the input 
parameter, so that you could set matrixParam this way as well: 

In the example above, every element of matrixParam is set to 1.

HRESULT cgD3D9SetUniform(CGparameter parameter, 
                         const void* value);

D3DXVECTOR3 vectorData(1,2,3);
float matrixData[2][3] = {{1, 2, 3}, {4, 5, 6}};
float arrayData[3][2][2] = 
       {{{1, 2}, {3, 4}},{{5, 6},{7,8}}, {{9, 10}, {11, 12}}};
cgD3D9SetUniform(vectorParam, &vectorData);
cgD3D9SetUniform(matrixParam, matrixData);
cgD3D9SetUniform(arrayParam, arrayData);

HRESULT cgD3D9SetUniformMatrix(CGparameter parameter,                     
                                 const D3DMATRIX* matrix);

D3DXMATRIX matrix(
  1, 1, 1, 0,
  1, 1, 1, 0,
  0, 0, 0, 0,
  0, 0, 0, 0,
);
cgD3D9SetUniformMatrix(matrixParam, &matrix); 
72 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Setting Uniform Arrays of Scalar, Vector, and Matrix Parameters

To set an array parameter, use cgD3D9SetUniformArray(): 

The parameters startIndex and numberOfElements specify which elements 
of the array parameter are set: Those are the numberOfElements elements of 
indices ranging from startIndex to startIndex + numberOfElements-1. It 
is assumed that array contains enough values to set all those elements. As with 
cgD3D9SetUniform(), cgD3D9TypeToSize() can be used to determine how 
many values are required, and the type is void* so a compatible user-defined 
structure can be passed in without type casting.
There is a convenience function equivalent to cgD3D9SetUniformMatrix():

The parameters startIndex and numberOfElements have the same meanings 
as for cgD3D9SetUniformMatrix().
The upper-left portion of each matrix of the array matrices is extracted to fit 
the size of the element of the array parameter parameter. Array matrices is 
assumed to have numberOfElements elements.
Setting Sampler Parameters

You assign a Direct3D texture to a sampler parameter using 

To set the sampler state in the Direct3D 9 Cg runtime, use 

Parameter type is any of the D3DSAMPLERSTATETYPE enumerants and 
parameter value is a value appropriate for the corresponding type. Here is an 
example of how to use this function: 

To set the texture stage state in the Direct3D 8 Cg runtime, use: 

HRESULT cgD3D9SetUniformArray(CGparameter parameter,
          DWORD startIndex, DWORD numberOfElements, 
          const void* array);

HRESULT cgD3D9SetUniformMatrixArray(CGparameter parameter,
          DWORD startIndex, DWORD numberOfElements,
          const D3DMATRIX* matrices);

HRESULT cgD3D9SetTexture(CGparameter parameter,             
          IDirect3DBaseTexture9* texture);

HRESULT cgD3D9SetSamplerState(CGparameter parameter,
          D3DSAMPLERSTATETYPE type, DWORD value);

cgD3D9SetSamplerState(parameter, D3DSAMP_MAGFILTER, 
                      D3DTEXF_LINEAR);

HRESULT cgD3D8SetTextureStageState(CGparameter parameter,
          D3DTEXTURESTAGESTATETYPE type, DWORD value);
 808-00504-0000-004 73
NVIDIA



Cg Language Toolkit
Parameter type must be one of the following values:

Parameter value is a value appropriate for the corresponding type. Here is an 
example of how to use this function: 

The texture wrap mode is set using: 

The input value is either zero or a combination of D3DWRAP_U, D3DWRAP_V, 
and D3DWRAP_W. Here is an example of how to use this function: 

Parameter Shadowing

Parameter shadowing can be enabled or disabled on a per-program basis:
When loading the program (see “Expanded Interface Program Execution” 
on page 74)
At any time using 

for which enable should be set to CG_TRUE to enable parameter shadowing 
and to CG_FALSE to disable it.

To know if parameter shadowing is enabled for a given program, use: 

This function returns CG_TRUE if parameter shadowing is enabled for program.

Expanded Interface Program Execution

To load a program in Direct3D 9 use cgD3D9LoadProgram(): 

This function assembles the result of the compilation of program using 
D3DXAssembleShader() with assembleFlags as the D3DXASM flags. 
Depending on the program’s profile, it then either uses 

D3DTSS_ADDRESSU D3DTSS_ADDRESSV
D3DTSS_ADDRESSW D3DTSS_BORDERCOLOR 
D3DTSS_MAGFILTER D3DTSS_MINFILTER
D3DTSS_MIPFILTER D3DTSS_MIPMAPLODBIAS 
D3DTSS_MAXMIPLEVEL D3DTSS_MAXANISOTROPY 

cgD3D8SetTextureStageState(parameter, D3DTSS_MAGFILTER, 
                           D3DTEXF_LINEAR);

HRESULT cgD3D9SetTextureWrapMode(CGparameter parameter,
          DWORD value);

cgD3D9SetTextureWrapMode(parameter, D3DWRAP_U | D3DWRAP_V);

HRESULT cgD3D9EnableParameterShadowing(
          CGprogram program, CGbool enable);

CGbool cgD3D9IsParameterShadowingEnabled(CGprogam program);

HRESULT cgD3D9LoadProgram(CGprogram program,
          CG_BOOL parameterShadowingEnabled,
          DWORD assembleFlags);
74 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
IDirect3DDevice9::CreateVertexShader() to create a Direct3D 9 vertex 
shader, or uses IDirect3DDevice9::CreatePixelShader() to create a 
Direct3D 9 pixel shader.
Here is a typical use of the function:

To load a program in Direct3D 8 use cgD3D8LoadProgram(): 

This function assembles the result of the compilation of program using 
D3DXAssembleShader() with assembleFlags as the D3DXASM flags. 
Depending on the program’s profile, it then either uses 
IDirect3DDevice8::CreateVertexShader() to create a Direct3D vertex 
shader with declaration as the vertex declaration and vertexShaderUsage 
as the usage control, or uses IDirect3DDevice8::CreatePixelShader() to 
create a Direct3D pixel shader.
The value of parameterShadowingEnabled should be set to TRUE to enable 
parameter shadowing for the program. This behavior can be changed after the 
program is created by calling cgD3DEnableParameterShadowing(). Here is a 
typical use of the function:

If you want to apply the same vertex program to several sets of geometric data, 
each having a different layout, you need to load the program with different 
vertex declarations in Direct3D 8. To do so, you need to make a duplicate of 
the program, using cgCopyProgram(), for each of these declarations. Here is a 
code sample illustrating this operation: 

HRESULT hresult = cgD3D9LoadProgram(vertexProgram, TRUE, 
                                    D3DXASM_DEBUG);
HRESULT hresult = cgD3D9LoadProgram(fragmentProgram, TRUE, 0); 

HRESULT cgD3D8LoadProgram(CGprogram program,
         BOOL parameterShadowingEnabled, DWORD assembleFlags,
         DWORD vertexShaderUsage, const DWORD* declaration);

HRESULT hresult = cgD3D8LoadProgram(vertexProgram, TRUE, 
          D3DXASM_DEBUG, D3DUSAGE_SOFTWAREVERTEXPROCESSING, 
          declaration);
HRESULT hresult = cgD3D8LoadProgram(fragmentProgram, TRUE, 
                                    0, 0, 0); 

CGprogam program1, program2;
program1 = cgCreateProgramFromFile(context, CG_SOURCE, 
             "VertexProgram.cg", CG_PROFILE_VS_1_1, 0, 0);
const DWORD declaration1 = 
                         cgD3D8GetVertexDeclaration(program1);
cgD3D8LoadProgram(program1, TRUE, 0, 0, declaration1);
program2 = cgCopyProgram(program1);
const DWORD declaration2[] = { 
  //... Custom declaration ... 
};
 808-00504-0000-004 75
NVIDIA



Cg Language Toolkit
Only the loading functions differ between Direct3D 9 and Direct3D 8; the 
unloading and binding functions are the same.
To release the Direct3D resources allocated by cgD3D9LoadProgram(), such as 
the Direct3D shader object and any shadowed parameter, use 

Note that cgD3D9UnloadProgam() does not free any core runtime resources, 
such as program and any of its parameter handles. On the other hand, 
destroying a program with cgDestroyProgram() or cgDestroyContext() 
releases any Direct3D resources by indirectly calling cgD3D9UnloadProgam().
Function cgD3D9IsProgramLoaded() returns CG_TRUE if a program is loaded:

All programs must be loaded before they can be bound. Binding a program is 
done by calling cgD3D9BindProgram(): 

This function basically activates the Direct3D shader corresponding to 
program by calling IDirect3DDevice9::SetVertexShader() or 
IDirect3DDevice9::SetPixelShader() depending on the program’s profile. 
If parameter shadowing is enabled for program, it also sets all the shadowed 
parameters and their associated Direct3D states (such as texture stage states for 
the sampler parameters). No value or state tracking is performed by the 
runtime so that this setting is done regardless of what the current values of these 
parameters or of their states are. If a shadowed parameter has not been set by 
the time cgD3D9BindProgram() is called, no Direct3D call of any sort is issued 
for this parameter.
Only one vertex program and one fragment program can be bound at any given 
time, so binding a program of a given type implicitly unbinds any other program 
of the same type.

Expanded Interface Profile Support

Two convenient functions are provided that give the highest vertex and pixel 
shader versions supported by the device:

This allows you to make your application future-ready, because the Cg 
programs are automatically compiled for the best profiles that are available at 
runtime, even if these profiles did not exist at the time the application was 
written. Another function that allows you optimal compilation is 

if (cgD3D8ValidateVertexDeclaration(program2, declaration2))
  cgD3D8LoadProgram(program2, TRUE, 0, 0, declaration2);

HRESULT cgD3D9UnloadProgam(CGprogram program);

CGbool cgD3D9IsProgramLoaded(CGprogram program);

HRESULT cgD3D9BindProgram(CGprogram program);

CGprofile cgD3D9GetLatestVertexProfile();
CGprofile cgD3D9GetLatestPixelProfile(); 
76 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
cgD3D9GetOptimalOptions(). It returns a string representing the optimal set 
of compiler options for a given profile: 

This string is meant to be used as part of the argument parameter to 
cgCreateProgram(). It does not need to be destroyed by the application. 
However, its content could change if cgD3D9GetOptimalOptions() is called 
again for the same profile but for a different Direct3D device.

Expanded Interface Program Examples

In this section we provide programs that illustrates how and when to use 
functions from the expanded interface to make Cg programs work with 
Direct3D. For the sake of clarity, the examples do very little error checking, but 
a production application should check the return values of all Cg functions. The 
vertex and fragment programs that follow are referenced in “Expanded 
Interface DirectD3D 9 Application” on page 78 and “Expanded Interface 
DirectD3D 8 Application” on page 81.
Expanded Interface Vertex Program

The following Cg code is assumed to be in a file called VertexProgram.cg.  

Expanded Interface Fragment Program

The following Cg code is assumed to be in a file called FragmentProgram.cg. 

char const* cgD3D9GetOptimalOptions(CGprofile profile);

void VertexProgram(
                   in  float4 position  : POSITION,
                   in  float4 color     : COLOR0,
                   in  float4 texCoord  : TEXCOORD0,
                   out float4 positionO : POSITION,
                   out float4 colorO    : COLOR0,
                   out float4 texCoordO : TEXCOORD0,
                   const uniform float4x4 ModelViewMatrix)
{
  positionO = mul(position, ModelViewMatrix);
  colorO = color;
  texCoordO = texCoord; }

void FragmentProgram(
                     in  float4 color    : COLOR0,
                     in  float4 texCoord : TEXCOORD0,
                     out float4 colorO   : COLOR0,
                     const uniform sampler2D BaseTexture,
                     const uniform float4 SomeColor)
{
  colorO = color * tex2D(BaseTexture, texCoord) + SomeColor; 
}

 808-00504-0000-004 77
NVIDIA



Cg Language Toolkit
Expanded Interface DirectD3D 9 Application

The following C code links the previous vertex and fragment programs to the 
Direct3D 9 application. 
#include <cg/cg.h>
#include <cg/cgD3D9.h>

IDirect3DDevice9* device;   // Initialized somewhere else
IDirect3DTexture9* texture; // Initialized somewhere else
D3DXCOLOR constantColor;    // Initialized somewhere else
CGcontext context;
IDirect3DVertexDeclaration9* vertexDeclaration;
CGprogram vertexProgram, fragmentProgram;
CGparameter baseTexture, someColor, modelViewMatrix;

// Called at application startup
void OnStartup()
{
  // Create context
  context = cgCreateContext();
}

// Called whenever the Direct3D device needs to be created
void OnCreateDevice() 
{
  // Pass the Direct3D device to the expanded interface.
  cgD3D9SetDevice(device);

  // Determine the best profiles to use
  CGprofile vertexProfile = cgD3D9GetLatestVertexProfile();
  CGprofile pixelProfile  = cgD3D9GetLatestPixelProfile();

  // Grab the optimal options for each profile.
  const char* vertexOptions[] = { 
                cgD3D9GetOptimalOptions(vertexProfile), 0 };
  const char* pixelOptions[]  = { 
                cgD3D9GetOptimalOptions(pixelProfile), 0 };

  // Create the vertex shader.
  vertexProgram = cgCreateProgramFromFile(
               context, CG_SOURCE, "VertexProgram.cg",  
               vertexProfile, "VertexProgram", vertexOptions);
  // If your program uses explicit binding semantics, you
  // can create a vertex declaration using those semantics.
  const D3DVERTEXELEMENT9 declaration[] = {
78 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
    { 0, 0 * sizeof(float),
      D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
      D3DDECLUSAGE_POSITION, 0 },
    { 0, 3 * sizeof(float),
      D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
      D3DDECLUSAGE_COLOR, 0 },
    { 0, 4 * sizeof(float),
      D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
      D3DDECLUSAGE_TEXCOORD, 0 },
    D3DD3CL_END()
  };

  // Ensure the resulting declaration is compatible with the 
  // shader. This is really just a sanity check.
  assert(cgD3D9ValidateVertexDeclaration(vertexProgram, 
                                         declaration));
  device->CreateVertexDeclaration(
            declaration, &vertexDeclaration);
  // Load the program with the expanded interface.
  // Parameter shadowing is enabled (second parameter = TRUE).
  cgD3D9LoadProgram(vertexProgram, TRUE, 0);

  // Create the pixel shader.
  fragmentProgram = cgCreateProgramFromFile(
               context, CG_SOURCE, "FragmentProgram.cg", 
               pixelProfile, "FragmentProgram", pixelOptions);

  // Load the program with the expanded interface. Parameter
  // shadowing is enabled (second parameter = TRUE). Ignore
  // vertex shader specifc flags, such as declaration usage.
  cgD3D9LoadProgram(fragmentProgram, TRUE, 0);

  // Grab some parameters.
  modelViewMatrix = cgGetNamedParameter(vertexProgram, 
                                        "ModelViewMatrix");
  baseTexture = cgGetNamedParameter(fragmentProgram, 
                                    "BaseTexture");
  someColor = cgGetNamedParameter(fragmentProgram, 
                                  "SomeColor");

  // Sanity check that parameters have the expected size
  assert(cgD3D9TypeToSize(cgGetParameterType( 
                            modelViewMatrix)) == 16);
   assert(cgD3D9TypeToSize(cgGetParameterType(someColor))
          == 4);
 808-00504-0000-004 79
NVIDIA



Cg Language Toolkit
  // Set parameters that don't change. They can be set
  // only once since parameter shadowing is enabled
  cgD3D9SetTexture(baseTexture, texture);
  cgD3D9SetUniform(someColor, &constantColor);
}

// Called to render the scene
void OnRender() 
{
  // Load model-view matrix.
  D3DXMATRIX modelViewMatrix;
  // ...   

  // Set the parameters that change every frame 
  // This must be done before binding the programs
  cgD3D9SetUniformMatrix(modelViewMatrix, &modelViewMatrix);

  // Set the vertex declaration
  device->SetVertexDeclaration(vertexDeclaration);

  // Bind the programs. This downloads any parameter values  
  // that have been previously set.
  cgD3D9BindProgram(vertexProgram);
  cgD3D9BindProgram(fragmentProgram);

  // Draw scene.
  // ...
}

// Called before the device changes or is destroyed
void OnDestroyDevice() 
{
  // Calling this function tells the expanded interface to 
  // release its internal reference to the Direct3D device
  // and free its Direct3D resources.
  cgD3D9SetDevice(0);
}

// Called before application shuts down
void OnShutdown()
{
  // This frees any core runtime resource.
  cgDestroyContext(context);
}

80 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Expanded Interface DirectD3D 8 Application

The following C code links the previous vertex and fragment programs to the 
Direct3D 8 application. 
#include <cg/cg.h>
#include <cg/cgD3D8.h>

IDirect3DDevice8* device;   // Initialized somewhere else
IDirect3DTexture8* texture; // Initialized somewhere else
D3DXCOLOR constantColor;    // Initialized somewhere else
CGcontext context;
CGprogram vertexProgram, fragmentProgram;
CGparameter baseTexture, someColor, modelViewMatrix;

// Called at application startup
void OnStartup()
{
  // Create context
  context = cgCreateContext();
}

// Called whenever the Direct3D device needs to be created
void OnCreateDevice() 
{
  // Pass the Direct3D device to the expanded interface.
  cgD3D8SetDevice(device);

  // Determine the best profiles to use
  CGprofile vertexProfile = cgD3D8GetLatestVertexProfile();
  CGprofile pixelProfile  = cgD3D8GetLatestPixelProfile();

  // Grab the optimal options for each profile.
  const char* vertexOptions[] = { 
                  cgD3D8GetOptimalOptions(vertexProfile), 0 };
  const char* pixelOptions[]  = { 
               cgD3D8GetOptimalOptions(pixelProfile), 0 };

  // Create the vertex shader.
  vertexProgram = cgCreateProgramFromFile(
               context, CG_SOURCE, "VertexProgram.cg",  
               vertexProfile, "VertexProgram", vertexOptions);
  // If your program uses explicit binding semantics (like 
  // this one), you can create a vertex declaration 
  // using those semantics.
  DWORD declaration[] = {
                D3DVSD_STREAM(0),
 808-00504-0000-004 81
NVIDIA



Cg Language Toolkit
                D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
                D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
                D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2),
                D3DVSD_END()
  }

  // Ensure the resulting declaration is compatible with the 
  // shader. This is really just a sanity check.
  assert(cgD3D8ValidateVertexDeclaration(vertexProgram, 
                                         declaration));

  // Load the program with the expanded interface.
  // Parameter shadowing is enabled (second parameter = TRUE).
  cgD3D8LoadProgram(vertexProgram, TRUE, 0, 0, declaration);

  // Create the pixel shader.
  fragmentProgram = cgCreateProgramFromFile(
               context, CG_SOURCE, "FragmentProgram.cg", 
               pixelProfile, "FragmentProgram", pixelOptions);

  // Load the program with the expanded interface.
  // Parameter shadowing is enabled (second parameter = TRUE).
  // Ignore vertex shader specifc flags, like declaration and 
  // usage.
  cgD3D8LoadProgram(fragmentProgram, TRUE, 0, 0, 0);

  // Grab some parameters.
  modelViewMatrix = cgGetNamedParameter(vertexProgram, 
                                        "ModelViewMatrix");
  baseTexture = cgGetNamedParameter(fragmentProgram, 
                                    "BaseTexture");
  someColor = cgGetNamedParameter(fragmentProgram, 
                                  "SomeColor");

  // Sanity check that parameters have the expected size
   assert(cgD3D8TypeToSize(cgGetParameterType( 
                             modelViewMatrix)) == 16);
   assert(cgD3D8TypeToSize(cgGetParameterType(someColor))
           == 4);

  // Set parameters that don't change. They can be set
  // only once since parameter shadowing is enabled
  cgD3D8SetTexture(baseTexture, texture);
  cgD3D8SetUniform(someColor, &constantColor);
}

82 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Direct3D Debugging Mode

In addition to the error reporting mechanisms described in “Direct3D Error 
Reporting” on page 85, a debug version of the Direct3D 9 or Direct3D 8 Cg 
runtime DLL is provided to assist you with the development of applications 
using the Direct3D 9 or Direct3D 8 Cg runtime. This version does not have 
debug symbols, but when used in place of the regular version, it uses the Win32 
function OutputDebugString() to output many helpful messages and traces 

// Called to render the scene
void OnRender() 
{
  // Load model-view matrix.
  D3DXMATRIX modelViewMatrix;
  // ...   

  // Set the parameters that change every frame 
  // This must be done before binding the programs
  cgD3D8SetUniformMatrix(modelViewMatrix, &modelViewMatrix);

  // Bind the programs. This downloads any parameter values  
  // that have been previously set.
  cgD3D8BindProgram(vertexProgram);
  cgD3D8BindProgram(fragmentProgram);

  // Draw scene.
  // ...
}

// Called before the device changes or is destroyed
void OnDestroyDevice() 
{
  // Calling this function tells the expanded interface to 
  // release its internal reference to the Direct3D device
  // and free its Direct3D resources.
  cgD3D8SetDevice(0);
}

// Called before application shuts down
void OnShutdown()
{
  // This frees any core runtime resource.
  cgDestroyContext(context);
}

 808-00504-0000-004 83
NVIDIA



Cg Language Toolkit
to the debug output console. Examples of information the debug DLL outputs 
are the following:

Any Direct3D or Cg core runtime errors 
Debugging information about parameters that are managed by the 
expanded interface
Potential performance warnings

Here is a sample trace:
cgD3D(TRACE): Creating vertex shader for program 3
cgD3D(TRACE): Discovering parameters for vertex program 3
cgD3D(TRACE): Discovered uniform parameter 'ModelViewProj' 
of type float4x4
cgD3D(TRACE): Finished discovering parameters for vertex 
program 3
cgD3D(TRACE): Creating pixel shader for program 24
cgD3D(TRACE): Discovering parameters for pixel program 24
cgD3D(TRACE): Discovered sampler parameter 'BaseTexture'
cgD3D(TRACE): Discovered uniform parameter 'SomeColor' of 
type float4
cgD3D(TRACE): Finished discovering parameters for pixel 
program 24
cgD3D(TRACE): Shadowing state for sampler parameter 
BaseTexture
cgD3D(TRACE): Shadowing sampler state D3DTSS_MAGFILTER for 
sampler parameter 'BaseTexture'
cgD3D(TRACE): Shadowing sampler state D3DTSS_MINFILTER for 
sampler parameter 'BaseTexture'
cgD3D(TRACE): Shadowing sampler state D3DTSS_MIPFILTER for 
sampler parameter 'BaseTexture'
…
cgD3D(TRACE): Shadowing 16 values for uniform parameter 
'ModelViewProj' of type float4x4
cgD3D(TRACE): Activating vertex shader for program 3
cgD3D(TRACE): Setting shadowed parameters for program 3
cgD3D(TRACE): Setting registers for uniform parameter 
'ModelViewProj' of type float4x4
cgD3D(TRACE): Setting constant registers [0 - 3] for 
parameter 'ModelViewProj' of type float4x4
cgD3D(TRACE): Activating pixel shader for program 24
cgD3D(TRACE): Setting shadowed parameters for program 24
cgD3D(TRACE): Setting texture for sampler parameter 
'BaseTexture'
cgD3D(TRACE): Setting SamplerState[0].D3DTSS_MAGFILTER for 
sampler parameter 'BaseTexture'
84 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
cgD3D(TRACE): Setting SamplerState[0].D3DTSS_MINFILTER for 
sampler parameter 'BaseTexture'
cgD3D(TRACE): Setting SamplerState[0].D3DTSS_MIPFILTER for 
sampler parameter 'BaseTexture'
…
cgD3D(TRACE): Deleting vertex shader for program 3
cgD3D(TRACE): Deleting pixel shader for program 24

To use the debug DLL:
1. Link your application against cgD3D9d.lib (or cgD3D8d.lib) instead of 

cgD3D9.lib (or cgD3D8.lib). 
2. Make sure that the application can find cgD3D9d.dll (or cgD3D8d.dll).
3. Turn on and turn off tracing of portions of your code using 

cgD3D9EnableDebugTracing():

Here is how you would enable debug tracing for part of the application code: 

Note that each debug trace output sets an error equal to cgD3D9DebugTrace. 
So, if an error callback has been registered with the core runtime using 
cgSetErrorCallback(), each debug trace output triggers a call to this error 
callback (see “Using Error Callbacks” on page 87).

Direct3D Error Reporting

Error reporting in Cg includes defined error types, functions that allow testing 
for errors, and support for error callbacks.

Direct3D Error Types

The Direct3D runtime generates errors of type CGerror, reported by the Cg 
core runtime and of type HRESULT, reported by the Direct3D runtime. In 
addition, it returns the errors listed in the next two groups that are specific to 
the Direct3D Cg runtime.

void cgD3D9EnableDebugTracing(CGbool enable);

cgD3D9EnableDebugTracing(CG_TRUE);
// ...
// Application code that is traced
// ...
cgD3D9EnableDebugTracing(CG_FALSE); 
 808-00504-0000-004 85
NVIDIA



Cg Language Toolkit
CGerror 
cgD3D9Failed: Set when a Direct3D runtime function makes a 
Direct3D call that returns an error.
cgD3D9DebugTrace: Set when a debug message is output to the debug 
console when using the debug DLL (see “Direct3D Debugging Mode” 
on page 83). 

HRESULT 
CGD3D9ERR_INVALIDPARAM: Returned when a parameter value cannot 
be set. 
CGD3D9ERR_INVALIDPROFILE: Returned when a program with an 
unexpected profile is passed to a function.
CGD3D9ERR_INVALIDSAMPLERSTATE: Returned when a parameter of 
type D3DTEXTURESTAGESTATETYPE, which is not a valid sampler state, 
is passed to a sampler state function.
CGD3D9ERR_INVALIDVEREXDECL: Returned when a program is loaded 
with the expanded interface, but the given declaration is incompatible. 
CGD3D9ERR_NODEVICE: Returned when a required Direct3D device is 
0. This typically occurs when an expanded interface function is called 
and a Direct3D device has not been set with cgD3D9SetDevice(). 
CGD3D9ERR_NOTMATRIX: Returned when a parameter that is not a 
matrix type is passed to a function that expects one. 
CGD3D9ERR_NOTLOADED: Returned when a parameter has not been 
loaded with the expanded interface by cgD3D9LoadProgram(). 
CGD3D9ERR_NOTSAMPLER: Returned when a parameter that is not a 
sampler parameter is passed to a function that expects one. 
CGD3D9ERR_NOTUNIFORM: Returned when a parameter that is not 
uniform is passed to a function that expects one. 
CGD3D9ERR_NULLVALUE: Returned when a value of zero is passed to a 
function that requires a non-zero value. 
CGD3D9ERR_OUTOFRANGE: Returned when an array range specified to a 
function is out of range. 
CGD3D9_INVALID_REG: Returned when a register number is requested 
for an invalid parameter type. This error is specific to the minimal 
interface functions and does not trigger an error callback.
86 808-00504-0000-004 
NVIDIA



 Using the Cg Runtime Library
Testing for Errors

When a Direct3D runtime function is called that returns an error of type 
HRESULT, the proper method of testing for success or failure is to use the 
Win32 macros FAILED() and SUCCEEDED(). Simply testing the error against 
zero or D3D_OK is not sufficient, because there could be more than one success 
value.
As an added convenience, and for uniformity with the core runtime, the 
Direct3D runtime also supplies cgD3D9GetLastError(), which is analogous 
to cgGetLastError() but returns the last Direct3D runtime error of type 
HRESULT for which the FAILED() macro returns TRUE: 

The last error is always cleared immediately after the call.
The function cgD3D9TranslateHRESULT() converts an error of type HRESULT 
into a string:

This function should be called instead of DXGetErrorDescription9() 
because it also translates errors that the Cg Direct3D runtime generates.

Using Error Callbacks

Here is an example of a possible error callback that sorts out debug trace errors 
from core runtime errors and from Direct3D runtime errors:

HRESULT cgD3D9GetLastError();

const char* cgD3D9TranslateHRESULT(HRESULT hr);

void MyErrorCallback() {
  CGerror error = cgGetError();
  if (error == cgD3D9DebugTrace) {
  // This is a debug trace output.
  // A breakpoint could be set here to step from one 
  // debug output to the other.
    return;
  }
  char buffer[1024];
  if (error == cgD3D9Failed)
    sprintf(buffer, "A Direct3D error occurred: %s'\n",
            cgD3D9TranslateHRESULT(cgD3D9GetLastError()));
  else
    sprintf(buffer, "A Cg error occurred: '%s'\n",
            cgD3D9TranslateCGerror(error));
  OutputDebugString(buffer);
}
cgSetErrorCallback(MyErrorCallback); 
 808-00504-0000-004 87
NVIDIA



Cg Language Toolkit
88 808-00504-0000-004 
NVIDIA



A Brief Tutorial

This section walks you through the sample Cg Microsoft Visual Studio 
workspace we have provided, along with a simple Cg program that you can use 
for experimentation. 

Loading the Workspace
When you load the Cg_Simple file, your workspace should look like the image 
in Figure 3.   

Figure 3 The Cg_Simple Workspace
808-00504-0000-004 89
NVIDIA



Cg Language Toolkit
As usual, click the FileView tab to view the various files in the project. What’s 
different in this case, though, is that in addition to the usual Source Files and 
Header Files folders, there is also a Cg Programs folder. 
This Cg Programs folder should contain one Cg program, simple.cg, which is 
what you can use for experimentation. Double-click simple.cg to open it for 
editing. While you are editing simple.cg, you can press Control+F7 at any 
time to compile it. Because of the way the project is set up, any errors in your 
code will be shown just as when you compile a normal C or C++ program. 
You can also double-click on an error, which takes you to the location in the 
source code that caused the error. 

Understanding simple.cg
The Cg_Simple application runs the shader defined in simple.cg on a torus. 
The provided version of simple.cg calculates diffuse and specular lighting for 
each vertex. Figure 4 shows a screenshot of the shader. 

Figure 4 The simple.cg Shader
90 808-00504-0000-004 
NVIDIA



 A Brief Tutorial
Program Listing for simple.cg
The following is the program listing for simple.cg: 
// Define inputs from application.
struct appin
{
  float4 Position     : POSITION;
  float4 Normal       : NORMAL;
};

// Define outputs from vertex shader.
struct vertout
{
  float4 HPosition    : POSITION;
  float4 Color        : COLOR;
};

vertout main(appin IN, 
             uniform float4x4 ModelViewProj,
             uniform float4x4 ModelViewIT,
             uniform float4 LightVec)
{
  vertout OUT;

  // Transform vertex position into homogenous clip-space.
  OUT.HPosition = mul(ModelViewProj, IN.Position);

  // Transform normal from model-space to view-space.
  float3 normalVec = normalize(mul(ModelViewIT,
                                   IN.Normal).xyz);

  // Store normalized light vector.
  float3 lightVec = normalize(LightVec.xyz);

  // Calculate half angle vector.     
  float3 eyeVec = float3(0.0, 0.0, 1.0);
  float3 halfVec = normalize(lightVec + eyeVec);
  
  // Calculate diffuse component.
  float diffuse = dot(normalVec, lightVec);

  // Calculate specular component.
  float specular = dot(normalVec, halfVec);
  
  // Use the lit function to compute lighting vector from
 808-00504-0000-004 91
NVIDIA



Cg Language Toolkit
Definitions for Structures with Varying Data
The first thing to notice is the definitions of structures with binding semantics 
for varying data. 
Let’s take a look at the appin structure:  

This structure contains only two members: Position and Normal. Because this 
data varies per-vertex, the binding semantics POSITION and NORMAL tell the 
compiler that the position information is associated with the predefined 
attribute POSITION and that the normal information is associated with the 
predefined attribute NORMAL. 
The other structure that is defined in simple.cg is vertout, which connects 
the vertex to the fragment: 

  // diffuse and specular values.
  float4 lighting = lit(diffuse, specular, 32);

  // Blue diffuse material
  float3 diffuseMaterial = float3(0.0, 0.0, 1.0);

  // White specular material
  float3 specularMaterial = float3(1.0, 1.0, 1.0);

  // Combine diffuse and specular contributions and
  // output final vertex color.
  OUT.Color.rgb = lighting.y * diffuseMaterial +
                  lighting.z * specularMaterial;
  OUT.Color.a = 1.0;

  return OUT;
}

// define inputs from application
struct appin
{
    float4 Position     : POSITION;
    float4 Normal       : NORMAL;
};

// define outputs from vertex shader
struct vertout
{
    float4 HPosition    : POSITION;
    float4 Color        : COLOR;
};
92 808-00504-0000-004 
NVIDIA



 A Brief Tutorial
The vertout structure also contains only two members: Hposition, the vertex 
position in homogeneous coordinates, and Color, the vertex color. Again, 
binding semantics are used to specify register locations for the variables. In this 
case, the homogeneous position information resides in the hardware register 
corresponding to POSITION and that the color information resides in the 
hardware register corresponding to COLOR.

Passing Arguments
Now let’s take a look at the body of the program, section by section, starting 
with the declaration of main():

As required for a vertex program, main() takes an application-to-vertex 
structure as input and returns a vertex-to-fragment structure. In this case, we 
are using the two structure types we have already defined: appin and vertout. 
Notice that main() takes in three uniform parameters: two matrices and one 
vector. All three parameters are passed to simple.cg by the application, using 
the run-time library. 
The first matrix, ModelViewProj, is the concatenation of the modelview and 
projection matrices. Together, these matrices transform points from model 
space to clip space. The second matrix, ModelViewIT, is the inverse transpose 
of the modelview matrix. The third parameter, LightVec, is a vector that 
specifies the location of the light source.

Basic Transformations
Now we start the body of the vertex program: 

A vertex program is responsible for calculating the homogenous clip-space 
position of the vertex (given the vertex’s model-space coordinates). Therefore, 
the vertex’s model-space position (given by IN.Position) needs to be 
transformed by the concatenation of the modelview and projection matrices 
(called ModelViewProj in this example). The transformed position is assigned 
directly to OUT.HPosition. Note that you are not responsible for the 
perspective division when using vertex programs. The hardware automatically 
performs the division after executing the vertex program.

vertout main(appin IN, 
             uniform float4x4 ModelViewProj,
             uniform float4x4 ModelViewIT,
             uniform float4 LightVec)

    vertout OUT;

    OUT.HPosition = mul(ModelViewProj, IN.Position);
 808-00504-0000-004 93
NVIDIA



Cg Language Toolkit
Since we want to do our lighting in eye space, we have to transform the model 
space normal IN.Normal to eye space:

Remember that when transforming normals, we need to multiply by the inverse 
transpose of the modelview matrix. Then we normalize the eye space normal 
vector and store it as normalVec. 

Prepare for Lighting
The subsequent steps prepare for lighting:

At this point we have to ensure that all our vectors are normalized. We start by 
normalizing LightVec1. Then, in preparation for specular lighting, we have to 
define the “half-angle” vector halfVec, which is the vector halfway between 
the light and the eye vectors (that is, (lightVec+eyeVec)/2). We normalize 
halfVec, so we don’t need to bother with the division by two, because it 
cancels out after normalization anyway. In this example, we assume that the eye 
is at (0,0,1), but an application would typically pass the eye position also as a 
uniform parameter, since it would be unchanged from vertex to vertex. We use 
Cg’s inline vector construction capability to build a 3-component float vector 
that contains the eye position, and then we assign this value to eyeVec.

Calculating the Vertex Color
Now we have to calculate the vertex color to output. 

Calculating the Diffuse and Specular Lighting Contributions

In this example, we’re going to calculate just a simple combination of diffuse 
and specular lighting: 

 // transform normal from model-space to view-space
  float3 normalVec = normalize(mul(ModelViewIT,
                                   IN.Normal).xyz);

  // store normalized light vector
  float3 lightVec = normalize(LightVec.xyz);

  // calculate half angle vector     
  float3 eyeVec = float3(0.0, 0.0, 1.0);
  float3 halfVec = normalize(lightVec + eyeVec);

1. Because LightVec is uniform, it is more efficient to normalize it once in the application 
rather than on a per-vertex basis. It is done here for illustrative purposes.

  // calculate diffuse component
  float diffuse = dot(normalVec, lightVec);
94 808-00504-0000-004 
NVIDIA



 A Brief Tutorial
Here we use the Cg Standard Library to perform dot products (using dot()). 
We also make use of the Standard Library’s lit() function to calculate a Blinn-
style lighting vector based on the previously computed dot products. The 
returned vector holds the diffuse lighting contribution in the y-coordinate, and 
the specular lighting contribution in the z-coordinate.
Remember to take advantage of the Standard Library to help speed up your 
development cycle. 

Modulating the Diffuse and Specular Lighting Contributions

Once the diffuse and specular lighting contributions lighting.y and 
lighting.z have been calculated, we need to modulate them with the object’s 
material properties:

We define the object’s diffuse material color as blue. We modulate the lighting 
contributions with the material properties to get the final vertex color, and we 
assign it to the output structure’s color field, OUT.Color. Finally, we set the 
alpha channel of the final color to 1.0, so that our object will be opaque, and 
return the computed position and color values stored in the OUT structure.

Further Experimentation
Use simple.cg as a framework to try more advanced experiments, perhaps by 
adding more parameters to the program or by performing more complex 
calculations in the vertex program. Have fun experimenting! 

  // calculate specular component
  float specular = dot(normalVec, halfVec);
  
  // Use the lit function to compute lighting vector from
  // diffuse and specular values
  float4 lighting = lit(diffuse, specular, 32);

  // blue diffuse material
  float3 diffuseMaterial = float3(0.0, 0.0, 1.0);

  // white specular material
  float3 specularMaterial = float3(1.0, 1.0, 1.0);

  // combine diffuse and specular contributions and
  // output final vertex color
  OUT.Color.rgb = lighting.y * diffuseMaterial +
                  lighting.z * specularMaterial;
  OUT.Color.a = 1.0;

  return OUT;
 808-00504-0000-004 95
NVIDIA



Cg Language Toolkit
96 808-00504-0000-004 
NVIDIA



Advanced Profile Sample Shaders

This chapter provides a set of advanced profile sample shaders written in Cg. 
Each shader comes with an accompanying snapshot, description, and source 
code.
Examples shown are

Improved Skinning
Improved Water
Melting Paint
MultiPaint
Ray-Traced Refraction
Skin
Thin Film Effect
Car Paint 9
808-00504-0000-004 97
NVIDIA



Cg Language Toolkit
Improved Skinning

Description
This shader takes in a set of all the transformation matrices that can affect a 
particular bone. Each bone also sends in a list of matrices that affect it. There is 
then a simple loop that for each vertex goes through each bone that affects that 
vertex and transforms it. This allows just one Cg program to do the entire 
skinning for vertices affected by any number of bones, instead of having one 
program for one bone, another program for two bones, and so on. 

Figure 5 Example of Improved Skinning 
98 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
Vertex Shader Source Code for Improved Skinning

struct inputs
{
  float4 position       : POSITION;
  float4 weights        : BLENDWEIGHT;
  float4 normal         : NORMAL;
  float4 matrixIndices  : TESSFACTOR;
  float4 numBones       : SPECULAR;
};

struct outputs
{
  float4 hPosition    : POSITION;
  float4 color        : COLOR0;
};

outputs main(inputs IN, 
       uniform float4x4 modelViewProj,
       uniform float3x4 boneMatrices[30],
       uniform float4 color,
       uniform float4 lightPos)
{
  outputs OUT;

  float4 index = IN.matrixIndices;
  float4 weight = IN.weights;

  float4 position;
  float3 normal;

  for (float i = 0; i < IN.numBones.x; i += 1) {
    // transform the offset by bone i
    position = position + weight.x * 
      float4(mul(boneMatrices[index.x], IN.position).xyz, 
             1.0);

    // transform normal by bone i
    normal = normal + weight.x * 
        mul((float3x3)boneMatrices[index.x], 
            IN.normal.xyz).xyz;

    // shift over the index/weight variables; this moves
    // the index and  weight for the current bone into
 808-00504-0000-004 99
NVIDIA



Cg Language Toolkit
    // the .x component of the index and weight variables
    index = index.yzwx;
    weight = weight.yzwx;
  }

  normal = normalize(normal);

  OUT.hPosition = mul(modelViewProj, position);
  OUT.color = dot(normal, lightPos.xyz) * color;

  return OUT;
}

100 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
Improved Water

Description
This demo gives the appearance that the viewer is surrounded by a large grid of 
vertices (because of the free rotation), but switching to wireframe or increasing 
the frustum angle makes it apparent that the vertices are a static mesh with the 
height, normal, and texture coordinates being calculated on-the-fly based on the 
direction and height of the viewer. This technique allows for very GPU-friendly 
water animations because the static mesh can be precomputed. The vertices are 
displaced using sine waves, and in this example a loop is used to sum five sine 
waves to achieve realistic effects.

Figure 6 Example of Improved Water 
 808-00504-0000-004 101
NVIDIA



Cg Language Toolkit
Vertex Shader Source Code for Improved Water

struct app2vert
{ 
  float4 Position   : POSITION;
};

struct vert2frag 
{
  float4 HPosition  : POSITION;
  float4 TexCoord0  : TEXCOORD0;
  float4 TexCoord1  : TEXCOORD1;
  float4 Color0     : COLOR0;
  float4 Color1     : COLOR1;
};

void calcWave(out float disp, out float2 normal,
              float dampening, float3 viewPosition,
              float waveTime, float height,
              float frequency, float2 waveDirection)
{
  float distance1 = dot(viewPosition.xy, waveDirection);
  distance1 = frequency * distance1 + waveTime;

  disp = height * sin(distance1) / dampening;
  normal = -cos(distance1) * height * frequency * 
    (waveDirection.xy) / (.4*dampening);
}

vert2frag main(
      app2vert IN, 
      uniform float4x4 ModelViewProj,
      uniform float4x4 ModelView,
      uniform float4x4 ModelViewIT,
      uniform float4x4 TextureMat,
      uniform float  Time,
      uniform float4   Wave1,
      uniform float4   Wave1Origin,
      uniform float4   Wave2,
      uniform float4   Wave2Origin,
      const uniform float4   WaveData[5])
{
  vert2frag OUT;
102 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
  float4 position = float4(IN.Position.x, 0, 
                           IN.Position.y,1);
  float4 normal = float4(0,1,0,0);
  float dampening = 1 + dot(position.xyz, position.xyz)/1000;
  float i, disp;
  float2 norm;

  for (i = 0; i < 5; i = i + 1)
  {
    float waveTime  = Time.x * WaveData[i].z;
    float frequency = WaveData[i].z;
    float height  = WaveData[i].w;
    float2 waveDir  = WaveData[i].xy;

    calcWave(disp, norm, dampening, IN.Position.xyz,
      waveTime, height, frequency, waveDir);
    position.y = position.y + disp;
    normal.xz = normal.xz + norm;
  }

  OUT.HPosition = mul(ModelViewProj, position);

  // transfom normal into eye-space
  normal = mul(ModelViewIT, normal);
  normal.xyz = normalize(normal.xyz);

  // get a vector from the vertex to the eye
  float3  eyeToVert = mul(ModelView, position).xyz;
  eyeToVert = normalize(eyeToVert);

  // calculate the reflected vector for cubemap look-up
  float4 reflected = mul(TextureMat, 
                       reflect(eyeToVert, normal.xyz).xyzz);

  // output two reflection vectors for the two 
  // environment cubemaps
  OUT.TexCoord0 = reflected;
  OUT.TexCoord1 = reflected;

  // Calculate a fresnel term (note that f0 = 0)
  float fres = 1+dot(eyeToVert,normal.xyz);
  fres = pow(fres, 5);

  // set the two color coefficients (the magic constants 
 808-00504-0000-004 103
NVIDIA



Cg Language Toolkit
Pixel Shader Source Code for Improved Water

  // are arbitrary), these two color coefficients are used 
  // to calculate the contribution from each of the two
  // environment cubemaps (one bright, one dark)
  OUT.Color0 = (fres*1.4 + min(reflected.y,0)).xxxx + 
    float4(.2,.3,.3,0);
  OUT.Color1 = (fres*1.26).xxxx;

  return OUT;
}

float4 main(in float3 color0          : COLOR0,
            in float3 color1          : COLOR1,
            in float3 reflectVec      : TEXCOORD0,
            in float3 reflectVecDark  : TEXCOORD1,
            uniform samplerCUBE environmentMaps[2]
            ) : COLOR
{
  float3 reflectColor = texCUBE(environmentMaps[0], 
      reflectVec).rgb;
  float3 reflectColorDark = texCUBE(environmentMaps[1],
      reflectVecDark).rgb;

  float3 color = (reflectColor * color0) + 
      (reflectColorDark * color1);
  return float4(color, 1.0);
}

104 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
Melting Paint

Description
This shader uses an environment map with procedurally modified texture 
lookups to create a melting effect on the surface texture (the NVIDIA logo in 
this example). The reflection vector is shifted using a noise function, giving the 
appearance of a bumpy surface. The surface texture’s texture coordinates are 
shifted in a time-dependent manner, also based on a noise texture.

Figure 7 Example of Melting Paint 

Vertex Shader Source Code for Melting Paint

// define inputs from application
struct app2vert
{
    float4 Position     : POSITION;
    float4 Normal       : NORMAL;
 808-00504-0000-004 105
NVIDIA



Cg Language Toolkit
    float4 Color0       : COLOR0;
    float4 TexCoord0    : TEXCOORD0;
};

struct vert2frag 
{
    float4 HPosition    : POSITION;
    float3 OPosition    : TEXCOORD2;
    float3 EPosition    : TEXCOORD3;
    float3 Normal       : TEXCOORD1; 
    float3 TexCoord0    : TEXCOORD0;
    float4 Color0       : COLOR0;

    float3 LightPos     : TEXCOORD4;
    float3 ViewerPos    : TEXCOORD5;
};

vert2frag main(app2vert In, 
               uniform float4x4 ModelViewProj,
               uniform float4x4 ModelView,
               uniform float4x4 ModelViewI,
               uniform float4 ViewerPos,
               uniform float4 LightPos)
{
    vert2frag Out;

    // Vertex positions:
    // In clip space
    Out.HPosition = mul(ModelViewProj, In.Position);
    // In object space
    Out.OPosition = In.Position.xyz;
    // In eye space
    Out.EPosition = mul(ModelView, In.Position).xyz;

    Out.Normal = normalize(In.Normal.xyz);
    // Copy the texture coordinates
    Out.TexCoord0 = In.TexCoord0.xyz;
    // Generate a white color
    Out.Color0 = LightPos;

    Out.LightPos = mul(ModelViewI, LightPos).xyz;
    Out.ViewerPos = mul(ModelViewI, float4(0,0,0,1)).xyz;

    return Out;
}

106 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
Pixel Shader Source Code for Melting Paint

struct vert2frag 
{
  float4 HPosition  : POSITION;
  float3 OPosition  : TEXCOORD2;
  float3 EPosition  : TEXCOORD3;
  float3 Normal     : TEXCOORD1; 
  float3 TexCoord0  : TEXCOORD0;
  float4 Color0     : COLOR0;

  float3 LightPos   : TEXCOORD4;
  float3 ViewerPos  : TEXCOORD5;
};

void calcLighting(out float diffuse, out float specular,
    float3 normal, float3 fragPos, float3 lightPos,
    float3 eyePos, float specularExp)
{
  float3 light = lightPos - fragPos;
  float len = length(light);
  light = light / len;

  float3 eye = normalize(eyePos - fragPos);
  float3 halfVec = normalize(eyePos + light);

  float attenuation = 1. / (.3 * len);

  float4 lighting = lit(dot(light, normal), 
      dot(halfVec, normal), specularExp);
  diffuse = lighting.y * attenuation;
  specular = lighting.z * attenuation;
}

float4 main(vert2frag IN,
      uniform float4  LightPos,
      uniform sampler3D noise_map,
      uniform sampler2D nv_map,
      uniform samplerCUBE cube_map,
      uniform float4  interpolate
      ) : COLOR
{ 
  float diffuse, specular;
 808-00504-0000-004 107
NVIDIA



Cg Language Toolkit
  float3 biVariate =  float3(IN.OPosition.x-IN.OPosition.z,
    IN.OPosition.y+IN.OPosition.z, 0);
  float3 uniVariate = float3(IN.OPosition.x+IN.OPosition.z,
    0, 0);
 
  float3 normal = normalize(IN.Normal);
  float3 noiseTex = float3((IN.OPosition.x+IN.OPosition.z)*6,
    IN.OPosition.y/2, 0);
  float3 noiseSum = tex3D(noise_map, biVariate/3).rgb/12 +
      tex3D(noise_map, noiseTex).rgb/18 +
            tex3D(noise_map, biVariate*6).rgb/18;
  normal = normalize(normal + noiseSum);

  calcLighting(diffuse, specular, normal, IN.OPosition,
    IN.LightPos, IN.ViewerPos, 32);

  float3 nvShift = tex3D(noise_map, uniVariate/3).rgb / 2 + 
           tex3D(noise_map, uniVariate).rgb / 4 + 
           tex3D(noise_map, biVariate*3).rgb / 16;
  nvShift.x = nvShift.x*nvShift.x * interpolate.x * 3;
  nvShift.y = 0;

  biVariate = float3(IN.OPosition.x - IN.OPosition.z,
    IN.OPosition.y, 0);
  float2 texCoord = biVariate.xy/4 + float2(1.1, .5) +
    nvShift.yx + float2(0, interpolate.x/8);
  float3 nvDecal = 
    tex2D(nv_map, float2(1-texCoord.x, texCoord.y)).rgb *
      (1-interpolate.x * .7).xxx;

  float3 eye = IN.ViewerPos - IN.OPosition;
  float3 lightMetal = texCUBE(cube_map, 
                              reflect(normal, eye)).rgb;
  float3 darkMetal = (diffuse * float3(.5,.25,0) + 
    specular * float3(.7,.4,0));

  float3 finalColor = lerp(lightMetal, darkMetal, nvDecal.x);
  return float4(finalColor, 1);
}

108 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
MultiPaint

Description
MultiPaint presents a single-pass solution to a common production problem: 
mixing multiple kinds of materials on a single polygonal surface. MultiPaint 
provides a simple BRDF (bidirectional reflectance distribution function) that is 
still complex enough to represent many common metallic and dielectric 
surfaces, and controls all key factors of the variable BRDF through texturing. 
This permits you to create multiple materials without switching shaders, 
splitting your model, or resorting to multiple passes. 
Uses for MultiPaint might include complex armor built of inlaid metals, woods, 
and stones—all modeled on a single, simple poly mesh; buildings composed of 
multiple types of stone, glass, and metal, expressed as simple cubes; cloth with 
inlaid metallic threads; or as in this demo, metal partially covered with peeling 
paint.
Using multiple BRDFs is common in the offline world, but rarely optimized; 
instead, two different shaders may be evaluated and their results blended using a 
mask texture or chained through if statements. For maximum real-time 
performance, MultiPaint instead integrates all of the key parts of the BRDFs as 
multiple painted textures so that only one pass through the shader is required to 
create the mixed appearance. This permits a single-pass shader containing 
diffuse, specular, and environmental lighting effects in a compact, fast-
executing package. 

Figure 8 Example of MultiPaint 
 808-00504-0000-004 109
NVIDIA



Cg Language Toolkit
Vertex Shader Source Code for MultiPaint

// define inputs from vertex buffer
struct appin
{
  float4 Position     : POSITION;
  float4 UV           : TEXCOORD0;
  float4 Tangent      : TEXCOORD1;
  float4 Binormal     : TEXCOORD2;
  float4 Normal       : TEXCOORD3;
};

// output -- same struct is the input to "cg_multipaint.cg"
struct MultiPaintV2F {
  float4 HPosition    : POSITION;  // position (clip space)
  float4 TexCoords    : TEXCOORD0; // base ST coordinates
  float3 OPosition    : TEXCOORD1; // position (obj space)
  float3 Normal       : TEXCOORD2; // normal (eye space)
  float3 VPosition    : TEXCOORD3; // view pos (obj space)
  float3 T            : TEXCOORD4; // tangent (obj space)
  float3 B            : TEXCOORD5; // binormal (obj space)
  float3 N            : TEXCOORD6; // normal (obj space)
  float4 LightVecO    : TEXCOORD7; // light dir (obj space)
};

MultiPaintV2F main(appin IN, 
                 uniform float4x4 ModelViewProj,
                 uniform float4x4 ModelViewIT,
                 uniform float4x4 ModelViewI,
                 uniform float4 TexRepeats,
                 uniform float4 LightVec) // (eye space)
{
  MultiPaintV2F OUT;
  
  OUT.HPosition = mul(ModelViewProj, IN.Position);

  // pass through object-space position
  OUT.OPosition = IN.Position.xyz;

  // transform normal to eye space
  OUT.Normal = normalize(mul(ModelViewIT, IN.Normal).xyz);

  OUT.TexCoords = IN.UV * TexRepeats;
110 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
Pixel Shader Source Code for MultiPaint

  // pass through object-space normal, tangent, binormal.
  OUT.N = normalize(IN.Normal.xyz);
  OUT.T = IN.Tangent.xyz;
  OUT.B = IN.Binormal.xyz;

  // transform view pos (origin) to obj space
  OUT.VPosition = mul(ModelViewI, float4(0,0,0,1)).xyz;

  // transform light vector to obj space
  OUT.LightVecO = mul(ModelViewI, LightVec);

  return OUT;
}

#define WHITE half4(1.0h,1.0h,1.0h,1.0h)

// input -- same struct is output from "cg_multipaintVP.cg"
struct MultiPaintV2F {
  float4 HPosition    : POSITION;  // position (clip space)
  float4 TexCoords    : TEXCOORD0; // base ST coordinates
  float3 OPosition    : TEXCOORD1; // position (obj space)
  float3 Normal       : TEXCOORD2; // normal (eye space)
  float3 VPosition    : TEXCOORD3; // view pos (obj space)
  float3 T            : TEXCOORD4; // tangent (obj space)
  float3 B            : TEXCOORD5; // binormal (obj space)
  float3 N            : TEXCOORD6; // normal (obj space)
  float4 LightVecO    : TEXCOORD7; // light dir (obj space)
};

// channels in our material map:
#define SPEC_STR x
#define METALNESS y
#define NORM_SPEC_EXPON z

// subfields in "SpecData"
#define MINPOWER x
#define MAXPOWER y
#define MAXSPEC z

// subfields in "ReflData"
#define FRESNEL_MIN x
#define FRESNEL_MAX y
 808-00504-0000-004 111
NVIDIA



Cg Language Toolkit
#define FRESNEL_EXPON z
#define REFL_STRENGTH w

// subfields in "BumpData"
#define BUMP_SCALE x

half4 main(MultiPaintV2F IN,
     uniform sampler2D ColorMap,    // color
     uniform sampler2D MaterialMap, // see above
     uniform sampler2D NormalMap,   // tangent-space normals
     uniform samplerCUBE EnvMap,    // environment skybox
     uniform float4 SpecData,       // see above
     uniform float4 ReflData,       // see above
     uniform float4 BumpData        // see above
     ) : COLOR
{
  half4 surfCol = tex2D(ColorMap, IN.TexCoords.xy);
  half4 material = tex2D(MaterialMap, IN.TexCoords.xy);
  half3 Nt = tex2D(NormalMap, IN.TexCoords.xy).rgb -
             half3(0.5h,0.5h,0.5h);

  // SpecData.MAXSPEC *should* range from 0 - 1.
  half specStr = material.SPEC_STR * SpecData.MAXSPEC;
  half specPower = SpecData.MINPOWER +
                   material.NORM_SPEC_EXPON *
                   (SpecData.MAXPOWER - SpecData.MINPOWER);

  half3 Vn = -normalize(IN.VPosition - IN.OPosition);
  half3 Ln = normalize(IN.LightVecO).xyz;
  half3 Nb = normalize(BumpData.BUMP_SCALE *
                       (Nt.x*IN.T + Nt.y*IN.B) +
                       (Nt.z*IN.N));

  half  diff = dot(-Ln, Nb);
  half3 Hn = -normalize(Vn + Ln);
  half4 lighting = lit(diff, dot(Hn, Nb), specPower);

  half4 diffResult = lighting.y * surfCol;
  half4 specCol = lerp(WHITE, surfCol, material.METALNESS);
  half4 specResult = lighting.z * specStr * specCol;

  half3 reflVect = reflect(Vn, Nb);
  half4 reflColor = texCUBE(EnvMap, reflVect);
  half fakeFresnel = ReflData.FRESNEL_MIN +
                     ReflData.FRESNEL_MAX * 
112 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
                     pow(saturate(1.0h-dot(-Vn,IN.N)),
                         ReflData.FRESNEL_EXPON);
  half4 paintShine = fakeFresnel * reflColor;
  half4 metalShine = surfCol * reflColor;
  half4 shineCol = ReflData.REFL_STRENGTH *
                   lerp(paintShine, metalShine,
                        material.METALNESS);

  half4 finalColor = specResult + diffResult + shineCol;
  finalColor.w = 1.0h;

  return finalColor;
}

 808-00504-0000-004 113
NVIDIA



Cg Language Toolkit
Ray-Traced Refraction

Description
This shader presents a method for adding high-quality details to small objects 
using a single-bounce, ray-traced pass. In this example, the polygonal surface is 
sampled and a refraction vector is calculated. This vector is then intersected 
with a plane that is defined as being perpendicular to the object’s x-axis. The 
intersection point is calculated and used as texture indices for a painted iris. 
The demo permits varying the index of refraction, the depth and density of the 
lens. Note that the choice of geometry is arbitrary—this sample is a sphere, but 
any polygonal model can be used. 

Figure 9 Example of Ray-Traced Refraction 
114 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
Vertex Shader Source Code for Ray-Traced Refraction

struct appin
{
  float4 Position   : POSITION;
  float4 Normal     : NORMAL;
};

// output -- same struct is the input to fragment shader
struct EyeV2F {
  float4 HPosition  : POSITION;  // clip space pos
  float3 OPosition  : TEXCOORD0; // Obj-coords location
  float3 VPosition  : TEXCOORD1; // eye pos (obj space)
  float3 N          : TEXCOORD2; // normal (obj space)
  float4 LightVecO  : TEXCOORD3; // light dir (obj sp)
};

EyeV2F main(appin IN, 
      uniform float4x4 ModelViewProj,
      uniform float4x4 ModelViewI,
      uniform float4 LightVec)  // in EYE coords
{
  EyeV2F OUT;

  // calculate clip space position for rasterizer use
  OUT.HPosition = mul(ModelViewProj, IN.Position);

  // pass through object space position
  OUT.OPosition = IN.Position.xyz;

  // object-space normal
  OUT.N = normalize(IN.Normal.xyz);

  // transform view pos and light vec to obj space
  OUT.VPosition = mul(ModelViewI, float4(0,0,0,1)).xyz;
  OUT.LightVecO = normalize(mul(ModelViewI, LightVec));

  return OUT;
}

 808-00504-0000-004 115
NVIDIA



Cg Language Toolkit
Pixel Shader Source Code for Ray-Traced Refraction

// Assume ray direction is normalized.
// Vector "planeEq" is encoded half3(A,B,C,D) where 
// (Ax+By+Cz+D)=0 and half3(A,B,C) has been normalized.
// Returns distance along to to intersection; distance is
// negative if no intersection.
half intersect_plane(half3 rayOrigin,half3 rayDir,
                     half4 planeEq) {
  half3 planeN = planeEq.xyz;
  half denominator = dot(planeN, rayDir);
  half result = -1.0h;

  // d==0 -> parallel || d>0 -> faces away
  if (denominator < 0.0h) {
    half top = dot(planeN,rayOrigin) + planeEq.w;
    result = -top/denominator;
  }
  return result;
}

// subfields in "BallData"
#define RADIUS x
#define IRIS_DEPTH y
#define ETA z
#define LENS_DENSITY w

// subfields in "SpecData"
#define PHONG x
#define GLOSS1 y
#define GLOSS2 z
#define DROP w

struct EyeV2F {
  float4 HPosition  : POSITION;
  float3 OPosition  : TEXCOORD0;
  float3 VPosition  : TEXCOORD1;
  float3 N          : TEXCOORD2;
  float4 LightVecO  : TEXCOORD3;
};

half4 main(EyeV2F IN,
  uniform sampler2D   ColorMap, // color
  // components: {radius,irisDepth,eta,lensDensity)
116 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
  uniform float4 BallData,
  // components: {phongExp,gloss1,gloss2,drop)
  uniform float4 GlossData,
  uniform float3 AmbiColor,
  uniform float3 DiffColor,
  uniform float3 SpecColor,
  uniform float3 LensColor,
  uniform float3 BgColor) : COLOR
{
  const half3 baseTex = half3(1.0h,1.0h,1.0h);
  const half GRADE = 0.05h;
  const half3 yAxis = half3(0.0h,1.0h,0.0h);
  const half3 xAxis = half3(1.0h,0.0h,0.0h);
  const half3 ballCtr = half3(0.0h,0.0h,0.0h);

  // (actually constants - could be done in VP or on CPU)
  half irisSize = BallData.RADIUS * 
    sqrt(1.0h-BallData.IRIS_DEPTH * BallData.IRIS_DEPTH);
  half irisScale = 0.3333h / max(0.01h, irisSize);
  half irisDist = BallData.RADIUS * BallData.IRIS_DEPTH;
  half3 pupilCenter = ballCtr + half3(irisDist,0.0h,0.0h);
  // if x axis, returns simple -irisDist
  half D = -dot(pupilCenter, xAxis);
  half slice = IN.OPosition.x - irisDist;
  half4 planeEquation = half4(xAxis, D);

  // view vector TO surface
  half3 Vn = normalize(IN.OPosition - IN.VPosition);
  half3 Nf = normalize(IN.N);
  half3 Ln = IN.LightVecO.xyz;
  half3 DiffLight = DiffColor * saturate(dot(Nf, -Ln));
  half3 missColor = AmbiColor + baseTex * DiffLight;
  half3 DiffPupil = AmbiColor + saturate(dot(xAxis, -Ln));

  half3 halfAng = normalize(-Ln - Vn);
  half ndh = abs(dot(Nf,halfAng));
  half spec1 = pow(ndh, GlossData.PHONG);
  half s2 = smoothstep(GlossData.GLOSS1, GlossData.GLOSS2,
    spec1);
  spec1 = lerp(GlossData.DROP, spec1, s2);
  half3 SpecularLight = SpecColor * spec1;

  half3 hitColor = missColor;

  if (slice >= 0.0h) {
 808-00504-0000-004 117
NVIDIA



Cg Language Toolkit
    half gradedEta = BallData.ETA;
    gradedEta = 1.0h/gradedEta;
    half3 faceColor = BgColor;

    half3 refVector = refract(Vn, Nf, gradedEta);
    if (dot(refVector, refVector) > 0) {
      // now let's intersect with the iris plane
      half irisT = intersect_plane(IN.OPosition, refVector,
          planeEquation);
      half fadeT = irisT * BallData.LENS_DENSITY;
      fadeT = fadeT * fadeT;
      faceColor = DiffPupil.xxx;
      if (irisT > 0) {
        half3 irisPoint = IN.OPosition + irisT*refVector;
        half3 irisST = (irisScale*irisPoint) + 
          half3(0.0h, 0.5h, 0.5h);
        faceColor = tex2D(ColorMap, irisST.yz).rgb;
      }
      faceColor = lerp(faceColor, LensColor, fadeT);
      hitColor = lerp(missColor, faceColor,
        smoothstep(0.0h, GRADE, slice));
    }
  }

  hitColor = hitColor + SpecularLight;
  return half4(hitColor, 1.0h);
}

118 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
Skin

Description
This effect demonstrates some techniques for rendering skin ranging from 
simple Blinn-Phong Bump-Mapping to more complex Subsurface Scattering 
lighting models. It also illustrates the use of “Rim” lighting and simple 
translucency for capturing some of the more subtle properties of skin resulting 
from complex, non-local lighting interactions. Finally, it shows how the various 
techniques can be combined to produce compelling, stylized skin.

Figure 10 Example of Skin 

Pixel Shader Source Code for Skin

struct fragin
{
  float2 texcoords         : TEXCOORD0;
  float4 shadowcoords      : TEXCOORD1;
 808-00504-0000-004 119
NVIDIA



Cg Language Toolkit
  float4 tangentToEyeMat0  : TEXCOORD4;
  float3 tangentToEyeMat1  : TEXCOORD5;
  float3 tangentToEyeMat2  : TEXCOORD6;
  float3 eyeSpacePosition  : TEXCOORD7;
};

float3 hgphase( float3 v1, float3 v2, float3 g )
{
  float costheta;
  float3 g2;
  float3 gtemp;

  costheta = dot( -v1, v2 );
  g2 = g*g;
  gtemp = 1.0.xxx + g2 - 2.0*g*costheta;
  gtemp = pow( gtemp, 1.5.xxx );
  gtemp = (1.0.xxx - g2) / gtemp;
  return gtemp;
}

// Computes the single-scattering approximation to
// scattering from a one-dimensional volumetric surface.
float3 singleScatter( float3 wi, float3 wo, float3 n,
                      float3 g, float3 albedo,
                      float thickness )
{
  float win = abs(dot(wi,n));
  float won = abs(dot(wo,n));
  float  eterm;
  float3  result;

  eterm = 1.0 - exp( (-((1./win)+(1./won))*thickness) );
  result = eterm * (albedo * hgphase( wo, wi, g ) /
                    (win + won));

  return result;
}

// i is the incident ray
// n is the surface normal
// eta is the ratio of indices of refraction
// r is the reflected ray
// t is the transmitted ray

float fresnel( float3 i, float3 n, float eta,
120 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
               out float3 r, out float3 t )
{
  float result;
  float c1;
  float cs2;
  float tflag;
  
  // Refraction vector courtesy Paul Heckbert.
  c1 = dot(-i,n);
  cs2 = 1.0-eta*eta*(1.0-c1*c1);
  tflag = (float) (cs2 >= 0.0);
  t = tflag * (((eta*c1-sqrt(cs2))*n) + eta*i);
  // t is already unit length or (0,0,0)

  // Compute Fresnel terms
  // (From Global Illumination Compendeum.)
  float ndott;
  float cosr_div_cosi;
  float cosi_div_cosr;
  float fs;
  float fp;
  float kr;

  ndott = dot(-n,t);
  cosr_div_cosi = ndott / c1;
  cosi_div_cosr = c1 / ndott;
  fs = (cosr_div_cosi - eta) / (cosr_div_cosi + eta);
  fs = fs * fs;
  fp = (cosi_div_cosr - eta) / (cosi_div_cosr + eta);
  fp = fp * fp;
  kr = 0.5 * (fs+fp);
  result = tflag*kr + (1.-tflag);
  r = reflect( i, n );

  return result;
}

float4 main( fragin In,
  uniform sampler2D tex0,
  uniform sampler2D tex1,
  uniform sampler2D tex2,
  uniform sampler2D tex3,
  uniform float3 eyeSpaceLightPosition,
  uniform float thickness,
  uniform float4 ambient ) : COLOR
 808-00504-0000-004 121
NVIDIA



Cg Language Toolkit
{
  float bscale = In.tangentToEyeMat0.w;
  
  float eta = (1.0/1.4);    

  // ratio of indices of refraction (air/skin)
  float  m = 34.;                      // specular exponent
  float4 lightColor = { 1, 1, 1, 1 };  // light color
  float4 sheenColor = { 1, 1, 1, 1 };  // sheen color
  float4 skinColor  = tex2D( tex1, In.texcoords );
  float3 g          = { 0.8, 0.3, 0.0 };
  float3 albedo     = { 0.8, 0.5, 0.4 };

  // oiliness mask
  float4 oiliness = 0.9 * tex2D( tex2, In.texcoords);

  // Get eye-space eye vector.
  float3 v = normalize( -In.eyeSpacePosition );

  // Get eye-space light and halfangle vectors.
  float3 l = normalize( eyeSpaceLightPosition -
                        In.eyeSpacePosition );
  float3 h = normalize( v + l );
  
  // Get tangent-space normal vector from normal map.
  float3 tangentSpaceNormal = tex2D(tex0, In.texcoords).rgb;
  float3 bumpscale = { bscale, bscale, 1.0 };
  tangentSpaceNormal = tangentSpaceNormal * bumpscale;

  // Transform it into eye-space.
  float3 n;
  n[0] = dot( In.tangentToEyeMat0.xyz, tangentSpaceNormal );
  n[1] = dot( In.tangentToEyeMat1, tangentSpaceNormal );
  n[2] = dot( In.tangentToEyeMat2, tangentSpaceNormal );
  n = normalize( n );

  // Compute the lighting equation.
  float ndotl = max( dot(n,l), 0 );   // clamp 0 to 1
  float ndoth = max( dot(n,h), 0 );   // clamp 0 to 1
  float flag  = (float)(ndotl > 0);   

  // Compute oil, sheen, subsurf scattering contributions.
  float4 oil;
  float4 sheen;
  float4 subsurf;
122 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
  float  Kr, Kr2;
  float  Kt, Kt2;
  float3 T, T2;
  float3 R, R2;

  // Compute fresnel at sheen layer, ramp it up a bit.
  Kr = fresnel( -v, n, eta, R, T );
  Kr = smoothstep( 0.0, 0.5, Kr );
  Kt = 1.0 - Kr;

  // Compute the refracted light ray and the refraction
  // coefficient. 
  Kr2 = fresnel( -l, n, eta, R2, T2 );
  Kr2 = smoothstep( 0.0, 0.5, Kr2 );
  Kt2 = 1.0 - Kr2;

  // For oil contribution, modulate the oiliness mask by a 
  // specular term.
  oil = 0.5 * oiliness * pow( ndoth, m );

  // For sheen contribution, modulate Fresnel term by
  // sheen color times specular.  Modulate by additional
  // diffuse term to soften it a bit.
  sheen = 2.5*Kr*sheenColor*(ndotl*(0.2 + pow( ndoth, m)));

  // Compute single scattering approximation to subsurface
  // scattering.  Here we compute 3 scattering terms
  // simultaneously and the results end up in the x,y,z
  // components of a float3.  Using 3 terms approximates
  // distribution of multiply-scattered light.  For
  // details see:  Matt Pharr’s SIGGRAPH 2001 RenderMan
  // course notes “Layered Media for Surface Shaders”.
  float3 temp = singleScatter( T2, T, n, g, albedo,
                               thickness );
  subsurf = 2.5 * skinColor * ndotl * Kt * Kt2 * 
            (temp.x+temp.y+temp.z);

  // Add contributions from oil, sheen, and subsurface
  // scattering and modulate by light color and result
  // of a shadow map lookup.
  return lightColor*tex2Dproj( tex3, In.shadowcoords ).r *
         (oil + sheen + subsurf);
}

 808-00504-0000-004 123
NVIDIA



Cg Language Toolkit
Thin Film Effect

Description
This demo shows a thin film interference effect. Specular and diffuse lighting 
are computed per-vertex in a Cg program, along with a view depth parameter, 
which is computed using the view vector, surface normal, and the depth of the 
thin film on the surface of the object. The view depth is then perturbed in an 
ad-hoc manner per-fragment by the underlying decal texture, and is then used 
to lookup into a 1D texture containing the precomputed destructive 
interference for red / green / blue wavelengths given a particular view depth. 
This interference value is then used to modulate the specular lighting 
component of the standard lighting equation.

Figure 11 Example of Thin Film Effect

Vertex Shader Source Code for Thin Film Effect

// define inputs from application
struct a2v
{
  float4 Position : POSITION;
124 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
  float3 Normal   : NORMAL;
};

// define outputs from vertex shader
struct v2f
{
  float4 HPOS      : POSITION;
  float4 diffCol   : COLOR0;
  float4 specCol   : COLOR1;
  float2 filmDepth : TEXCOORD0;
};

v2f main(a2v IN,
         uniform float4x4 WorldViewProj,
         uniform float4x4 WorldViewIT,
         uniform float4x4 WorldView,
         uniform float4 LightVector,
         uniform float4 FilmDepth,
         uniform float4 EyeVector)
{
  v2f OUT;

  //transform position to clip space
  OUT.HPOS = mul(WorldViewProj, IN.Position);

  float4 tempnorm = float4(IN.Normal, 0.0);

  // transform normal from model-space to view-space
  float3 normalVec = mul(WorldViewIT, tempnorm).xyz;
  normalVec = normalize(normalVec);

  // compute the eye->vertex vector
  float3 eyeVec = EyeVector.xyz;

  // compute the view depth for the thin film
  float viewdepth = (1.0 / dot(normalVec, eyeVec)) *
                    FilmDepth.x;

  OUT.filmDepth = viewdepth.xx;

  // store normalized light vector
  float3 lightVec = normalize((float3)LightVector);

  // calculate half angle vector
  float3 halfAngleVec = normalize(lightVec + eyeVec);
 808-00504-0000-004 125
NVIDIA



Cg Language Toolkit
Pixel Shader Source Code for Thin Film Effect

  // calculate diffuse component
  float diffuse = dot(normalVec, lightVec);

  // calculate specular component
  float specular = dot(normalVec, halfAngleVec);

  // use the lit instruction to calculate lighting,
  // automatically clamp
  float4 lighting = lit(diffuse, specular, 32);

  // output final lighting results
  OUT.diffCol = (float4)lighting.y;
  OUT.specCol = (float4)lighting.z;

  return OUT;
}

struct v2f
{
  float3 diffCol   : COLOR0;
  float3 specCol   : COLOR1;
  float2 filmDepth : TEXCOORD0;
};

void main( v2f IN,
           out float4 color : COLOR,
           uniform sampler2D fringeMap,
           uniform sampler2D diffMap)
{
  // diffuse material color
  float3 diffCol  = float3(0.3, 0.3, 0.5);

  // lookup fringe value based on view depth
  float3 fringeCol = (float3)tex2D(fringeMap, IN.filmDepth);

  // modulate specular lighting by fringe color,
  // combine with regular lighting
  color.rgb = fringeCol*IN.specCol + IN.diffCol*diffCol;
  color.a = 1.0;
}

126 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
Car Paint 9

Description
This car paint shader uses gonioreflectometric paint samples measured by 
Cornell University. The samples were converted into a 2D texture map which is 
indexed using NdotL and NdotH as the s,t coordinate pair, and which provides 
the diffuse component of our lighting equation. The specular term is calculated 
using the Blinn model, and also includes a term which simulates the clear coat’s 
metallic flecks. 
The fleck normal mipmap chain has randomly generated vectors which reside 
within a positive Z cone in tangent space. The cone is reduced gradually at 
every level such that in the distance the flecks are pointing mostly up. The 
flecks’ specular power and their contribution are reduced by distance, to give it 
a grainier appearance up close and a more uniform appearance from afar. Next, 
the view vector is reflected off a wavy normal map—which represents the 
object’s natural undulations—to index into the environment map. The 
shininess of the clear coat itself is calculated by scaling the Fresnel term by the 
luminance1 of the environment map. Finally, the shader lerps between the 
diffuse paint color and the reflection based on the Fresnel term, and adds the 
specular highlights.

Figure 12 Example of Car Paint 9

1. The luminance transfer function selects only the perceptually bright areas of the 
environment map in order not to reflect the darker areas of the scene.
 808-00504-0000-004 127
NVIDIA



Cg Language Toolkit
Vertex Shader Source Code for Car Paint 9

// This shader is based on the Time Machine temporal rust
// shader.  Car paint data was measured by Cornell
// University from samples provided by Ford Motor Company.

struct a2v {
  float4 OPosition : POSITION;
  float3 ONormal   : NORMAL;
  float2 uv        : TEXCOORD0;
  float3 Tangent   : TEXCOORD1;
  float3 Binormal  : TEXCOORD2;
  float3 Normal    : TEXCOORD3;
};

struct VS_OUTPUT {
  float4 HPosition : POSITION;  // coord position in window
  float2 uv        : TEXCOORD0; // wavy/fleckmap coords
  float3 light     : TEXCOORD1; // light pos (tangent space)
  float4 halfangle : TEXCOORD2; // Blinn halfangle
  float3 reflection: TEXCOORD3; // Refl vector (per-vertex)
  float4 view      : TEXCOORD4; // view (tangent space)
  float3 tangent   : TEXCOORD5; // view-tangent matrix
  float3 binormal  : TEXCOORD6; // ...
  float3 normal    : TEXCOORD7; // ...
  float  fresn     : COLOR0;
};

VS_OUTPUT main( a2v vert,
      // TRANSFORMATIONS
      uniform float4x4 ModelView,
      uniform float4x4 ModelViewIT,
      uniform float4x4 ModelViewProj,
      uniform float3   LightVector,    // Obj space
      uniform float3   EyePosition )   // Obj space
{
  VS_OUTPUT O;

  // Generate homogeneous POSITION
  O.HPosition = mul(ModelViewProj, vert.OPosition);

  // Generate BASIS matrix
  float3x3 ModelTangent = { normalize(vert.Tangent), 
                          normalize(vert.Binormal), 
128 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
                          normalize(vert.Normal) };

  // FRESNEL           = { OFFSET, SCALE, POWER, UNUSED };
  float4 Fresnel       = { 0.1f, 4.2f, 4.4f, 0.0f };

  float3x3 ViewTangent = mul(ModelTangent,
                             (float3x3)ModelViewIT);

  // Generate VIEW SPACE vectors
  float3 viewN = normalize(mul((float3x3)ModelView,
                               vert.ONormal));
  float4 viewP = mul(ModelView, vert.OPosition);
  viewP.w = 1-saturate(sqrt(dot(viewP.xyz,
                                viewP.xyz))*0.01);
  float3 viewV = -viewP.xyz;

  // Generate OBJECT SPACE vectors
  float3 objV = normalize(EyePosition-vert.OPosition.xyz);
  float3 objL = normalize(LightVector);
  float3 objH = normalize(objL + objV);

  // Generate TANGENT SPACE vectors
  float3 tanL = mul(ModelTangent, objL);
  float3 tanV = mul(ModelTangent, objV);
  float3 tanH = mul(ModelTangent, objH);

  // Generate REFLECTION vector for per-vertex
  // reflection look-up
  float3 reflection = reflect(-viewV, viewN);

  // Generate FRESNEL term
  float ndv  = saturate(dot(viewN, viewV));
  float FresnelApprox = (pow((1-ndv),Fresnel.z)*Fresnel.y +
                         Fresnel.x);

  // Fill OUTPUT parameters
  O.uv.xy      = vert.uv;        // TEXCOORD0.xy
  O.light      = tanL;           // Tangent space LIGHT
  // Tangent space HALF-ANGLE
  O.halfangle  = float4(tanH.x, tanH.y,
                        tanH.z, 1-exp(-viewP.w));
  O.reflection = reflection;     // View space REFLECTION
  // Tangent space VIEW + distance attenuation
  O.view       = float4(tanV.x, tanV.y,
 808-00504-0000-004 129
NVIDIA



Cg Language Toolkit
Pixel Shader Source Code for Car Paint 9

                        tanV.z, viewP.w);
  // VIEWTANGENT
  O.tangent    = normalize(ViewTangent[0]); // column 0
  O.binormal   = normalize(ViewTangent[1]); // column 1
  O.normal     = normalize(ViewTangent[2]); // column 2
  O.fresn      = FresnelApprox;

  return O;
}

// This shader is based on the Time Machine temporal rust
// shader.  Car paint data was measured by Cornell
// University from samples provided by Ford Motor Company.
//

struct VS_OUTPUT {
  float4 HPosition : POSITION;  // coord position in window
  float2 uv        : TEXCOORD0; // wavy/fleckmap coords
  float3 light     : TEXCOORD1; // light pos (tangent space)
  float4 halfangle : TEXCOORD2; // Blinn halfangle
  float3 reflection: TEXCOORD3; // Refl vector (per-vertex)
  float4 view      : TEXCOORD4; // view (tangent space)
  float3 tangent   : TEXCOORD5; // view-tangent matrix
  float3 binormal  : TEXCOORD6; // ...
  float3 normal    : TEXCOORD7; // ...
  float  fresn     : COLOR0;
};

// PIXEL SHADER
float4 main( VS_OUTPUT vert,
       uniform sampler2D WavyMap          : register(s0),
       uniform samplerCUBE EnvironmentMap : register(s1),
       uniform sampler2D PaintMap         : register(s2),
       uniform sampler2D FleckMap         : register(s3),
       uniform float Ambient ) : COLOR
{
  // NEWPAINTSPEC      = { UNUSED, SPEC POWER, GLOSSINESS,
  //                       FLECK SPEC POWER }
  float4 NewPaintSpec  = { 0.0f, 64.0f, 3.8f, 8.0f };
  float3 ClearCoat     = { 0.299f,0.587f, 0.114f };
  float3 FleckColor    = { 0.9, 1.05, 1.0 };
  float3 WavyScale     = { 0.2, -0.2, 1.0 };
130 808-00504-0000-004 
NVIDIA



 Advanced Profile Sample Shaders
  // Tangent space LIGHT vector
  float3 L = normalize(vert.light);

  // Tangent space HALF-ANGLE vector
  float3 H = normalize(vert.halfangle.xyz);

  // Tangent space VIEW vector
  float3 V = normalize(vert.view.xyz);
  float v_dist = vert.view.w;

  // Tangent space WAVY_NORMAL
  float3 wavyN = (float3)tex2D(WavyMap, vert.uv)*2-1;
  wavyN = normalize(wavyN*WavyScale);

  // PAINT
  // A normal map map could be loaded here instead if
  // we wanted more detail. In this case we have a
  // uniform tangent space normal (0,0,1)
  float n_d_l = L.z;
  float n_d_h = H.z;
  float3 paint_color = (float3)tex2D(PaintMap,
                                     float2(n_d_l, n_d_h));

  // SPECULAR POWER - use a saturated diffuse term
  // to clamp the backlighting
  n_d_h = saturate(n_d_l*4)*pow(n_d_h, NewPaintSpec.y);

  // REFLECTION ENVIRONMENT
  // Reflect view vector about wavy normal and bring
  // to view space
  float3 R = reflect(-V, wavyN);
  R = R.x*vert.tangent + R.y*vert.binormal +
      R.z*vert.normal;
  float3 reflect_color = (float3)texCUBE(EnvironmentMap, R);

  // FLECKS
  // Load random 3-vector flecks from fleck_map
  // Reduce tiling artifacts by sampling at
  // different frequencies
  float3 fleckN = (float3)tex2D(FleckMap, vert.uv*37)*2-1;
  fleckN = ((float3)tex2D(FleckMap, vert.uv*23)*2-1)/2 +
           fleckN/2;
 808-00504-0000-004 131
NVIDIA



Cg Language Toolkit
  float  fleck_n_d_h = saturate(dot(fleckN, H));
  float3 fleck_color = FleckColor * pow(fleck_n_d_h,
             lerp(NewPaintSpec.y, NewPaintSpec.w, v_dist));
  // Control the ambient fleckiness and also
  // attenuate with distance
  fleck_color = fleck_color*Ambient*vert.halfangle.w;

  // DIFFUSE
  float k_d = saturate(n_d_l*1.2);
  float3 paintResult = lerp(Ambient*paint_color,
                            paint_color, k_d);

  // FRESNEL
  float Fresnel = saturate(dot(ClearCoat, reflect_color));
  Fresnel = pow(Fresnel, NewPaintSpec.z);

  // This helps make the clear coat less omnipresent --
  // only the really (perceptually) bright areas reflect
  // the most.
  Fresnel = saturate(vert.fresn*Fresnel);
  // Show more of the specular reflection environment
  // when in fresnel zones
  // diffuse * (1-fresnel) + environment * (fresnel)
  paintResult = lerp(paintResult, reflect_color, Fresnel);

  // SPECULAR
  // diffuse + specular + flecks
  paintResult = paintResult + n_d_h + fleck_color;

  // OUTPUT
  return paintResult.xyzz;
}

132 808-00504-0000-004 
NVIDIA



Basic Profile Sample Shaders

This chapter provides a set of basic profile sample shaders written in Cg. Each 
shader comes with an accompanying snapshot, description, and source code. 
Examples shown are:

Anisotropic Lighting
Bump Dot3x2 Diffuse and Specular
Bump-Reflection Mapping
Fresnel
Grass
Refraction
Shadow Mapping
Shadow Volume Extrusion
Sine Wave Demo
Matrix Palette Skinning
808-00504-0000-004 133
NVIDIA



Cg Language Toolkit
Anisotropic Lighting

Description
The anisotropic lighting effect (Figure 13) shows the vertex program’s half-
angle vector calculation. It uses HdotN and LdotN per-vertex to look up into a 
2D texture to achieve interesting lighting effects.

Figure 13 Example of Anisotropic Lighting
134 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Vertex Shader Source Code for Anisotropic Lighting

struct appdata {
  float3 Position : POSITION;
  float3 Normal : NORMAL;
};

struct vpconn {
   float4 Hposition : POSITION;
   float4 TexCoord0 : TEXCOORD0;
};

vpconn main(appdata IN,
   uniform float4x4 WorldViewProj,
   uniform float3x3 WorldIT,
   uniform float3x4 World,
   uniform float3 LightVec,
   uniform float3 EyePos)
{
   vpconn OUT;

   float3 worldNormal = normalize(mul(WorldIT, IN.Normal));

   //build float4
   float4 tempPos;
   tempPos.xyz = IN.Position.xyz;
   tempPos.w   = 1.0;

   //compute world space position
   float3 worldSpacePos = mul(World, tempPos);
   //vector from vertex to eye, normalized
   float3 vertToEye = normalize(EyePos - worldSpacePos);

   //h = normalize(l + e)
   float3 halfAngle = normalize(vertToEye + LightVec);

   OUT.TexCoord0.x = max(dot(LightVec,worldNormal),0.0);
   OUT.TexCoord0.y = max(dot(halfAngle,worldNormal),0.0);
   // transform into homogeneous-clip space
   OUT.Hposition = mul(WorldViewProj, tempPos);

   return OUT;
}

 808-00504-0000-004 135
NVIDIA



Cg Language Toolkit
Bump Dot3x2 Diffuse and Specular

Description
The bump dot3x2 diffuse and specular effect mixes bump mapping with diffuse 
and specular lighting based on the texm3x2tex DirectX 8 pixel shader 
instruction (DOT_PRODUCT_TEXTURE_2D in OpenGL). This instruction 
computes the dot product of the normal and the light vector, corresponding to 
the diffuse light component, and the dot product of the normal and the half 
angle vector, corresponding to the specular light component. This results into 
two scalar values that are used as texture coordinates to look up a 2D 
illumination texture containing the diffuse color and the specular term in its 
alpha component. Since the normal fetched from the normal map is in tangent 
space, both the light vector and the half angle vector are transformed to this 
space by the vertex shader (Figure 14). 

Figure 14 Example of Bump Dot3x2 Diffuse and Specular
136 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Vertex Shader Source Code for Bump Dot3x2

struct a2v {
   float4 Position : POSITION; //in object space
   float3 Normal : NORMAL; //in object space
   float2 TexCoord : TEXCOORD0;
   float3 T : TEXCOORD1; //in object space
   float3 B : TEXCOORD2; //in object space
   float3 N : TEXCOORD3; //in object space
};

struct v2f {
   float4 Position : POSITION;  //in projection space
   float4 Normal : COLOR0;      //in tangent space
   float4 LightVectorUnsigned : COLOR1;   //in tangent space
   float3 TexCoord0 : TEXCOORD0;
   float3 TexCoord1 : TEXCOORD1;
   float4 LightVector : TEXCOORD2;        //in tangent space
   float4 HalfAngleVector : TEXCOORD3;    //in tangent space
};
 
v2f main(a2v IN,
   uniform float4x4 WorldViewProj,
   uniform float4 LightVector, //in object space
   uniform float4 EyePosition //in object space

)
{
   v2f OUT;

  // pass texture coordinates for 
  // fetching the diffuse map
  OUT.TexCoord0.xy = IN.TexCoord.xy;

  // pass texture coordinates for 
  // fetching the normal map
  OUT.TexCoord1.xy = IN.TexCoord.xy;

  // compute the 3x3 transform from 
  // tangent space to object space
  float3x3 objToTangentSpace;
  objToTangentSpace[0] = IN.T;
  objToTangentSpace[1] = IN.B;
  objToTangentSpace[2] = IN.N;
 808-00504-0000-004 137
NVIDIA



Cg Language Toolkit
Pixel Shader Source Code for Bump Dot3x2

  // transform normal from 
  // object space to tangent space
  OUT.Normal.xyz = 0.5 * mul(objToTangentSpace, IN.Normal) +
    0.5;

  // transform light vector from 
  // object space to tangent space
  float3 lightVectorInTangentSpace = 
    mul(objToTangentSpace, LightVector.xyz);
  OUT.LightVector.xyz = lightVectorInTangentSpace;
  OUT.LightVectorUnsigned.xyz = 0.5 *
    lightVectorInTangentSpace + 0.5;

  // compute view vector
  float3 viewVector = 
    normalize(EyePosition.xyz - IN.Position.xyz);

  // compute half angle vector
  float3 halfAngleVector = 
  normalize(LightVector.xyz + viewVector);

  // transform half-angle vector from 
  // object space to tangent space
  OUT.HalfAngleVector.xyz = 
    mul(objToTangentSpace, halfAngleVector);
 
  // transform position to projection space
  OUT.Position = mul(WorldViewProj, IN.Position);

  return OUT;
}

struct v2f {
  float4 Position : POSITION;  //in projection space
  float4 Normal : COLOR0; //in tangent space
  float4 LightVectorUnsigned : COLOR1; //in tangent space
  float3 TexCoord0 : TEXCOORD0;
  float3 TexCoord1 : TEXCOORD1;
  float4 LightVector : TEXCOORD2; //in tangent space
  float4 HalfAngleVector : TEXCOORD3; //in tangent space
};
138 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
float4 main(v2f IN,
      uniform sampler2D DiffuseMap,
      uniform sampler2D NormalMap,
      uniform sampler2D IlluminationMap, 
      uniform float Ambient) : COLOR
{
  // fetch base color
  float4 color = tex2D(DiffuseMap, IN.TexCoord0.xy);

  // fetch bump normal and expand it to [-1,1]
  float4 bumpNormal = 2 * 
    (tex2D(NormalMap, IN.TexCoord1.xy) - 0.5);

  // compute the dot product between 
  //   the bump normal and the light vector,
  // compute the dot product between 
  //   the bump normal and the half angle vector,
  // fetch the illumination map using 
  //   the result of the two previous dot products 
  //   as texture coordinates

  // returns the diffuse color in the 
  //   color components and the specular color in the 
  //   alpha component

  float2 illumCoord =
    float2(dot(IN.LightVector.xyz, bumpNormal.xyz),
           dot(IN.HalfAngleVector.xyz, bumpNormal.xyz));
  float4 illumination = tex2D(IlluminationMap, illumCoord);

  // expand iterated normal to [-1,1]
  float4 normal = 2 * (IN.Normal - 0.5);

  // compute self-shadowing term
  float shadow = saturate(4 * dot(normal.xyz, 
          IN.LightVectorUnsigned.xyz));
  
  // compute final color
  return (Ambient * color + shadow) 
      * (illumination * color + illumination.wwww);
}

 808-00504-0000-004 139
NVIDIA



Cg Language Toolkit
Bump-Reflection Mapping

Description
This effect mixes bump mapping and reflection mapping based on the 
texm3x3vspec DirectX 8 pixel shader instruction 
(DOT_PRODUCT_REFLECT_CUBE_MAP in OpenGL). This instruction 
computes three dot products to transform the normal fetched from the normal 
map into the environment cube space, reflects the transformed normal with 
respect to the eye vector and fetches a cube map to get the final color. The 
vertex shader is responsible for computing the transform matrix and the eye 
vector (Figure 15). 

Figure 15 Example of Bump-Reflection Mapping
140 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Vertex Shader Source Code for Bump-Reflection Mapping

struct a2v {
   float4 Position : POSITION;  // in object space
   float2 TexCoord : TEXCOORD0;
   float3 T : TEXCOORD1;        // in object space
   float3 B : TEXCOORD2;        // in object space
   float3 N : TEXCOORD3;        // in object space
};
 
struct v2f {
   float4 Position : POSITION; // in projection space
   float4 TexCoord : TEXCOORD0;

   // first row of the 3x3 transform 
   //   from tangent to cube space
   float4 TangentToCubeSpace0 : TEXCOORD1; 

   // second row of the 3x3 transform 
   //   from tangent to cube space
   float4 TangentToCubeSpace1 : TEXCOORD2; 

   // third row of the 3x3 transform 
   //   from tangent to cube space
   float4 TangentToCubeSpace2 : TEXCOORD3; 
};
 
v2f main(a2v IN,
   uniform float4x4 WorldViewProj,
   uniform float3x4 ObjToCubeSpace,
   uniform float3 EyePosition, // in cube space
   uniform float BumpScale)
{
  v2f OUT;
 
  // pass texture coordinates for 
  //   fetching the normal map
  OUT.TexCoord.xy = IN.TexCoord.xy;
 
  // compute 3x3 transform from tangent to object space
  float3x3 objToTangentSpace;

  // first rows are the tangent and binormal 
  // scaled by the bump scale
 808-00504-0000-004 141
NVIDIA



Cg Language Toolkit
  objToTangentSpace[0] = BumpScale * IN.T;
  objToTangentSpace[1] = BumpScale * IN.B;
  objToTangentSpace[2] = IN.N;
  // compute the 3x3 transform from 
  //   tangent space to cube space:
  // TangentToCubeSpace 
  //    = object2cube * tangent2object
  //    = object2cube * transpose(objToTangentSpace) 
  // (since the inverse of a rotation is its transpose)
  //
  // So a row of TangentToCubeSpace is the transform by 
  //   objToTangentSpace of the corresponding row of 
  //   ObjToCubeSpace

  OUT.TangentToCubeSpace0.xyz = 
    mul(objToTangentSpace, ObjToCubeSpace[0].xyz);
  OUT.TangentToCubeSpace1.xyz = 
    mul(objToTangentSpace, ObjToCubeSpace[1].xyz);
  OUT.TangentToCubeSpace2.xyz = 
    mul(objToTangentSpace, ObjToCubeSpace[2].xyz);
 
  // compute the eye vector 
  //   (going from eye to shaded point) in cube space
  float3 eyeVector = mul(ObjToCubeSpace, IN.Position) -
    EyePosition;

  OUT.TangentToCubeSpace0.w = eyeVector.x;
  OUT.TangentToCubeSpace1.w = eyeVector.y;
  OUT.TangentToCubeSpace2.w = eyeVector.z;
 
  // transform position to projection space
  OUT.Position = mul(WorldViewProj, IN.Position);
 
  return OUT;
}

142 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Pixel Shader Source Code for Bump and Reflection Mapping

struct v2f {
  float4 Position : POSITION; //in projection space
  float4 TexCoord : TEXCOORD0;

  // first row of the 3x3 transform 
  //   from tangent to cube space
  float4 TangentToCubeSpace0 : TEXCOORD1; 
  
  // second row of the 3x3 transform 
  //  from tangent to cube space
  float4 TangentToCubeSpace1 : TEXCOORD2; 
  
  // third row of the 3x3 transform 
  //   from tangent to cube space
  float4 TangentToCubeSpace2 : TEXCOORD3; 
};

float4 main(v2f IN,
      uniform sampler2D NormalMap,
      uniform samplerCUBE EnvironmentMap,
      uniform float3 EyeVector) : COLOR
{
  // fetch the bump normal from the normal map
  float4 normal = tex2D(NormalMap, IN.TexCoord.xy);
 
  // transform the bump normal into cube space
  //   then use the transformed normal and eye vector 
  //   to compute the reflection vector that is
  //   used to fetch the cube map
  return texCUBE_reflect_eye_dp3x3(EnvironmentMap,
                   IN.TangentToCubeSpace2.xyz,
                   IN.TangentToCubeSpace0,
                   IN.TangentToCubeSpace1,
                   normal,
                   EyeVector);
}

 808-00504-0000-004 143
NVIDIA



Cg Language Toolkit
Fresnel

Description
This effect computes a reflection vector to lookup into an environment map for 
reflections, and modulates this by a Fresnel term. The result is reflections only 
at grazing angles (Figure 16).

Figure 16 Example of Fresnel

Vertex Shader Source Code for Fresnel

struct app2vert
{   
  float4 Position     : POSITION;
  float4 Normal       : NORMAL;
  float4 TexCoord0    : TEXCOORD0;
};
144 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
struct vert2frag
{
  float4 HPosition    : POSITION;
  float4 Color0       : COLOR0;
  float4 TexCoord0    : TEXCOORD0;
};

vert2frag main(app2vert IN, 
               uniform float4x4 ModelViewProj,
               uniform float4x4 ModelView,
               uniform float4x4 ModelViewIT)
{
  vert2frag OUT;

#ifdef PROFILE_ARBVP1
  ModelViewProj = glstate.matrix.mvp;
  ModelView = glstate.matrix.modelview[0];
  ModelViewIT = glstate.matrix.invtrans.modelview[0];
#endif

  OUT.HPosition = mul(ModelViewProj, IN.Position);

  float3 normal = normalize(mul(ModelViewIT,
                                IN.Normal).xyz);
  float3 eyeToVert = normalize(mul(ModelView,
                                   IN.Position).xyz);
  
  // reflect the eye vector across the normal vector
  // for reflection
  OUT.TexCoord0 = float4(reflect(eyeToVert, normal), 1.0);

  float f0 = .1;

  // compute the fresnel term
  float oneMCosAngle = 1+dot(eyeToVert,normal);
  oneMCosAngle = pow(oneMCosAngle, 5);
  OUT.Color0 = lerp(oneMCosAngle, 1, f0).xxxx;

  return OUT;
}

 808-00504-0000-004 145
NVIDIA



Cg Language Toolkit
Grass

Description
This effect shows procedural animation of geometry using a Sine function, 
along with calculation of a normal for the procedurally deformed geometry 
(Figure 17).

Figure 17 Example of Grass

Vertex Shader Source Code for Grass

struct app2vert {   
   float4 Position : POSITION;
146 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
   float4 Normal : NORMAL;
   float4 TexCoord0 : TEXCOORD0;
   float4 Color0 : COLOR0;
};

struct vertout {
   float4 Hposition : POSITION;
   float4 Color0 : COLOR0;
   float4 TexCoord0 : TEXCOORD0;
};

vertout main(app2vert IN, 
             uniform float4x4 ModelViewProj,
             uniform float4x4 ModelView,
             uniform float4x4 ModelViewIT,
             uniform float4 Constants)

{
  vertout OUT;

  // we need to figure OUT what the position is
  float4 position = IN.Position;
  position.z = 0;
  position.y = 0;

  // add IN the actual base location of 
  //   the straw (stored IN Color0.xz)
  position.x = position.x + IN.Color0.x;
  position.z = position.z + IN.Color0.z;

  // figure OUT where the wind is coming from
  float4 origin = float4(20,0,20,0);
  float4 dir = position - origin;

  // find the intensity of the wind
  float inten = sin(Constants.x + .2*length(dir)) * 
    IN.Position.y;
  dir = normalize(dir);

  // we need to do some Bezier curve stuff here.
  float4 ctrl1 = float4(0,0,0,0);
  float4 ctrl2 = float4(0,IN.Color0.y/2,0,0);
  float4 ctrl3 = float4(dir.x*inten, IN.Color0.y,
                        dir.z*inten, 0);
  // do the Bezier linear interpolation steps
 808-00504-0000-004 147
NVIDIA



Cg Language Toolkit
  float t = IN.Color0.w;
  float4 temp = lerp(ctrl1, ctrl2, t);
  float4 temp2 = lerp(ctrl2, ctrl3, t);
  float4 result = lerp(temp, temp2, t);

  // add IN the height and wind displacement components
  position = position + result;
  position.w = 1;

  // transform for sending to the reg. combiners
  OUT.Hposition = mul(ModelViewProj, position);

  // calculate the texture coordinate 
  //   from the position passed IN
  OUT.TexCoord0 = float4((IN.Position.x + .05)*10,t,1,1);

  // find the normal
  // we need one more point to do a partial
  temp = lerp(ctrl1, ctrl2, t+0.05);
  temp2 = lerp(ctrl2, ctrl3, t+0.05);
  float4 newResult = lerp(temp, temp2, t+0.05);

  // do a crossproduct with a vector that 
  //   is horizontal across the screen
  float normal = cross((result - newResult).xyz, 
                       float3(1,0,0));
  normal = normalize(normal);

  // calculate diffuse lighting off the normal 
  //   that was just calculated
  float3 lightPos = float3(0,5,15);
  float3 lightVec = normalize(lightPos - position);
  float diffuseInten = dot(lightVec, normal);

  // Set up the final color
  // The first term is a semi random term based 
  //   on the total height of this straw
  // The second term is the diffuse lighting component
  OUT.Color0 = normalize(ctrl3) * diffuseInten * 
    IN.Position.z;
 
  return OUT;
}

148 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Refraction

Description
This effect performs custom texture coordinate generation to compute a 
refracted vector per-vertex that is then used to look up in a cube map. Fresnel is 
also calculated to blend between reflection and refraction (Figure 18).

Figure 18 Example of Refraction
 808-00504-0000-004 149
NVIDIA



Cg Language Toolkit
Vertex Shader Source Code for Refraction

struct inputs
{   
  float4 Position     : POSITION;
  float4 Normal       : NORMAL;
};

struct outputs
{
  float4 hPosition    : POSITION;
  float4 fresnelTerm  : COLOR0;
  float4 refractVec   : TEXCOORD0;
  float4 reflectVec   : TEXCOORD1;
};

// fresnel approximation
fixed fast_fresnel(float3 I, float3 N,
                   float3 fresnelValues)
{
  fixed power = fresnelValues.x;
  fixed scale = fresnelValues.y;
  fixed bias = fresnelValues.z;

  return bias + pow(1.0 - dot(I, N), power) * scale;
}

outputs main(inputs IN, 
           uniform float4x4 ModelViewProj,
           uniform float4x4 ModelView,
           uniform float4x4 ModelViewIT,
           uniform float theta)
{
  outputs OUT;

  OUT.hPosition = mul(ModelViewProj, IN.Position);

  // convert the position and normal into
  // appropriate spaces
  float3 eyeToVert = mul(ModelView, IN.Position).xyz;
  eyeToVert = normalize(eyeToVert);
  float3 normal = mul(ModelViewIT, IN.Normal).xyz;
  normal = normalize(normal);
150 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Pixel Shader Source Code for Refraction

  OUT.refractVec.xyz = refract(eyeToVert, normal, theta);
  OUT.refractVec.w = 1;

  OUT.reflectVec.xyz = reflect(eyeToVert, normal);
  OUT.reflectVec.w = 1;

  // calculate the fresnel reflection
  OUT.fresnelTerm = fast_fresnel(-eyeToVert, normal,
                                 float3(5.0, 1.0, 0.0));
  return OUT;
}

float4 main(in float3 refractVec    : TEXCOORD0,
            in float3 reflectVec    : TEXCOORD1,
            in float3 fresnelTerm   : COLOR0,

            uniform samplerCUBE environmentMaps[2],
            uniform float enableRefraction,
            uniform float enableFresnel) : COLOR
{
  float3 refractColor = texCUBE(environmentMaps[0],
                                refractVec).rgb; 
  float3 reflectColor = texCUBE(environmentMaps[1],
                                reflectVec).rgb; 

  float3 reflectRefract = lerp(refractColor, reflectColor,
                               fresnelTerm);
  
  float3 finalColor = enableRefraction ? 
      (enableFresnel ? reflectRefract : refractColor) : 
      (enableFresnel ? reflectColor : fresnelTerm);

  return float4(finalColor, 1.0);
}

 808-00504-0000-004 151
NVIDIA



Cg Language Toolkit
Shadow Mapping

Description
This effect shows generating texture coordinates for shadow mapping, along 
with using the shadow map in the lighting equation per pixel (Figure 19). 

Figure 19 Example of Shadow Mapping
152 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Vertex Shader Source Code for Shadow Mapping

struct appdata {
   float3 Position : POSITION;
   float3 Normal : NORMAL;
};

struct vpconn {
   float4 Hposition : POSITION;
   float4 TexCoord0 : TEXCOORD0;
   float4 TexCoord1 : TEXCOORD1;
   float4 Color0 : COLOR0;
};

vpconn main(appdata IN,
           uniform float4x4 WorldViewProj,
           uniform float4x4 TexTransform,
           uniform float3x3 WorldIT,
           uniform float3 LightVec)
{
  vpconn OUT;

  float3 worldNormal = normalize(mul(WorldIT, IN.Normal));

  float ldotn = max(dot(LightVec, worldNormal), 0.0);

  OUT.Color0.xyz = ldotn.xxx;

  float4 tempPos;
  tempPos.xyz = IN.Position.xyz;
  tempPos.w = 1.0;

  OUT.TexCoord0 = mul(TexTransform, tempPos);
  OUT.TexCoord1 = mul(TexTransform, tempPos);
 
  OUT.Hposition = mul(WorldViewProj, tempPos);

  return OUT;
}

 808-00504-0000-004 153
NVIDIA



Cg Language Toolkit
Pixel Shader Source Code for Shadow Mapping

struct v2f_simple {
    float4 Hposition : POSITION;
    float4 TexCoord0 : TEXCOORD0;
    float4 TexCoord1 : TEXCOORD1;
    float4 Color0 : COLOR0;
};

float4 main(v2f_simple IN, 
      uniform sampler2D ShadowMap, 
      uniform sampler2D SpotLight) : COLOR
{
    float4 shadow    = tex2D(ShadowMap, IN.TexCoord0.xy);
    float4 spotlight = tex2D(SpotLight, IN.TexCoord1.xy);
    float4 lighting  = IN.Color0;
  
    return shadow * spotlight * lighting;
} 
154 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Shadow Volume Extrusion

Description
This effect uses vertex programs to generate shadow volumes by extruding 
geometry along the light vector (Figure 20).

Figure 20 Example of Shadow Volume Extrusion
 808-00504-0000-004 155
NVIDIA



Cg Language Toolkit
Vertex Shader Source Code for Shadow Volume Extrusion

struct appdata 
{
   float4 Position : POSITION;
   float3 Normal : NORMAL;
   float4 DiffuseColor : COLOR0;
   float2 TexCoord0 : TEXCOORD0;
};

struct vpconn {
   float4 Hposition : POSITION;
   float4 Color0 : COLOR0;
   float2 TexCoord0 : TEXCOORD0;
};

vpconn main(appdata IN,
           uniform float4x4 WorldViewProj,
           uniform float4 LightPos, // (in object space)
           uniform float4 Fatness,
           uniform float4 ShadowExtrudeDist,
           uniform float4 Factors

)
{
  vpconn OUT;

  // Create normalized vector from vertex to light
  float4 light_to_vert = normalize(IN.Position - LightPos);

  // N dot L to decide if point should be moved away
  //   from the light to extrude the volume
  float ndotl = dot(-light_to_vert.xyz, IN.Normal.xyz);

  // Inset the position along 
  // the normal vector direction
  // This moves the shadow volume points 
  // inside the model slightly to minimize 
  // popping of shadowed areas as
  // each facet comes in and out of shadow.
  // The Fatness value should be negative
  float4 inset_pos = (IN.Normal * Fatness.xyz +
      IN.Position.xyz).xyzz;
  inset_pos.w = IN.Position.w;
156 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
  // scale the vector from light to vertex
  float4 extrusion_vec = light_to_vert * ShadowExtrudeDist;

  // if ndotl < 0 then the vertex faces 
  //   away from the light, so move it.
  // It will be moved along the direction from
  //   light to vertex to extrude the shadow volume.
  float away = (float)(ndotl < 0);

  // Move the back-facing shadow volume points
  float4 new_position = extrusion_vec * away + inset_pos;

  // Transform position to hclip space;
  OUT.Hposition = mul(WorldViewProj, new_position);

  // Set the color to blue for when the shadow volume
  //   is rendered in color for illustrative purposes
  float4 color = float4(0, 0, Factors.x, 0);

  OUT.Color0 = color;
  OUT.TexCoord0.xy = IN.TexCoord0;
  return OUT;
}

 808-00504-0000-004 157
NVIDIA



Cg Language Toolkit
Sine Wave Demo

Description
This effect modifies the vertex positions using a sine function based on the 
current time. It demonstrates use of the built-in sin() function. It also 
computes a normal based on the perturbed mesh, and uses this to compute a 
reflection vector to look up in a cube map (Figure 21).

Figure 21 Example of Sine Wave
158 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Vertex Shader Source Code for Sine Wave

struct appdata {
   float4 TexCoord0 : TEXCOORD0;
};

struct vpconn {
   float4 HPOS : POSITION;
   float4 COL0 : COLOR0;
   float4 TEX0 : TEXCOORD0;
};

vpconn main(appdata IN,
          uniform float4x4 WorldViewProj,
          uniform float3x4 WorldView,
          uniform float3x3 WorldViewIT, 
          uniform float3   WavesX,
          uniform float3   WavesY,
          uniform float3   WavesH,
          uniform float3   Time   

)
{
  vpconn OUT;

  float3 angle = WavesX * IN.TexCoord0.x + 
          WavesY * IN.TexCoord0.y;
  angle = angle + Time;

  float3 sine, cosine;
  sincos(angle, sine, cosine);

  // position is: (u, sum(hi * sin(anglei)), v, 1)
  float4 position;    
  position.xz = IN.TexCoord0.xy;
  position.y  = dot(WavesH, sine);
  position.w  = 1.0f;

  OUT.HPOS = mul(WorldViewProj, position);

  // normal is (t h WaveX cos(angle), 
  //-1, 
  //t h WaveY cos(angle))  
  float3  normal;    
  normal.x = dot(WavesH * WavesX, cosine);
 808-00504-0000-004 159
NVIDIA



Cg Language Toolkit
  normal.y = -1.0f;
  normal.z = dot(WavesH * WavesY, cosine);

  // transform normal into eye-space
  normal = mul(WorldViewIT, normal);
  normal = normalize(normal);

  // Transform vertex to eye-space and 
  //   compute the vector from the eye to the vertex.
  // Because the eye is at 0, no subtraction is 
  //   necessary. Because the reflection of this vector 
  //   looks into a cube-map normalization is also 
  //   unnecessary!
  float3  eyeVector = mul(WorldView, position);
  OUT.TEX0.xyz = reflect(eyeVector, normal);
  
  return OUT;
}

160 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
Matrix Palette Skinning

Description
This effect performs matrix palette skinning using two bones per vertex. All the 
bones for the mesh are set in the constant memory, and each vertex includes 
two indices that indicate which bones influence this vertex. The final skinned 
positions are computed using these bones, along with the weights supplied per 
vertex. Tangent-space bases are skinned in a similar fashion and then used to 
transform the light vector into tangent space for per-pixel bump mapping 
(Figure 22).

Figure 22 Example of Matrix Palette Skinning 
 808-00504-0000-004 161
NVIDIA



Cg Language Toolkit
Vertex Shader Source Code for Matrix Palette Skinning

struct appdata {
   float3 Position : POSITION;
   float2  Weights : BLENDWEIGHT0;
   float2 Indices : BLENDINDICES;
   float3 Normal : NORMAL;
   float2 TexCoord0 : TEXCOORD0;
   float3 S : TEXCOORD1;
   float3 T : TEXCOORD2;
   float3 SxT : TEXCOORD3;
};

struct vpconn {
   float4 Hposition : POSITION;
   float4 TexCoord0 : TEXCOORD0;
   float4 TexCoord1 : TEXCOORD1;
   float4 Color0 : COLOR0;
};

vpconn main(appdata IN,
           uniform float4x4 WorldViewProj,
           uniform float3x4 Bones[26],
           uniform float3 LightVec)
{
  vpconn OUT;

  float4 tempPos;
  tempPos.xyz = IN.Position.xyz;
  tempPos.w = 1.0;

  // grab first bone matrix
  float i = IN.Indices.x;

  //transform position
  float3 pos0 = mul(Bones[i], tempPos);

  //create 3x3 version of bone matrix
  float3x3 m;
  m._m00_m01_m02 = Bones[i]._m00_m01_m02;
  m._m10_m11_m12 = Bones[i]._m10_m11_m12;
  m._m20_m21_m22 = Bones[i]._m20_m21_m22;

  // transform S, T, SxT
162 808-00504-0000-004 
NVIDIA



 Basic Profile Sample Shaders
  float3 s0   = mul(m, IN.S);
  float3 t0   = mul(m, IN.T);
  float3 sxt0 = mul(m, IN.SxT);

  // next bone
  i = IN.Indices.y;

  // create 3x3 version of bone
  m._m00_m01_m02 = Bones[i]._m00_m01_m02;
  m._m10_m11_m12 = Bones[i]._m10_m11_m12;
  m._m20_m21_m22 = Bones[i]._m20_m21_m22;

  float3 pos1 = mul(Bones[i], tempPos);

  // transform S, T, SxT
  float3 s1   = mul(m, IN.S);
  float3 t1   = mul(m, IN.T);
  float3 sxt1 = mul(m, IN.SxT);

  // final blending

  // blend s, t, sxt
  float3 finalS   = s0 * IN.Weights.x + s1 * IN.Weights.y;
  float3 finalT   = t0 * IN.Weights.x + t1 * IN.Weights.y;
  float3 finalSxT = sxt0 * IN.Weights.x+sxt1 * IN.Weights.y;

  // blend between the two positions
  float3 finalPos = pos0 * IN.Weights.x+pos1*IN.Weights.y;

  float3x3 worldToTangentSpace;

  worldToTangentSpace._m00_m01_m02 = finalS;
  worldToTangentSpace._m10_m11_m12 = finalT;
  worldToTangentSpace._m20_m21_m22 = finalSxT;

  float3 tangentLight = 
  normalize(mul(worldToTangentSpace, LightVec));

  // scale and bias, add bit of ambient
  tangentLight = ((tangentLight + 1.0) * 0.5) + 0.2;

  // create float4 with 1.0 alpha
  float4 tempLight;
  tempLight.xyz = tangentLight.xyz;
  tempLight.w = 1.0;
 808-00504-0000-004 163
NVIDIA



Cg Language Toolkit
  OUT.Color0 = tempLight;
  // pass through texcoords
  OUT.TexCoord0.xy = IN.TexCoord0.xy;
  OUT.TexCoord1.xy = IN.TexCoord0.xy;

  float4 tempPos2;
  tempPos2.xyz = finalPos.xyz;
  tempPos2.w = 1.0;

  OUT.Hposition = mul(WorldViewProj, tempPos2);

  return OUT;
}

164 808-00504-0000-004 
NVIDIA



Appendix A
Cg Language Specification

Language Overview
The Cg language is primarily modeled on ANSI C, but adopts some ideas from 
modern languages such as C++ and Java, and from earlier shading languages 
such as RenderMan and the Stanford shading language. The language also 
introduces a few new ideas. In particular, it includes features designed to 
represent data flow in stream-processing architectures such as GPUs. Profiles, 
which are specified at compile time, may subset certain features of the language, 
including the ability to implement loops and the precision at which certain 
computations are performed. 

Silent Incompatibilities
Most of the changes from ANSI C are either omissions or additions, but there 
are a few potentially silent incompatibilities. These are changes within Cg that could 
cause a program that compiles without errors to behave in a manner different 
from C:

The type promotion rules for constants are different when the constant is 
not explicitly typed using a type cast or type suffix. In general, a binary 
operation between a constant that is not explicitly typed and a variable is 
performed at the variable’s precision, rather than at the constant’s default 
precision. 
Declarations of struct perform an automatic typedef (as in C++) and 
thus could override a previously declared type.
Arrays are first-class types that are distinct from pointers. As a result, array 
assignments semantically perform a copy operation for the entire array.

Similar Operations That Must be Expressed Differently 
There are several changes that force the same operation to be expressed 
differently in Cg than in C:

A Boolean type, bool, is introduced, with corresponding implications for 
operators and control constructs.
808-00504-0000-004 165
NVIDIA



Cg Language Toolkit
Arrays are first-class types because Cg does not support pointers.
Functions pass values by value/result, and thus use an out or inout 
modifier in the formal parameter list to return a parameter. By default, 
formal parameters are in, but it is acceptable to specify this explicitly. 
Parameters can also be specified as in out, which is semantically the same 
as inout.

Differences from ANSI C
Cg was developed based on the ANSI-C language with the following major 
additions, deletions, and changes. (This is a summary—more detail is provided 
later in this document): 

Language profiles (described in “Profiles” on page 168) may subset 
language capabilities in a variety of ways. In particular, language profiles 
may restrict the use of for and while loops. For example, some profiles 
may only support loops that can be fully unrolled at compile time.
A binding semantic may be associated with a structure tag, a variable, or a 
structure element to denote that object’s mapping to a specific hardware or 
API resource. See “Binding Semantics” on page 183.
Reserved keywords goto, break, and continue are not supported.
Reserved keywords switch, case, and default are not supported. 
Labels are not supported either.
Pointers and pointer-related capabilities (such as the & and -> operators) are 
not supported.
Arrays are supported, but with some limitations on size and dimensionality. 
Restrictions on the use of computed subscripts are also permitted. Arrays 
may be designated as packed. The operations allowed on packed arrays 
may be different from those allowed on unpacked arrays. Predefined 
packed types are provided for vectors and matrices. It is strongly 
recommended these predefined types be used.
There is a built-in swizzle operator: .xyzw or .rgba for vectors. This 
operator allows the components of a vector to be rearranged and also 
replicated. It also allows the creation of a vector from a scalar.
For an lvalue, the swizzle operator allows components of a vector or matrix 
to be selectively written.
There is a similar built-in swizzle operator for matrices: 

This operator allows access to individual matrix components and allows the 
creation of a vector from elements of a matrix. For compatibility with 

._m<row><col>[_m<row><col>][…] 
166 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
DirectX 8 notation, there is a second form of matrix swizzle, which is 
described later.
Numeric data types are different. Cg’s primary numeric data types are 
float, half, and fixed. Fragment profiles are required to support all 
three data types, but may choose to implement half and fixed at float 
precision. Vertex profiles are required to support half and float, but may 
choose to implement half at float precision. Vertex profiles may omit 
support for fixed operations, but must still support definition of fixed 
variables. Cg allows profiles to omit run-time support for int. Cg allows 
profiles to treat double as float.
Many operators support per-element vector operations.
The ?:, ||, &&, !, and comparison operators can be used with bool four-
vectors to perform four conditional operations simultaneously. The side 
effects of all operands to the ?:, ||, and && operators are always executed.
Non-static global variables and parameters to top-level functions—such as 
main()—may be designated as uniform. A uniform variable may be read 
and written within a program, just like any other variable. However, the 
uniform modifier indicates that the initial value of the variable or 
parameter is expected to be constant across a large number of invocations 
of the program.
A new set of sampler* types represents handles to texture objects.
Functions may have default values for their parameters, as in C++. These 
defaults are expressed using assignment syntax. 
Function overloading is supported.
There is no enum or union.
Bit-field declarations in structures are not allowed.
There are no bit-field declarations in structures.
Variables may be defined anywhere before they are used, rather than just at 
the beginning of a scope as in C. (That is, we adopt the C++ rules that 
govern where variable declarations are allowed.) Variables may not be 
redeclared within the same scope.
Vector constructors, such as the form float4(1,2,3,4), may be used 
anywhere in an expression.
A struct definition automatically performs a corresponding typedef, as 
in C++.
C++-style // comments are allowed in addition to C-style /*…*/ 
comments.
 808-00504-0000-004 167
NVIDIA



Cg Language Toolkit
Detailed Language Specification

Definitions 
The following definitions are based on the ANSI C standard:

Object
An object is a region of data storage in the execution environment, the 
contents of which can represent values. When referenced, an object may be 
interpreted as having a particular type.
Declaration
A declaration specifies the interpretation and attributes of a set of 
identifiers.
Definition
A declaration that also causes storage to be reserved for an object or code 
that will be generated for a function named by an identifier is a definition.

Profiles
Compilation of a Cg program, a top-level function, always occurs in the context 
of a compilation profile. The profile specifies whether certain optional language 
features are supported. These optional language features include certain control 
constructs and standard library functions. The compilation profile also defines 
the precision of the float, half, and fixed data types, and specifies whether 
the fixed and sampler* data types are fully or only partially supported. The 
choice of a compilation profile is made externally to the language, by using a 
compiler command-line switch, for example.
The profile restrictions are only applied to the top-level function that is being 
compiled and to any variables or functions that it references, either directly or 
indirectly. If a function is present in the source code, but not called directly or 
indirectly by the top-level function, it is free to use capabilities that are not 
supported by the current profile.
The intent of these rules is to allow a single Cg source file to contain many 
different top-level functions that are targeted at different profiles. The core Cg 
language specification is sufficiently complete to allow all of these functions to 
be parsed. The restrictions provided by a compilation profile are only needed 
for code generation, and are therefore only applied to those functions for which 
code is being generated. This specification uses the word program to refer to the 
top-level function, any functions the top-level function calls, and any global 
variables or typedef definitions it references.
168 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
Each profile must have a separate specification that describes its characteristics 
and limitations.
This core Cg specification requires certain minimum capabilities for all profiles. 
In some cases, the core specification distinguishes between vertex-program and 
fragment-program profiles, with different minimum capabilities for each.

The Uniform Modifier
Non-static global variables and parameters passed to functions, such as main(), 
can be declared with an optional qualifier uniform. To specify a uniform 
variable, use this syntax: 

For example,

or

If the uniform qualifier is specified for a function that is not top level, it is 
meaningless and is ignored. The intent of this rule is to allow a function to serve 
either as a top-level function or as one that is not.
Note that uniform variables may be read and written just like non-uniform 
variables. The uniform qualifier simply provides information about how the 
initial value of the variable is to be specified and stored, through a mechanism 
external to the language.
Typically, the initial value of a uniform variable or parameter is stored in a 
different class of hardware register. Furthermore, the external mechanism for 
specifying the initial value of uniform variables or parameters may be different 
than that used for specifying the initial value of non-uniform variables or 
parameters. Parameters qualified as uniform are normally treated as persistent 
state, while non-uniform parameters are treated as streaming data, with a new 
value specified for each stream record (such as within a vertex array).

Function Declarations
Functions are declared essentially as in C. A function that does not return a 
value must be declared with a void return type. A function that takes no 
parameters may be declared in one of two ways: 

As in C, using the void keyword: functionName(void) 
With no parameters at all: functionName() 

uniform <type> <variable> 

uniform float4 myVector;

fragout foo(uniform float4 uv);
 808-00504-0000-004 169
NVIDIA



Cg Language Toolkit
Functions may be declared as static. If so, they may not be compiled as a 
program and are not visible from other compilation units.

Overloading of Functions by Profile
Cg supports overloading of functions by compilation profile. This capability 
allows a function to be implemented differently for different profiles. It is also 
useful because different profiles may support different subsets of the language 
capabilities, and because the most efficient implementation of a function may 
be different for different profiles. 
The profile name must immediately precede the type name in the function 
declaration. For example, to define two different versions of the function 
myfunc() for the profileA and profileB profiles:

If a type is defined (using a typedef) that has the same name as a profile, the 
identifier is treated as a type name and is not available for profile overloading at 
any subsequent point in the file.
If a function definition does not include a profile, the function is referred to as 
an open-profile function. Open-profile functions apply to all profiles.
Several wildcard profile names are defined. The name vs matches any vertex 
profile, while the name ps matches any fragment or pixel profile.
The names ps_1 and ps_2 match any DirectX 8 pixel shader 1.x profile or 
DirectX 9 pixel shader 2.x profile, respectively. Similarly, the names vs_1 and 
vs_2 match any DirectX vertex shader 1.x or 2x, respectively. Additional valid 
wildcard profile names may be defined by individual profiles. 
In general, the most specific version of a function is used. More details are 
provided in “Function Overloading” on page 181, but roughly speaking, the 
search order is the following:
1. Version of the function with the exact profile overload
2. Version of the function with the most specific wildcard profile overload 

(such as vs or ps_1)
3. Version of the function with no profile overload
This search process allows generic versions of a function to be defined that can 
be overridden as needed for particular hardware.

profileA float myfunc(float x) {/*...*/}; 
profileB float myfunc(float x) {/*...*/}; 
170 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
Syntax for Parameters in Function Definitions
Functions are declared in a manner similar to C, but the parameters in function 
definitions may include a binding semantic (see “Binding Semantics” on 
page 183) and a default value.
Each parameter in a function definition takes the following form: 

where 
<type> may include the qualifiers in, out, inout, and const, as discussed 
in “Type Qualifiers” on page 175.
<default> is an expression that resolves to a constant at compile time.

Default values are only permitted for uniform parameters, and for in 
parameters to functions that are not top-level.

Function Calls
A function call returns an rvalue. Therefore, if a function returns an array, the 
array may be read but not written. For example, the following is allowed: 

But, this is not: myfunc(x)[2] = y;.
For multiple function calls within an expression, the calls can occur in any 
order—it is undefined.

Types
Cg’s types are as follows:

The int type is preferably 32-bit two’s complement. Profiles may 
optionally treat int as float.
The float type is as close as possible to the IEEE single precision (32-bit) 
floating point. Profiles must support the float data type.
The half type is lower-precision IEEE-like floating point. Profiles must 
support the half type, but may choose to implement it with the same 
precision as the float type.
The fixed type is a signed type with a range of at least [-2,2) and with at 
least 10 bits of fractional precision. Overflow operations on the data type 
clamp rather than wrap. Fragment profiles must support the fixed type, 
but may implement it with the same precision as the half or float types. 
Vertex profiles are required to provide partial support (see “Partial Support 
of Types” on page 173) for the fixed type. Vertex profiles have the option 

[uniform] <type> identifier [: <binding_semantic>] [= <default>]

y = myfunc(x)[2];
 808-00504-0000-004 171
NVIDIA



Cg Language Toolkit
to provide full support for the fixed type or to implement the fixed type 
with the same precision as the half or float types.
The bool type represents Boolean values. Objects of bool type are either 
true or false.
The cint type is 32-bit two’s complement. This type is meaningful only at 
compile time; it is not possible to declare objects of type cint.
The cfloat type is IEEE single-precision (32-bit) floating point. This type 
is meaningful only at compile time; it is not possible to declare objects of 
type cfloat.
The void type may not be used in any expression. It may only be used as 
the return type of functions that do not return a value.
The sampler* types are handles to texture objects. Formal parameters of a 
program or function may be of type sampler*. No other definition of 
sampler* variables is permitted. A sampler* variable may only be used by 
passing it to another function as an in parameter. Assignment to sampler* 
variables is not permitted, and sampler* expressions are not permitted.
The following sampler* types are always defined: sampler, sampler1D, 
sampler2D, sampler3D, samplerCUBE, and samplerRECT. The base 
sampler type may be used in any context in which a more specific sampler 
type is valid. However, a sampler variable must be used in a consistent way 
throughout the program. For example, it cannot be used in place of both a 
sampler1D and a sampler2D in the same program.
Fragment profiles are required to fully support the sampler, sampler1D, 
sampler2D, sampler3D, and samplerCUBE data types. Fragment profiles 
are required to provide partial support (see “Partial Support of Types” on 
page 173) for the samplerRECT data type and may optionally provide full 
support for this data type. 
 Vertex profiles are required to provide partial support for the six sampler 
data types and may optionally provide full support for these data types.
An array type is a collection of one or more elements of the same type. An 
array variable has a single index.
Some array types may be optionally designated as packed, using the packed 
type modifier. The storage format of a packed type may be different from 
the storage format of the corresponding unpacked type. The storage format 
of packed types is implementation dependent, but must be consistent for 
any particular combination of compiler and profile. The operations 
supported on a packed type in a particular profile may be different than the 
operations supported on the corresponding unpacked type in that same 
profile. Profiles may define a maximum allowable size for packed arrays, 
but must support at least size 4 for packed vector (one-dimensional array) 
types, and 4x4 for packed matrix (two-dimensional array) types.
172 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
When declaring an array of arrays in a single declaration, the packed 
modifier only refers to the outermost array. However, it is possible to 
declare a packed array of packed arrays by declaring the first level of array 
in a typedef using the packed keyword and then declaring a packed array 
of this type in a second statement. It is not possible to have a packed array 
of unpacked arrays.
For any supported numeric data type TYPE, implementations must support 
the following packed array types, which are called vector types. Type 
identifiers must be predefined for these types in the global scope: 

For example, implementations must predefine the type identifiers float1, 
float2, float3, float4, and so on for any other supported numeric type.
For any supported numeric data type TYPE, implementations must support 
the following packed array types, which are called matrix types. 
Implementations must also predefine type identifiers (in the global scope) 
to represent these types: 

For example, implementations must predefine the type identifiers 
float2x1, float3x3, float4x4, and so on. A typedef follows the usual 
matrix-naming convention of TYPE_rows_X_columns. If we declare 
float4x4 a, then a[3] is equivalent to a._m30_m31_m32_m33. 
Both expressions extract the third row of the matrix.
Implementations are required to support indexing of vectors and matrices 
with constant indices.
A struct type is a collection of one or more members of possibly different 
types.

Partial Support of Types
This specification mandates partial support for some types. Partial support for a 
type requires the following:

typedef packed TYPE TYPE1[1];
typedef packed TYPE TYPE2[2];
typedef packed TYPE TYPE3[3];
typedef packed TYPE TYPE4[4];

packed TYPE1 TYPE1x1[1]; packed TYPE1 TYPE3x1[3]; 
packed TYPE2 TYPE1x2[1]; packed TYPE2 TYPE3x2[3]; 
packed TYPE3 TYPE1x3[1]; packed TYPE3 TYPE3x3[3]; 
packed TYPE4 TYPE1x4[1]; packed TYPE4 TYPE3x4[3]; 
packed TYPE1 TYPE2x1[2]; packed TYPE1 TYPE4x1[4]; 
packed TYPE2 TYPE2x2[2]; packed TYPE2 TYPE4x2[4]; 
packed TYPE3 TYPE2x3[2]; packed TYPE3 TYPE4x3[4]; 
packed TYPE4 TYPE2x4[2]; packed TYPE4 TYPE4x4[4]; 
 808-00504-0000-004 173
NVIDIA



Cg Language Toolkit
Definitions and declarations using the type are supported.
Assignment and copy of objects of that type are supported (including 
implicit copies when passing function parameters).
Top-level function parameters may be defined using that type.

If a type is partially supported, variables may be defined using that type but no 
useful operations can be performed on them. Partial support for types makes it 
easier to share data structures in code that is targeted at different profiles. 

Type Categories
The integral type category includes types cint and int.
The floating type category includes types cfloat, float, half, and fixed. 
(Note that floating really means floating or fixed/fractional.)
The numeric type category includes integral and floating types.
The compile-time type category includes types cfloat and cint. These types 
are used by the compiler for constant type conversions.
The concrete type category includes all types that are not included in the 
compile-time type category.
The scalar type category includes all types in the numeric category, the bool 
type, and all types in the compile-time category. In this specification, a 
reference to a <category> type (such as a reference to a numeric type) 
means one of the types included in the category (such as float, half, or 
fixed).

Constants
A constant may be explicitly typed or implicitly typed. Explicit typing of a 
constant is performed, as in C, by suffixing the constant with a single character 
indicating the type of the constant: 

f for float 
d for double 
h for half 
x for fixed 

Any constant that is not explicitly typed is implicitly typed. If the constant includes 
a decimal point, it is implicitly typed as cfloat. If it does not include a decimal 
point, it is implicitly typed as cint.
174 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
By default, constants are base 10. For compatibility with C, integer hexadecimal 
constants may be specified by prefixing the constant with 0x, and integer octal 
constants may be specified by prefixing the constant with 0.
Compile-time constant folding is preferably performed at the same precision 
that would be used if the operation were performed at run time. Some 
compilation profiles may allow some precision flexibility for the hardware; in 
such cases the compiler should ideally perform the constant folding at the 
highest hardware precision allowed for that data type in that profile.
If constant folding cannot be performed at run-time precision, it may optionally 
be performed using the precision indicated below for each of the numeric data 
types:

float: s23e8 (fp32) IEEE single-precision floating point
half: s10e5 (fp16) floating point with IEEE semantics
fixed: s1.10 fixed point, clamping to [-2, 2)
double: s52e11 (fp64) IEEE double-precision floating point
int: signed 32-bit integer

Type Qualifiers
The type of an object may be qualified with one or more qualifiers. Qualifiers 
apply only to objects. Qualifiers are removed from the value of an object when 
used in an expression. The qualifiers are

const 
The value of a const qualified object cannot be changed after its initial 
assignment. The definition of a const qualified object that is not a 
parameter must contain an initializer. Named compile-time values are 
inherently qualified as const, but an explicit qualification is also allowed.
The value of a static const cannot be changed after compilation, and 
thus its value may be used in constant folding during compilation. A 
uniform const, on the other hand, is only const for a given execution of 
the program; its value may be changed via the runtime between executions.
in and out 
Formal parameters may be qualified as in, out, or both (by using in out or 
inout). By default, formal parameters are in qualified. An in qualified 
parameter is equivalent to a call-by-value parameter. An out qualified 
parameter is equivalent to a call-by-result parameter, and an inout qualified 
parameter is equivalent to a value/result parameter. An out qualified 
parameter cannot be const qualified, nor may it have a default value.
 808-00504-0000-004 175
NVIDIA



Cg Language Toolkit
Type Conversions
Some type conversions are allowed implicitly, while others require an cast. Some 
implicit conversions may cause a warning, which can be suppressed by using an 
explicit cast. Explicit casts are indicated using C-style syntax: casting variable 
to the float4 type can be achieved using (float4)variable.

Scalar conversions
Implicit conversion of any scalar numeric type to any other scalar numeric 
type is allowed. A warning may be issued if the conversion is implicit and a 
loss of precision is possible. Implicit conversion of any scalar object type to 
any compatible scalar object type is allowed. Conversions between 
incompatible scalar object types or between object and numeric types are 
not allowed, even with an explicit cast. A sampler is compatible with 
sampler1D, sampler2D, sampler3D, samplerCube, and samplerRECT. 
No other object types are compatible—sampler1D is not comparable with 
sampler2D, even though both are compatible with sampler.
Scalar types may be implicitly converted to vectors and matrices of 
compatible type. The scalar is replicated to all elements of the vector or 
matrix. Scalar types may also be explicitly cast to structure types if the scalar 
type can be legally cast to every member of the structure.
Vector conversions
Vectors may be converted to scalar types (the first element of the vector is 
selected). A warning is issued if this is done implicitly. A vector may also be 
implicitly converted to another vector of the same size and compatible 
element type.
A vector may be converted to a smaller comparable vector or a matrix of 
the same total size, but a warning is issued if an explicit cast is not used.
Matrix conversions
Matrices may be converted to a scalar type (element (0,0) is selected). As 
with vectors, this causes a warning if it is done implicitly. A matrix may also 
be converted implicitly to a matrix of the same size and shape and 
comparable element type.
A matrix may be converted to a smaller matrix type (the upper right sub-
matrix is selected) or to a vector of the same total size, but a warning is 
issued if an explicit cast is not used.
Structure conversions
A structure may be explicitly cast to the type of its first member or to 
another structure type with the same number of members, if each member 
of the struct can be converted to the corresponding member of the new 
struct. No implicit conversions of struct types are allowed.
176 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
Array conversions
    No conversions of array types are allowed.

Table 6 summarizes the type conversions discussed here. The table entries have 
the following meanings, but please pay attention to the footnotes:

Allowed: allowed implicitly or explicitly
Warning: allowed, but warning issued if implicit
Explicit: only allowed with explicit cast
No: not allowed

Explicit casts are
Compile-time type when applied to expressions of compile-time type
Numeric type when applied to expressions of numeric or compile-time type 
Numeric vector type when applied to another vector type of the same number 
of elements
Numeric matrix type when applied to another matrix type of the same 
number of rows and columns

Table 6 Type Conversions

Target Type Source Type

Scalar Vector Matrix Struct Array

Scalar Allowed Warning Warning Explicit i

i. Only allowed if the first member of the source can be converted to the target.

No

Vector Allowed Allowedii

ii. Not allowed if target is larger than source. Warning issued if target is smaller than source.

Warningiii Explicit i No

Matrix Allowed Warningiii

iii. Only allowed if source and target are the same total size.

Allowedii Explicit i No

Struct Explicit No No Explicit iv

iv. Only allowed if both source and target have the same number of members, and each member of the 
source can be converted to the corresponding member of the target.

No

Array No No No No No
 808-00504-0000-004 177
NVIDIA



Cg Language Toolkit
Type Equivalency
Type T1 is equivalent to type T2 if any of the following are true: 

T2 is equivalent to T1.
T1 and T2 are the same scalar, vector, or structure type.
A packed array type is not equivalent to the same size unpacked array.
T1 is a typedef name of T2.
T1 and T2 are arrays of equivalent types with the same number of elements.
The unqualified types of T1 and T2 are equivalent, and both types have the 
same qualifications.
T1 and T2 are functions with equivalent return types, the same number of 
parameters, and all corresponding parameters are pair-wise equivalent.

Type-Promotion Rules
The cfloat and cint types behave like float and int types except for the 
usual arithmetic conversion behavior and function-overloading rules (see 
“Function Overloading” on page 181).
The usual arithmetic conversions for binary operators are defined as follows:
1. If either operand is double, the other is converted to double.
2. Otherwise, if either operand is float, the other operand is converted to 

float.
3. Otherwise, if either operand is half, the other operand is converted to 

half.
4. Otherwise, if either operand is fixed, the other operand is converted to 

fixed.
5. Otherwise, if either operand is cfloat, the other operand is converted to 

cfloat.
6. Otherwise, if either operand is int, the other operand is converted to int.
7. Otherwise, both operands have type cint.
Note that conversions happen prior to performing the operation.

Assignment

Assignment of an expression to an object or compile-time typed value converts 
the expression to the type of the object or value. The resulting value is then 
assigned to the object or value.
178 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
The value of the assignment expressions (=, *=, and so on) is defined as in C: 
An assignment expression has the value of the left operand after the assignment 
but is not an lvalue. The type of an assignment expression is the type of the left 
operand unless the left operand has a qualified type, in which case it is the 
unqualified version of the type of the left operand. The side effect of updating 
the stored value of the left operand occurs between the previous and the next 
sequence point.

Smearing of Scalars to Vectors

If a binary operator is applied to a vector and a scalar, the scalar is automatically 
type-promoted to a same-sized vector by replicating the scalar into each 
component. The ternary ?: operator also supports smearing. The binary rule is 
applied to the second and third operands first, and then the binary rule is 
applied to this result and the first operand.

Namespaces
Just as in C, there are two namespaces. Each has multiple scopes, as in C.

Tag namespace, which consists of struct tags
Regular namespace: 

typedef names (including an automatic typedef from a struct 
declaration) 
Variables 
Function names

Arrays and Subscripting
Arrays are declared as in C, except that they may optionally be declared to be 
packed, as described under “Types” on page 171. Arrays in Cg are first-class 
types, so array parameters to functions and programs must be declared using 
array syntax, rather than pointer syntax. Likewise, assignment of an array-
typed object implies an array copy rather than a pointer copy.
Arrays with size [1] may be declared but are considered a different type from 
the corresponding non-array type.
Because the language does not currently support pointers, the storage order of 
arrays is only visible when an application passes parameters to a vertex or 
fragment program. Therefore, the compiler is currently free to allocate 
temporary variables as it sees fit.
 808-00504-0000-004 179
NVIDIA



Cg Language Toolkit
The declaration and use of arrays of arrays is in the same style as in C. That is, if 
the 2D array A is declared as 

then, the following statements are true:
The array is indexed as A[row][column].
The array can be built with a constructor using 

A[0] is equivalent to {A[0][0], A[0][1], A[0][2], A[0][3]}.
Support must be provided for any struct containing arrays.

Minimum Array Requirements

Profiles are required to provide partial support for certain kinds of arrays. This 
partial support is designed to support vectors and matrices in all profiles. For 
vertex profiles, it is additionally designed to support arrays of light state 
(indexed by light number) passed as uniform parameters, and arrays of skinning 
matrices passed as uniform parameters.
Profiles must support subscripting, copying, and swizzling of vectors and 
matrices. However, subscripting with run-time computed indices is not required 
to be supported. 
Vertex profiles must support the following operations for any non-packed array 
that is a uniform parameter to the program, or is an element of a structure that 
is a uniform parameter to the program. This requirement also applies when the 
array is indirectly a uniform program parameter (that is, it and or the structure 
containing it has been passed via a chain of in function parameters). The two 
operations that must be supported are 

Rvalue subscripting by a run-time computed value or a compile-time value 
Passing the entire array as a parameter to a function, where the 
corresponding formal function parameter is declared as in 

The following operations are explicitly not required to be supported: 
Lvalue subscripting
Copying
Other operators, including multiply, add, compare, and so on

float A[4][4]; 

A =  { {A[0][0], A[0][1], A[0][2], A[0][3]}, 
       {A[1][0], A[1][1], A[1][2], A[1][3]}, 
       {A[2][0], A[2][1], A[2][2], A[2][3]},
       {A[3][0], A[3][1], A[3][2], A[3][3]} }; 
180 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
Note that when the array is rvalue subscripted, the result is an expression, and 
this expression is no longer considered to be a uniform program parameter. 
Therefore, if this expression is an array, its subsequent use must conform to the 
standard rules for array usage. 
These rules are not limited to arrays of numeric types, and thus imply support 
for arrays of struct, arrays of matrices, and arrays of vectors when the array is 
a uniform program parameter. Maximum array sizes may be limited by the 
number of available registers or other resource limits, and compilers are 
permitted to issue error messages in these cases. However, profiles must 
support sizes of at least float arr[8], float4 arr[8], and float4x4 
arr[4][4].
Fragment profiles are not required to support any operations on arbitrarily sized 
arrays; only support for vectors and matrices is required.

Function Overloading
Multiple functions may be defined with the same name, as long as the 
definitions can be distinguished by unqualified parameter types and do not have 
an open-profile conflict (see “Overloading of Functions by Profile” on 
page 170).
Function-matching rules: 
1. Add all visible functions with a matching name in the calling scope to the 

set of function candidates. 
2. Eliminate functions whose profile conflicts with the current compilation 

profile.
3. Eliminate functions with the wrong number of formal parameters. If a 

candidate function has excess formal parameters, and each of the excess 
parameters has a default value, do not eliminate the function.

4. If the set is empty, fail. 
5. For each actual parameter expression in sequence, perform the following: 

a. If the type of the actual parameter matches the unqualified type of the 
corresponding formal parameter in any function in the set, remove all 
functions whose corresponding parameter does not match exactly.

b. If there is a defined promotion for the type of the actual parameter to the 
unqualified type of the formal parameter of any function, remove all 
functions for which this is not true from the set.

c. If there is a valid implicit cast that converts the type of the actual 
parameter to the unqualified type of the formal parameter of any 
function, remove all functions without this cast.
 808-00504-0000-004 181
NVIDIA



Cg Language Toolkit
d. Fail. 
5. Choose a function based on profile:

a. If there is at least one function with a profile that exactly matches the 
compilation profile, discard all functions that don’t exactly match.

b. Otherwise, if there is at least one function with a wildcard profile that 
matches the compilation profile, determine the “most specific” 
matching wildcard profile in the candidate set. Discard all functions 
except those with this most specific wildcard profile. How “specific” a 
given wildcard profile name is relative to a particular profile is 
determined by the profile specification.

3. If the number of functions remaining in the set is not one, then fail.

Global Variables
Global variables are declared and used as in C. Uniform non-static variables 
may have a semantic associated with them. Uniform non-static variables may 
have their value set through the run-time API.

Use of Uninitialized Variables
It is incorrect for a program to use an uninitialized variable. However, the 
compiler is not obligated to detect such errors, even if it would be possible to 
do so by compile-time data-flow analysis. The value obtained from reading an 
uninitialized variable is undefined. This same rule applies to the implicit use of a 
variable that occurs when it is returned by a top-level function. In particular, if a 
top-level function returns a struct, and some element of that struct is never 
written, then the value of that element is undefined.

Note:  Variables are not defined as being initialized to zero because this would result in a 
performance penalty in cases where the compiler is unable to determine if a 
variable is properly initialized by the programmer.

Preprocessor
Cg profiles must support the full ANSI C standard preprocessor capabilities: 
#if, #define, and so on. However, Cg profiles are not required to support 
macro-like #define or the use of #include directives.
182 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
Overview of Binding Semantics
In stream-processing architectures, data packets flow between different 
programmable units. On a GPU, for example, packets of vertex data flow from 
the application to the vertex program. 
Because packets are produced by one program (the application, in this case), 
and consumed by another (the vertex program), there must be some method 
for defining the interface between the two. The approach used in Cg is to 
associate a binding semantic with each element of the packet. This is a bind-by-
name approach. For example, an output with the binding semantic FOO is fed to 
an input with the binding semantic FOO. Profiles may allow the user to define 
arbitrary identifiers in this “semantic namespace,” or they may restrict the 
allowed identifiers to a predefined set. Often, these predefined names 
correspond to the names of hardware registers or API resources. 
In some cases, predefined names may control non-programmable parts of the 
hardware. For example, vertex programs normally compute a position that is 
fed to the rasterizer, and this position is stored in an output with the binding 
semantic POSITION. 
For any profile, there are two namespaces for predefined binding semantics—
the namespace used for in variables and the namespace used for out variables. 
The primary implication of having two namespaces is that the binding semantic 
cannot be used to implicitly specify whether a variable is in or out.

Binding Semantics
A binding semantic may be associated with an input to a top-level function in 
one of three ways: 

The binding semantic is specified in the formal parameter declaration for 
the function. The syntax for formal parameters to a function is 

If the formal parameter is a struct, the binding semantic may be specified 
with an element of the struct when the struct is defined: 

If the input to the function is implicit (a non-static global variable that is 
read by the function), the binding semantic may be specified when the non-
static global variable is declared: 

[const] [in | out | inout]    
<type> <identifier> [ : <binding-semantic>][= <initializer>]

struct <struct-tag> {
<type> <identifier>[ : <binding-semantic>]; 
/*...*/ }; 

<type> <identifier>[ : <binding-semantic>][ = <initializer>]
 808-00504-0000-004 183
NVIDIA



Cg Language Toolkit
If the non-static global variable is a struct, the binding semantic may be 
specified when the struct is defined, as described in the second bullet 
above.
A binding semantic may be associated with the output of a top-level 
function in a similar manner:

Another method available for specifying a semantic for an output value is 
to return a struct and to specify the binding semantic(s) with elements of 
the struct when the struct is defined. In addition, if the output is a 
formal parameter, the binding semantic may be specified using the same 
approach used to specify binding semantics for inputs.

Aliasing of Semantics
Semantics must honor a copy-on-input and copy-on-output model. Thus, if the 
same input binding semantic is used for two different variables, those variables 
are initialized with the same value, but the variables are not aliased thereafter. 
Output aliasing is illegal, but implementations are not required to detect it. If 
the compiler does not issue an error on a program that aliases output binding 
semantics, the results are undefined.

Restrictions on Semantics Within a Structure 
For a particular profile, it is illegal to mix input binding semantics and output 
binding semantics within a particular struct. That is, for a particular top-level 
function, a struct must be either input-only or output-only. Likewise, a 
struct must consist exclusively of uniform inputs or exclusively of non-
uniform inputs. It is illegal to use binding semantics to mix the two within a 
single struct.

Additional Details for Binding Semantics
The following rules are somewhat redundant, but provide extra clarity:

Semantics names are case-insensitive.
Semantics attached to parameters to non-main functions are ignored.
Input semantics may be aliased by multiple variables.
Output semantics may not be aliased.

<type> <identifier> ( <parameter-list> )[ : <binding-semantic>] 
{ <body> }
184 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
How Programs Receive and Return Data
A program is just a non-static function that has been designated as the main 
entry point at compilation time. The varying inputs to the program come from 
this top-level function’s varying in parameters. The uniform inputs to the 
program come from the top-level function’s uniform in parameters and from 
any non-static global variables that are referenced by the top-level function or 
by any functions that it calls. The output of the program comes from the return 
value of the function (which is always implicitly varying), and from any out 
parameters, which must also be varying.
Parameters to a program of type sampler* are implicitly const.

Statements
Statements are expressed just as in C, unless an exception is stated elsewhere in 
this document. Additionally, 

The if, while, and for statements require bool expressions in the 
appropriate places.
Assignment is performed using =. The assignment operator returns a value, 
just as in C, so assignments may be chained.
The new discard statement terminates execution of the program for the 
current data element—such as the current vertex or current fragment—and 
suppresses its output. Vertex profiles may choose to omit support for 
discard.

Minimum Requirements for if, while, and for Statements
The minimum requirements are as follows:

All profiles should support if, but such support is not strictly required for 
older hardware.
All profiles should support for and while loops if the number of loop 
iterations can be determined at compile time. 
“Can be determined at compile time” is defined as follows: 

The loop-iteration expressions can be evaluated at compile time by use 
of intra-procedural constant propagation and folding, where the 
variables through which constant values are propagated do not appear 
as lvalues within any kind of control statement (if, for, or while) or 
?: construct. 

Profiles may choose to support more general constant propagation 
techniques, but such support is not required.
Profiles may optionally support fully general for and while loops.
 808-00504-0000-004 185
NVIDIA



Cg Language Toolkit
New Vector Operators
These new operators are defined for vector types: 

Vector construction operator: <typeID>(…) 
This operator builds a vector from multiple scalars or shorter vectors: 

Matrix construction operator: <typeID>(…) 
This operator builds a matrix from multiple rows. Each row may be 
specified either as multiple scalars or as any combination of scalars and 
vectors with the appropriate size. 

Swizzle operator: (.) 

At least one swizzle character must follow the operator. 
There are two sets of swizzle characters and they may not be mixed. 
Set one is xyzw = 0123, and set two is rgba = 0123. 
The vector swizzle operator may only be applied to vectors or to 
scalars.
Applying the vector swizzle operator to a scalar gives the same result as 
applying the operator to a vector of length one. 
Thus, myscalar.xxx and float3(myscalar,myscalar,myscalar) 
yield the same value.
If only one swizzle character is specified, the result is a scalar, not a 
vector of length one. Therefore, the expression b.y returns a scalar.
Care is required when swizzling a constant scalar because of ambiguity 
in the use of the decimal point character. For example, to create a 
three-vector from a scalar, use one of the following: 

The size of the returned vector is determined by the number of swizzle 
characters. Therefore, the size of the result may be larger or smaller 
than the size of the original vector. 
For example, float2(0,1).xxyy and float4(0,0,1,1) yield the 
same result. 

Matrix swizzle operator:

float4(scalar, scalar, scalar, scalar) 
float4(float3, scalar) 

float3x3(1, 2, 3, 4, 5, 6, 7, 8, 9) 
float3x3(float3, float3, float3) 
float3x3(1, float2, float3, float3, 1, 1, 1) 

a = b.xxyz;  // A swizzle operator example

(1).xxx or 1..xxx or 1.0.xxx or 1.0f.xxx 
186 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
For any matrix type of the form <type><rows>x<columns>, the notation 

can be used to access individual matrix elements (in the case of only one 
<row><col> pair) or to construct vectors from elements of a matrix (in the 
case of more than one <row><col> pair). The row and column numbers 
are zero-based.
For example,

For compatibility with the D3DMatrix data type, Cg also allows one-
based swizzles, using a form with the m omitted after the _ symbol: 

In this form, the indexes for <row> and <col> are one-based, rather 
than the C standard zero-based. So, the two forms are functionally 
equivalent: 

Because of the confusion that can be caused by the one-based 
indexing, use of the latter notation is strongly discouraged.
The matrix swizzles may only be applied to matrices. When multiple 
components are extracted from a matrix using a swizzle, the result is an 
appropriately sized vector. When a swizzle is used to extract a single 
component from a matrix, the result is a scalar.

The write-mask operator: (.) 
It can only be applied to an lvalue that is a vector. It allows assignment to 
particular elements of a vector or matrix, leaving other elements 
unchanged.The only restriction is that a component cannot be repeated.

<matrixObject>._m<row><col>[_m<row><col>][…] 

float4x4 myMatrix;
float    myFloatScalar;
float4   myFloatVec4;

// Set myFloatScalar to myMatrix[3][2].
myFloatScalar = myMatrix.m_32;

// Assign the main diagonal of myMatrix to myFloatVec4.
myFloatVec4 = myMatrix.m_00_m11_m22_m33;      

<matrixObject>._<row><col>[_<row><col>][…] 

float4x4 myMatrix; 
float4   myVec; 

// These two statements are functionally equivalent:
myVec = myMatrix._m00_m23_m11_m31;
myVec = myMatrix._11_34_22_42;
 808-00504-0000-004 187
NVIDIA



Cg Language Toolkit
Arithmetic Precision and Range
Some hardware may not conform exactly to IEEE arithmetic rules. Fixed-point 
data types do not have IEEE-defined rules. 
Optimizations are allowed to produce slightly different results than 
unoptimized code. Constant folding must be done with approximately the 
correct precision and range, but is not required to produce bit-exact results. It is 
recommended that compilers provide an option either to forbid these 
optimizations or to guarantee that they are made in bit-exact fashion.

Operator Precedence
Cg uses the same operator precedence as C for operators that are common 
between the two languages.
The swizzle and write-mask operators (.) have the same precedence as the 
structure member operator (.) and the array index operator ([]).

Operator Enhancements
The standard C arithmetic operators (+, -, *, /, %, unary-) are extended to 
support vectors and matrices. Sizes of vectors and matrices must be 
appropriately matched, according to standard mathematical rules. Scalar-to-
vector promotion (see “Smearing of Scalars to Vectors” on page 179) allows 
relaxation of these rules.

Table 7 Expanded Operators

Operator Description

M[n][m] Matrix with n rows and m columns 

V[n] Vector with n elements 

-V[n] -> V[n] Unary vector negate 

-M[n] -> M[n] Unary matrix negate 

V[n] * V[n] -> V[n] Componentwise * 

V[n] / V[n] -> V[n] Componentwise / 

V[n] % V[n] -> V[n] Componentwise % 

V[n] + V[n] -> V[n] Componentwise + 

V[n] - V[n] -> V[n] Componentwise - 

M[n][m] * M[n][m] -> M[n][m] Componentwise * 
188 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
Operators

Boolean
&& || ! 

Boolean operators may be applied to bool packed bool vectors, in which case 
they are applied in elementwise fashion to produce a result vector of the same 
size. Each operand must be a bool vector of the same size. 
Both sides of && and || are always evaluated; there is no short-circuiting as 
there is in C.

Comparisons
< > <= >= != == 

Comparison operators may be applied to numeric vectors. Both operands must 
be vectors of the same size. The comparison operation is performed in 
elementwise fashion to produce a bool vector of the same size.
Comparison operators may also be applied to bool vectors. For the purpose of 
relational comparisons, true is treated as one and false is treated as zero. The 
comparison operation is performed in elementwise fashion to produce a bool 
vector of the same size.
Comparison operators may also be applied to numeric or bool scalars. 

Arithmetic
+ - * / % ++ -- unary- unary+ 

The arithmetic operator % is the remainder operator, as in C. It may only be 
applied to two operands of cint or int type. 
When / or % is used with cint or int operands, C rules for integer / and % 
apply.

M[n][m] / M[n][m] -> M[n][m] Componentwise / 

M[n][m] % M[n][m] -> M[n][m] Componentwise % 

M[n][m] + M[n][m] -> M[n][m] Componentwise + 

M[n][m] - M[n][m] -> M[n][m] Componentwise - 

Table 7 Expanded Operators (continued)

Operator Description
 808-00504-0000-004 189
NVIDIA



Cg Language Toolkit
The C operators that combine assignment with arithmetic operations (such as 
+=) are also supported when the corresponding arithmetic operator is supported 
by Cg.

Conditional Operator
?:

If the first operand is of type bool, one of the following statements must hold 
for the second and third operands: 

Both operands have compatible structure types.
Both operands are scalars with numeric or bool type. 
Both operands are vectors with numeric or bool type, where the two 
vectors are of the same size, which is less than or equal to four.

If the first operand is a packed vector of bool, then the conditional selection is 
performed on an elementwise basis. Both the second and third operands must 
be numeric vectors of the same size as the first operand.
Unlike C, side effects in the expressions in the second and third operands are 
always executed, regardless of the condition.

Miscellaneous Operators
(typecast) ,

Cg supports C’s typecast and comma operators.
190 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
Reserved Words
The following are the reserved words in Cg:

Cg Standard Library Functions
Cg provides a set of built-in functions and predefined structures with binding 
semantics to simplify GPU programming. These functions are discussed in “Cg 
Standard Library Functions” on page 19.

asm* asm_fragment auto
bool break case
catch char class
column major compile const
const_cast continue decl*
default delete discard
do double dword*
dynamic_cast else emit
enum explicit extern
false fixed float*
for friend get
goto half if
in inline inout
int interface long
matrix* mutable namespace
new operator out
packed pass* pixelfragment*
pixelshader* private protected
public register reinterpret_cast
return row major sampler
sampler_state sampler1D sampler2D
sampler3D samplerCUBE shared
short signed sizeof
static static_cast string*
struct switch technique*
template texture* texture1D
texture2D texture3D textureCUBE
textureRECT this throw
true try typedef
typeid typename uniform
union unsigned using
vector* vertexfragment* vertexshader*
virtual void volatile
while __identifier (two underscores before identifier)
 808-00504-0000-004 191
NVIDIA



Cg Language Toolkit
Vertex Program Profiles
A few features of the Cg language that are specific to vertex program profiles 
are required to be implemented in the same manner for all vertex program 
profiles.

Mandatory Computation of Position Output
Vertex program profiles may (and typically do) require that the program 
compute a position output. This homogeneous clip-space position is used by 
the hardware rasterizer and must be stored in a program output with an output 
binding semantic of POSITION (or HPOS for backward compatibility).

Position Invariance
In many graphics APIs, the user can choose between two different approaches 
to specifying per-vertex computations: use a built-in configurable fixed-function 
pipeline or specify a user-written vertex program. If the user wishes to mix these 
two approaches, it is sometimes desirable to guarantee that the position 
computed by the first approach is bit-identical to the position computed by the 
second approach. This position invariance is particularly important for multipass 
rendering.
Support for position invariance is optional in Cg vertex profiles, but for those 
vertex profiles that support it, the following rules apply:

Position invariance with respect to the fixed function pipeline is guaranteed 
if two conditions are met:

The vertex program is compiled using a compiler option indicating 
position invariance (-posinv, for example).
The vertex program computes position as follows: 

where
OUT_POSITION is a variable (or structure element) of type float4 with 
an output binding semantic of POSITION or HPOS.
IN_POSITION is a variable (or structure element) of type float4 with 
an input binding semantic of POSITION.
MVP is a uniform variable (or structure element) of type float4x4 with 
an input binding semantic that causes it to track the fixed-function 
modelview-projection matrix. (The name of this binding semantic is 
currently profile-specific—for OpenGL profiles, the semantic 
_GL_MVP is recommended).

OUT_POSITION = mul(MVP, IN_POSITION)
192 808-00504-0000-004 
NVIDIA



Appendix A Cg Language Specification
If the first condition is met but not the second, the compiler is encouraged 
to issue a warning.
Implementations may choose to recognize more general versions of the 
second condition (such as the variables being copy propagated from the 
original inputs and outputs), but this additional generality is not required.

Binding Semantics for Outputs
As shown in Table 8, there are two output binding semantics for vertex 
program profiles:

Profiles may define additional output binding semantics with specific behaviors, 
and these definitions are expected to be consistent across commonly used 
profiles.

Fragment Program Profiles
A few features of the Cg language that are specific to fragment program profiles 
are required to be implemented in the same manner for all fragment program 
profiles.

Binding Semantics for Outputs
As shown in Table 9, there are three output binding semantics for fragment 
program profiles. Profiles may define additional output binding semantics with 
specific behaviors, and these definitions are expected to be consistent across 
commonly used profiles. 

Table 8 Vertex Output Binding Semantics

Name Meaning Type Default Value

POSITION Homogeneous clip-space position;
fed to rasterizer.

float4 Undefined

PSIZE Point size float Undefined

Table 9 Fragment Output Binding Semantics

Name Meaning Type Default Value

COLOR RGBA output color float4 Undefined
 808-00504-0000-004 193
NVIDIA



Cg Language Toolkit
If a program desires an output color alpha of 1.0, it should explicitly write a 
value of 1.0 to the W component of the COLOR output. The language does not 
define a default value for this output. 

Note:  If the target hardware uses a default value for this output, the compiler may 
choose to optimize away an explicit write specified by the user if it matches the 
default hardware value. Such defaults are not exposed in the language.

In contrast, the language does define a default value for the DEPTH output. This 
default value is the interpolated depth obtained from the rasterizer. 
Semantically, this default value is copied to the output at the beginning of the 
execution of the fragment program.
As discussed earlier, when a binding semantic is applied to an output, the type 
of the output variable is not required to match the type of the binding semantic. 
For example, the following is legal, although not recommended: 

In such cases, the variable is implicitly copied (with a typecast) to the semantic 
upon program completion. If the variable’s vector size is shorter than the 
semantic’s vector size, the larger-numbered components of the semantic receive 
their default values, if applicable, and otherwise are undefined. In the case 
above, the R and G components of the output color are obtained from 
mycolor, while the B and A components of the color are undefined.

COLOR0 Same as COLOR — —

DEPTH Fragment depth value 
(in range [0,1]) 

float Interpolated depth from rasterizer 
(in range [0,1])

struct myfragoutput {
  float2 mycolor : COLOR; }

Table 9 Fragment Output Binding Semantics (continued)
194 808-00504-0000-004 
NVIDIA



Appendix B
Language Profiles

This appendix describes the language capabilities that are available in each of 
the following profiles supported by the Cg compiler:

DirectX Vertex Shader 2.x Profiles (vs_2_*)
DirectX Pixel Shader 2.x Profiles (ps_2_*)
OpenGL ARB Vertex Program Profile (arbvp1)
OpenGL ARB Fragment Program Profile (arbfp1)
OpenGL NV_vertex_program 2.0 Profile (vp30)
OpenGL NV_fragment_program Profile (fp30)
DirectX Vertex Shader 1.1 Profile (vs_1_1)
DirectX Pixel Shader 1.x Profiles (ps_1_*)
OpenGL NV_vertex_program 1.0 Profile (vp20)
OpenGL NV_texture_shader and NV_register_combiners Profile (fp20)

In each case, the capabilities are a subset of the full capabilities described by the 
Cg language specification in “Cg Language Specification” on page 165.
808-00504-0000-004 195
NVIDIA



Cg Language Toolkit
DirectX Vertex Shader 2.x Profiles (vs_2_*)
The DirectX Vertex Shader 2.0 profiles are used to compile Cg source code to 
DirectX 9 VS 2.0 vertex shaders1 and DirectX 9 VS 2.0 Extended vertex 
shaders.

Profile names 
vs_2_0 (for DirectX 9 VS 2.0 vertex shaders)
vs_2_x (for DirectX 9 VS 2.0 extended vertex shaders)
How to invoke: Use the compiler options 
-profile vs_2_0 
-profile vs_2_x

This section describes how using the vs_2_0 and vs_2_x profiles affects the Cg 
source code that the developer writes. 

Overview
The vs_2_0 profile limits Cg to match the capabilities of DirectX VS 2.0 vertex 
shaders. The vs_2_x profile is the same as the vs_2_0 profile but allows 
extended features such as dynamic flow control (branching).

Memory
DirectX 9 vertex shaders have a limited amount of memory for instructions and 
data. 

Program Instruction Limit

DirectX 9 vertex shaders are limited to 256 instructions. If the compiler needs 
to produce more than 256 instructions to compile a program, it reports an error. 

Vector Register Limit

Likewise, there are limited numbers of registers to hold program parameters 
and temporary results. Specifically, there are 256 read-only vector registers and 
12–32 read/write vector registers. If the compiler needs more registers to 
compile a program than are available, it generates an error. 

1. To understand the DirectX VS 2.0 Vertex Shaders and the code the compiler produces, 
see the Vertex Shader Reference in the DirectX 9 SDK documentation.
196 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Statements and Operators
If the vs_2_0 profile is used, then if, while, do, and for statements are 
allowed only if the loops they define can be unrolled because there is no 
dynamic branching in unextended VS 2.0 shaders. 
If the vs_2_x profile is used, then if, while, and do statements are fully 
supported as long as the DynamicFlowControlDepth option is not 0.
Comparison operators are allowed (>, <, >=, <=, ==, !=) and Boolean operators 
(||, &&, ?:) are allowed. However, the logic operators (&, |, ^, ~) are not.

Data Types
The profiles implement data types as follows:

float data types are implemented as IEEE 32-bit single precision.
half and double data types are treated as float.
int data type is supported using floating point operations, which adds extra 
instructions for proper truncation for divides, modulos and casts from 
floating point types.
fixed or sampler* data types are not supported, but the profiles do 
provide the minimal partial support that is required for these data types by 
the core language specification—that is, it is legal to declare variables using 
these types, as long as no operations are performed on the variables.

Using Arrays 
Variable indexing of arrays is allowed as long as the array is a uniform constant. 
For compatibility reasons arrays indexed with variable expressions need not be 
declared const just uniform. However, writing to an array that is later indexed 
with a variable expression yields unpredictable results.
Array data is not packed because vertex program indexing does not permit it. 
Each element of the array takes a single 4-float program parameter register. For 
example, float arr[10], float2 arr[10], float3 arr[10], and float4 
arr[10] all consume 10 program parameter registers.
It is more efficient to access an array of vectors than an array of matrices. 
Accessing a matrix requires a floor calculation, followed by a multiply by a 
constant to compute the register index. Because vectors (and scalars) take one 
register, neither the floor nor the multiply is needed. It is faster to do matrix 
skinning using arrays of vectors with a premultiplied index than using arrays of 
matrices.
 808-00504-0000-004 197
NVIDIA



Cg Language Toolkit
Bindings

Binding Semantics for Uniform Data

Table 10 summarizes the valid binding semantics for uniform parameters in the 
vs_2_0 and vs_2_X profiles. 

Binding Semantics for Varying Input/Output Data

Only the binding semantic names need be given for these profiles. The vertex 
parameter input registers are allocated dynamically. All the semantic names, 
except POSITION, can have a number from 0 to 15 after them.  

Table 12 summarizes the valid binding semantics for varying output parameters 
in the vs_2_0 and vs_2__X profiles. 

Table 10 vs_2_* Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c255)
C0–C255

Constant register [0..95]. 
The aliases c0-c95 (lowercase) are also 
accepted.
If used with a variable that requires more 
than one constant register (for example, a 
matrix), the semantic specifies the first 
register that is used.

Table 11 vs_2_* Varying Input Binding Semantics

POSITION PSIZE

BLENDWEIGHT BLENDINDICES 

NORMAL TEXCOORD

COLOR TANGENT

TESSFACTOR BINORMAL
198 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
These map to output registers in DirectX 9 vertex shaders. 

Options
The vs_2_x profile allows the following profile specific options:

Table 12 vs_2_* Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION Output position: oPos

PSIZE Output point size: oPts

FOG Output fog value: oFog

COLOR0-COLOR1 Output color values: oD0, oD1

TEXCOORD0–TEXCOORD7 Output texture coordinates: oT0–oT7

DynamicFlowControlDepth=<n> (where n = 0 or 24; default 24)
NumTemps=<n>                             (where 12 <= n <= 32; default 16)
Predication                               (default true)
 808-00504-0000-004 199
NVIDIA



Cg Language Toolkit
DirectX Pixel Shader 2.x Profiles (ps_2_*)
The DirectX Pixel Shader 2.0 Profiles are used to compile Cg source code to 
DirectX 9 PS 2.0 pixel shaders2 and DirectX 9 PS 2.0 extended pixel shaders. 

Profile names 
ps_2_0 (for DirectX 9 PS 2.0 pixel shaders) 
ps_2_x (for DirectX 9 PS 2.0 extended pixel shaders) 
How to invoke: Use the compiler options 
-profile ps_2_0 
-profile ps_2_x

The ps_2_0 profile limits Cg to match the capabilities of DirectX PS 2.0 pixel 
shaders. The ps_2_x profile is the same as the ps_2_0 profile but allows 
extended features such as arbitrary swizzles, larger limit on number of 
instructions, no limit on texture instructions, no limit on texture dependent 
reads, and support for predication. 
This section describes the capabilities and restrictions of Cg when using these 
profiles.

Memory

Program Instruction Limit

DirectX 9 Pixel shaders have a limit on the number of instructions in a pixel 
shader. 

PS 2.0 (ps_2_0) pixel shaders are limited to 32 texture instructions and 64 
arithmetic instructions. 
Extended PS 2 (ps_2_x) shaders have a limit of maximum number of total 
instructions between 96 to 1024 instructions. 
There is no separate texture instruction limit on extended pixel shaders. 

If the compiler needs to produce more than the maximum allowed number of 
instructions to compile a program, it reports an error. 

Vector Register Limit

Likewise, there are limited numbers of registers to hold program parameters 
and temporary results. Specifically, there are 32 read-only vector registers and 
12-32 read/write vector registers. If the compiler needs more registers to 
compile a program than are available, it generates an error. 

2. To understand the capabilities of DirectX PS 2.0 Pixel Shaders and the code produced by 
the compiler, refer to the Pixel Shader Reference in the DirectX 9 SDK documentation.
200 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Language Constructs and Support

Data Types

This profile implements data types as follows:
float data type is implemented as IEEE 32-bit single precision.
half, fixed, and double data types are treated as float.
half data types can be used to specify partial precision hint for pixel shader 
instructions. 
int data type is supported using floating point operations.
sampler* types are supported to specify sampler objects used for texture 
fetches.

Statements and Operators

With the ps_2_0 profiles while, do, and for statements are allowed only if the 
loops they define can be unrolled because there is no dynamic branching in PS 
2.0 shaders. In current Cg implementation, extended ps_2_x shaders also have 
the same limitation. 
Comparison operators are allowed (>, <, >=, <=, ==, !=) and Boolean operators 
(||, &&, ?:) are allowed. However, the logic operators (&, |, ^, ~) are not.

Using Arrays and Structures

Variable indexing of arrays is not allowed. Array and structure data is not 
packed. 
 808-00504-0000-004 201
NVIDIA



Cg Language Toolkit
Bindings

Binding Semantics for Uniform Data

Table 13 summarizes the valid binding semantics for uniform parameters in the 
ps_2_0 and ps_2_X profiles

Binding Semantics for Varying Input/Output Data

Table 14 summarizes the valid binding semantics for varying input parameters 
in the ps_2_0 and ps_2_x profiles.

Table 15 summarizes the valid binding semantics for varying output parameters 
in the ps_2_0 and ps_2_x profiles.

Table 13 ps_2_* Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)—register(s15)
TEXUNIT0-TEXUNIT15 

Texunit unit N, where N is in range [0..15]
May only be used with uniform inputs with 
sampler* types.

register(c0)-register(c31)
C0–C31

Constant register N, where N is in range 
[0..31]
May only be used with uniform inputs.

Table 14 ps_2_* Varying Input Binding Semantics

Binding Semantics Name Corresponding Data (type)

COLOR0 Input color 0 (float4)

COLOR1 Input color 1 (float4)

TEXCOORD0-TEXCOORD7 Input texture coordinates (float4)

Table 15 ps_2_* Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0 Output color (float4)

DEPTH Output depth (float)
202 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Options
The ps_2_x profile allows the following profile specific options:

Limitations in this Implementation
Currently, this profile implementation has the following limitations:

Dynamic flow control is not supported in extended pixel shaders.
Multiple color outputs are not supported in pixel shaders. Only Color0 is 
supported.

NumTemps=<n> (where 12 <= n <= 32; default 32)
NumInstructionSlots=<n> (where 96 <= n <= 1024; default 1024)
Predication=<b>   (where b = 0 or 1; default 1)
ArbitrarySwizzle=<b>          (where b = 0 or 1; default 1)
GradientInstructions=<b> (where b = 0 or 1; default 1)
NoDependentReadLimit=<b> (where b = 0 or 1; default 1)
NoTexInstructionLimit=<b> (where b = 0 or 1; default 1)
 808-00504-0000-004 203
NVIDIA



Cg Language Toolkit
OpenGL ARB Vertex Program Profile (arbvp1)
The OpenGL ARB Vertex Program Profile is used to compile Cg source code 
to vertex programs compatible with version 1.0 of the 
GL_ARB_vertex_program extension. 

Profile name: arbvp1 
How to invoke: Use the compiler option -profile arbvp1.

This section describes the capabilities and restrictions of Cg when using the 
arbvp1 profile.

Overview
The arbvp1 profile is similar to the vp20 profile except for the format of its 
output and its capability of accessing OpenGL state easily.
ARB_vertex_program has the same capabilities as NV_vertex_program 
and DirectX 8 vertex shaders, so the limitations that this profile places on 
the Cg source code written by the programmer is the same as the 
NV_vertex_program3 profile. 

Accessing OpenGL State
The arbvp1 profile allows Cg programs to refer to the OpenGL state directly, 
unlike the vp20 profile. However, if you want to write Cg programs that are 
compatible with vp20 and dx8vs profiles, you should use the alternate 
mechanism of setting uniform variables with the necessary state using the Cg 
run time. The compiler relies on the feature of ARB vertex assembly programs 
that enables parts of the OpenGL state to be written automatically to program 
parameter registers as the state changes. The OpenGL driver handles this state-
tracking feature. A special variable called glstate, defined as a structure, can be 
used to refer to every part of the OpenGL state that ARB vertex programs can 
reference. Following this paragraph are three lists of the glstate fields that can 
be accessed. The array indexes are shown as 0, but an array can be accessed 
using any positive integer that is less than the limit of the array. For example, to 
access the diffuse component of the second light use 
glstate.light[1].diffuse, assuming that GL_MAX_LIGHTS is at least 2. 

3. See “DirectX Vertex Shader 1.1 Profile (vs_1_1)” on page 223 for a full explanation of 
the data types, statements, and operators supported by this profile.
204 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Table 16 lists the glstate fields of type float4x4 that can be accessed: 

Table 17 lists the glstate fields of type float4 that can be accessed: 

Table 16 float4x4 glstate Fields

glstate.matrix.modelview[0] glstate.matrix.projection

glstate.matrix.mvp glstate.matrix.texture[0]

glstate.matrix.palette[0] glstate.matrix.program[0]

glstate.matrix.inverse.modelview[0] glstate.matrix.inverse.projection

glstate.matrix.inverse.mvp glstate.matrix.inverse.texture[0]

glstate.matrix.inverse.palette[0] glstate.matrix.inverse.program[0]

glstate.matrix.transpose.modelview[0] glstate.matrix.transpose.projection

glstate.matrix.transpose.mvp glstate.matrix.transpose.texture[0]

glstate.matrix.transpose.palette[0] glstate.matrix.transpose.program[0]

glstate.matrix.invtrans.modelview[0] glstate.matrix.invtrans.projection

glstate.matrix.invtrans.mvp glstate.matrix.invtrans.texture[0]

glstate.matrix.invtrans.palette[0] glstate.matrix.invtrans.program[0]

Table 17 float4 glstate Fields

glstate.material.ambient glstate.material.diffuse

glstate.material.specular glstate.material.emission

glstate.material.shininess glstate.material.front.ambient

glstate.material.front.diffuse glstate.material.front.specular

glstate.material.front.emission glstate.material.front.shininess

glstate.material.back.ambient glstate.material.back.diffuse

glstate.material.back.specular glstate.material.back.emission

glstate.material.back.shininess glstate.light[0].ambient

glstate.light[0].diffuse glstate.light[0].specular

glstate.light[0].position glstate.light[0].attenuation

glstate.light[0].spot.direction glstate.light[0].half
 808-00504-0000-004 205
NVIDIA



Cg Language Toolkit
Table 18 lists the glstate fields of type float that can be accessed:

Position Invariance
The arbvp1 profile supports position invariance, as described in the core 
language specification. 
The modelview-projection matrix is not specified using a binding semantic 
of _GL_MVP.

glstate.lightmodel.ambient glstate.lightmodel.scenecolor

glstate.lightmodel.front.scenecolor glstate.lightmodel.back.scenecolor

glstate.lightprod[0].ambient glstate.lightprod[0].diffuse

glstate.lightprod[0].specular glstate.lightprod[0].front.ambient

glstate.lightprod[0].front.diffuse glstate.lightprod[0].front.specular

glstate.lightprod[0].back.ambient glstate.lightprod[0].back.diffuse

glstate.lightprod[0].back.specular glstate.texgen[0].eye.s

glstate.texgen[0].eye.t glstate.texgen[0].eye.r

glstate.texgen[0].eye.q glstate.texgen[0].object.s

glstate.texgen[0].object.t glstate.texgen[0].object.r

glstate.texgen[0].object.q glstate.fog.color

glstate.fog.params glstate.clip[0].plane

Table 17 float4 glstate Fields (continued)

Table 18 float glstate Fields

glstate.point.size glstate.point.attenuation
206 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Data Types
This profile implements data types as follows:

float data type is implemented as defined in the ARB_vertex_program 
specification. 
half data type is implemented as float.
fixed or sampler* data types are not supported, but the profile does 
provide the minimal partial support that is required for these data types by 
the core language specification—that is, it is legal to declare variables using 
these types as long as no operations are performed on the variables.

Compatibility with the vp20 Vertex Program Profile
Programs that work with the vp20 profile are compatible with the arbvp1 
profile as long as they use the Cg run time to manage all uniform parameters, 
including OpenGL state. That is, arbvp1 and vp20 profiles can be used 
interchangeably without changing the Cg source code or the application 
program except for specifying a different profile. However, if any of the 
glProgramParameterxxNV() routines are used the application program needs 
to be changed to use the corresponding ARB functions.
Since there is no ARB function corresponding to glTrackMatrixNV(), an 
application using glTrackMatrixNV() and the arbvp1 profile needs to be 
modified. One solution is to change the Cg source code to refer to the matrix 
using the glstate structure so that the matrix is automatically tracked by the 
OpenGL driver as part of its GL_ARB_vertex support. Another solution is for 
the application to use the Cg run-time routine 
cgGLSetStateMatrixParameter() to load the appropriate matrix or matrices 
when necessary.
Another potential incompatibility between the arbvp1 and vp20 profiles is the 
way that input varying semantics are handled. In the vp20 profile, semantic 
names such as POSITION and ATTR0 are aliases of each other the same way 
NV_vertex_program aliases Vertex and Attribute 0 (see Table 42, “vp20 
Varying Input Binding Semantics,” on page 242). In the arbvp1 profile, the 
semantic names are not aliased because ARB_vertex_program allows the 
conventional attributes (such as vertex position) to be separate from the generic 
attributes (such as Attribute 0). For this reason it is important to follow the 
conventions given in Table 20, “arbvp1 Varying Input Binding Semantics,” 
on page 209 so that arbvp1 programs work for all implementations of 
ARB_vertex_program. The arbvp1 conventions are compatible with the vp20 
and vp30 profiles.
 808-00504-0000-004 207
NVIDIA



Cg Language Toolkit
Loading Constants
Applications that do not use the Cg run time are no longer required to load 
constant values into program parameters registers as indicated by the #const 
expressions in the Cg compiler output. The compiler produces output that 
causes the OpenGL driver to load them. However, uniform variables that have 
a default definition still require constant values to be loaded into the appropriate 
program parameter registers, as ARB vertex programs do not support this 
feature. Application programs either have to use the Cg run time, parse, and 
handle the #default commands, or have to avoid initializing uniform variables 
in the Cg source code.

Bindings

Binding Semantics for Uniform Data 

Table 19 summarizes the valid binding semantics for uniform parameters in the 
arbvp1 profile.

Table 19 arbvp1 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c255)
C0–C255

Local parameter with index n, n = [0..255].
The aliases c0–c255 (lowercase) are also 
accepted. 
If used with a variable that requires more 
than one constant register (for example, a 
matrix), the semantic specifies the first local 
parameter that is used.
208 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Binding Semantics for Varying Input/Output Data

Table 20 summarizes the valid binding semantics for uniform parameters in the 
arbvp1 profile. 
The set of binding semantics for varying input data to arbvp1 consists of 
POSITION, BLENDWEIGHT, NORMAL, COLOR0, COLOR1, TESSFACTOR, PSIZE, 
BLENDINDICES, and TEXCOORD0–TEXCOORD7. One can also use TANGENT and 
BINORMAL instead of TEXCOORD6 and TEXCOORD7. Additionally, a set of binding 
semantics of ATTR0–ATTR15 can be used. The mapping of these semantics to 
corresponding setting command is listed in the table.  

Table 20 arbvp1 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

POSITION Input Vertex, through Vertex command

BLENDWEIGHT Input vertex weight through WeightARB, 
VertexWeightEXT command 

NORMAL Input normal through Normal command

COLOR0, DIFFUSE Input primary color through Color command

COLOR1, SPECULAR Input secondary color through 
SecondaryColorEXT command

FOGCOORD Input fog coordinate through FogCoordEXT 
command

TEXCOORD0-TEXCOORD7 Input texture coordinates (texcoord0-
texcoord7) through MultiTexCoord command

ATTR0-ATTR15 Generic Attribute 0-15 through VertexAttrib 
command

PSIZE, ATTR6 Generic Attribute 6
 808-00504-0000-004 209
NVIDIA



Cg Language Toolkit
Table 21 summarizes the valid binding semantics for varying output parameters 
in the arbvp1 profile. These binding semantics map to ARB_vertex_program 
output registers. The two sets act as aliases to each other.

Note:  The application must call glEnable(GL_COLOR_SUM_ARB) in order to 
enable COLOR1 output when using the arbvp1 profile.

The profile also allows WPOS to be present as binding semantics on a member of 
a structure of a varying output data structure, provided the member with this 
binding semantics is not referenced. This allows Cg programs to have the same 
structure specify the varying output of an arbvp1 profile program and the 
varying input of an fp30 profile program. 

Table 21 arbvp1 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, HPOS Output position

PSIZE, PSIZ Output point size

FOG, FOGC Output fog coordinate

COLOR0, COL0 Output primary color 

COLOR1, COL1 Output secondary color

BCOL0 Output backface primary color

BCOL1 Output backface secondary color

TEXCOORD0-TEXCOORD7, TEX0-TEX7 Output texture coordinates
210 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
OpenGL ARB Fragment Program Profile (arbfp1)
The OpenGL ARB Fragment Program Profile is used to compile Cg source 
code to fragment programs compatible with version 1.0 of the 
GL_ARB_fragment_program OpenGL extension.4 

Profile name: arbfp1
How to invoke: Use the compiler option -profile arbfp1.

The arbfp1 profile limits Cg to match the capabilities of OpenGL ARB 
fragment programs. This section describes the capabilities and restrictions of 
Cg when using the arbfp1 profile.

Memory

Program Instruction Limits

OpenGL ARB fragment programs have a limit on number of instructions in an 
ARB fragment program. 
ARB fragment programs are limited to number of instructions that can be 
queried from underlying OpenGL implementation using 
MAX_PROGRAM_INSTRUCTIONS_ARB with a minimum value of 72. There are 
limits on number of texture instructions (minimum limit of 24) and arithmetic 
instructions (minimum limit of 48) that can be queried from OpenGL 
implementation.
If the compiler needs to produce more than maximum allowed instructions to 
compile a program, it reports an error. 

Vector Register Limits

Likewise, there are limited numbers of registers that can be queried from 
OpenGL implementation to hold local program parameters (minimum limit of 
24) and temporary results (minimum limit of 16). 
If the compiler needs more temporaries or local parameters to compile a 
program than are available, it generates an error. 

4. To understand the capabilities of OpenGL ARB fragment programs and the code 
produced by the compiler, refer to the ARB fragment program extension in the OpenGL 
Extensions documentation.
 808-00504-0000-004 211
NVIDIA



Cg Language Toolkit
Language Constructs and Support

Data Types

This profile implements data types as follows:
float data type is implemented as IEEE 32-bit single precision.
half, fixed, and double data types are treated as float.
int data type is supported using floating point operations.
sampler* types are supported to specify sampler objects used for texture 
fetches.

Statements and Operators

With the ARB fragment program profiles while, do, and for statements are 
allowed only if the loops they define can be unrolled because there is no 
dynamic branching in ARB fragment program 1.
Comparison operators are allowed (>, <, >=, <=, ==, !=) and Boolean operators 
(||, &&, ?:) are allowed. However, the logic operators (&, |, ^, ~) are not.

Using Arrays and Structures

Variable indexing of arrays is not allowed. Array and structure data is not 
packed. 

Bindings 

Binding Semantics for Uniform Data

Table 22 summarizes the valid binding semantics for uniform parameters in the 
arbfp1 profile. 

Table 22 arbfp1 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)—register(s15)
TEXUNIT0-TEXUNIT15 

Texunit image unit N, where N is in range 
[0..15]
May only be used with uniform inputs with 
sampler* types.

register(c0)-register(c31)
C0–C31

Local Parameter N, where N is in range 
[0..31]
May only be used with uniform inputs.
212 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Binding Semantics for Varying Input/Output Data

Table 23 summarizes the valid binding semantics for varying input parameters in 
the arbfp1 profile 

Table 24 summarizes the valid binding semantics for varying output parameters 
in the arbfp1 profile.

Options
The ARB fragment program profile allows the following profile specific 
options:

Limitations in the Implementation
Currently, this profile implementation has following limitations:

OpenGL ARB fragment program profile is still in developmental beta stage 
as the extension and its support is not widely available.
OpenGL state access in ARB fragment programs is not yet implemented. 

Table 23 arbfp1 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data (type)

COLOR0 Input color 0 (float4)

COLOR1 Input color 1 (float4)

TEXCOORD0-TEXCOORD7 Input texture coordinates (float4)

Table 24 arbfp1 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0 Output color (float4)

DEPTH Output depth (float)

NumTemps=<n> (where 16 <= n <= 32; default 32)
NumInstructionSlots=<n> (where 72 <= n <= 1024; default 1024)
NoDependentReadLimit=<b> (where b = 0 or 1; default 1)
NumTexInstructionSlots=<n> (where n >= 24)
 808-00504-0000-004 213
NVIDIA



Cg Language Toolkit
OpenGL NV_vertex_program 2.0 Profile (vp30)
The vp30 Vertex Program profile is used to compile Cg source code to vertex 
programs for use by the NV_vertex_program2 OpenGL extension. 

Profile name: vp30 
How to invoke: Use the compiler option -profile vp30.

The vp30 profile limits Cg to match the capabilities of the 
NV_vertex_program2 extension. This section describes the capabilities and 
restrictions of Cg when using the vp30 profile.

Position Invariance
The vp30 profile supports position invariance, as described in the core language 
specification. 

The modelview-projection matrix must be specified using a binding 
semantic of _GL_MVP. Unlike the vp20 and arbvp1 profiles, this profile 
causes the compiler to emit the instructions for transforming the position 
using the modelview-projection matrix.
The assembly code position invariant option is not used because the 
hardware guarantees that the position calculation is invariant compared to 
the fixed pipeline calculation.

Language Constructs

Data Types

This profile implements data types as follows:
float data type is implemented as IEEE 32-bit single precision.
half data type is implemented as float.
int data type is supported using floating point operations, which adds extra 
instructions for proper truncation for divides, modulos, and casts from 
floating point types.
fixed or sampler* data types are not supported, but the profile does 
provide the minimal partial support that is required for these data types by 
the core language specification—that is, it is legal to declare variables using 
these types, as long as no operations are performed on the variables.
214 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Statements and Operators

This profile is a superset of the vp20 profile. Any program that compiles for the 
vp20 profile should also compile for the vp30 profile, although the converse is 
not true.
The additional capabilities of the vp30 profile, beyond those of vp20 are

for, while, and do loops are supported without requiring loop unrolling
Full support for if/else allowing non-constant conditional expressions

Bindings

Binding Semantics for Uniform Data

Table 25 summarizes the valid binding semantics for uniform parameters in the 
vp30 profile. 

Table 25 vp30 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c255)
C0–C255

Constant register [0..255].
The aliases c0–c255 (lowercase) are also 
accepted. 
If used with a variable that requires more 
than one constant register (for example, a 
matrix), the semantic specifies the first 
register that is used.
 808-00504-0000-004 215
NVIDIA



Cg Language Toolkit
Binding Semantics for Varying Input/Output Data

Table 26 summarizes the valid binding semantics for varying input parameters 
in the vp30 profile. 
One can also use TANGENT and BINORMAL instead of TEXCOORD6 and 
TEXCOORD7. These binding semantics map to NV_vertex_program2 input 
attribute parameters. The two sets act as aliases to each other.  

Table 27 summarizes the valid binding semantics for varying output parameters 
in the vp30 profile.
These binding semantics map to NV_vertex_program2 output registers. The 
two sets act as aliases to each other. 

Table 26 vp30 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, ATTR0 Input Vertex, Generic Attribute 0 

BLENDWEIGHT, ATTR1 Input vertex weight, Generic Attribute 1 

NORMAL, ATTR2 Input normal, Generic Attribute 2

COLOR0, DIFFUSE, ATTR3 Input primary color, Generic Attribute 3

COLOR1, SPECULAR, ATTR4 Input secondary color, Generic Attribute 4

TESSFACTOR, FOGCOORD,
ATTR5

Input fog coordinate, Generic Attribute 5

PSIZE, ATTR6 Input point size, Generic Attribute 6

BLENDINDICES, ATTR7 Generic Attribute 7

TEXCOORD0-TEXCOORD7,
ATTR8-ATTR15

Input texture coordinates (texcoord0-
texcoord7), Generic Attributes 8–15

TANGENT, ATTR14 Generic Attribute 14

BINORMAL, ATTR15 Generic Attribute 15

Table 27 vp30 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, HPOS Output position

PSIZE, PSIZ Output point size
216 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
The profile allows WPOS to be present as binding semantics on a member of a 
structure of a varying output data structure, provided the member with this 
binding semantics is not referenced. This allows Cg programs to have same 
structure specify the varying output of a vp30 profile program and the varying 
input of an fp30 profile program.

FOG, FOGC Output fog coordinate

COLOR0, COL0 Output primary color 

COLOR1, COL1 Output secondary color

BCOL0 Output backface primary color

BCOL1 Output backface secondary color

TEXCOORD0-TEXCOORD7,
TEX0-TEX7

Output texture coordinates

CLP0-CL5 Output Clip distances

Table 27 vp30 Varying Output Binding Semantics (continued)

Binding Semantics Name Corresponding Data
 808-00504-0000-004 217
NVIDIA



Cg Language Toolkit
OpenGL NV_fragment_program Profile (fp30)
The fp30 Fragment Program Profile is used to compile Cg source code to 
fragment programs for use by the NV_fragment_program OpenGL extension. 

Profile name: fp30
How to invoke: Use the compiler option -profile fp30.

This section describes the capabilities and restrictions of Cg when using the 
fp30 profile.

Language Constructs and Support

Data Types 

fixed type (s1.10 fixed point) is supported
half type (s10e5 floating-point) is supported

It is recommended that you use fixed, half, and float in that order for 
maximum performance. Reversing this order provides maximum precision. You 
are encouraged to use the fastest type that meets your needs for precision. 

Statements and Operators

Full support for if/else
No for and while loops, unless they can be unrolled by the compiler 
Support for flexible texture mapping
Support for screen-space derivative functions
No support for variable indexing of arrays 
218 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Bindings

Binding Semantics for Uniform Data 

Table 28 summarizes the valid binding semantics for uniform parameters in the 
fp30 profile.  

Binding Semantics for Varying Input/Output Data

Table 29 summarizes the valid binding semantics for varying input parameters 
in the fp30 profile. 
These binding semantics map to NV_fragment_program input registers. The 
two sets act as aliases to each other. The profile also allows POSITION, FOG, 
PSIZE, HPOS, FOGC, PSIZ, BCOL0, BCOL1, and CLP0–CLP5 to be present as 
binding semantics on a member of a structure of a varying input data structure, 
provided the member with this binding semantics is not referenced. This allows 
Cg programs to have the same structure specify the varying output of a vp30 
profile program and the varying input of an fp30 profile program.

Table 28 fp30 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)-register(s15)
TEXUNIT0-TEXUNIT15

Texunit N, where N is in the range [0..15]. 
May be used only with uniform inputs with 
sampler* types.

register(c0)-register(c31)
C0-C31

Constant register N, where N is in range 
[0..15]
May only be used with uniform inputs.

Table 29 fp30 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data (type)

COLOR0, COL0 Input color0 (float4)

COLOR1, COL1 Input color1 (float4)

TEXCOORD0-TEXCOORD7,
TEX0-TEX7

Input texture coordinates (float4)

WPOS Window Position Coordinates (float4)
 808-00504-0000-004 219
NVIDIA



Cg Language Toolkit
Table 30 summarizes the valid binding semantics for varying output parameters 
in the fp30 profile.

Pack and Unpack Functions
The fp30 profile provides a number of functions for packing multiple floating 
point values into a single 32-bit result. Corresponding unpacking functions are 
also provided. These functions map directly to the packing and unpacking 
instructions defined by the NV_fragment_program OpenGL extension.

pack_2half() 

Converts the components of a into a pair of 16-bit floating point values. The 
two converted components are then packed into a single 32-bit result. This 
operation can be reversed using the unpack_2half() function. 

unpack_2half() 

Unpacks a 32-bit value into two 16-bit floating point values. 

Table 30 fp30 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0, COL Output color (float4)

DEPTH, DEPR Output depth (float)

float pack_2half(float2 a);
float pack_2half(half2 a); 

// C Pseudocode 
result = (((half)a.y) << 16) | (half)a.x;

half2 unpack_2half(float a);

// C Pseudocode 
result.x = (a >>  0) & 0xFF;
result.y = (a >> 16) & 0xFF;
220 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
pack_2ushort() 

Converts the components of a into a pair of 16-bit unsigned integers. The two 
converted components are then packed into a single 32-bit return value. This 
operation can be reversed using the unpack_2ushort() function.

unpack_2ushort() 

Unpacks two 16-bit unsigned integer values from a and scales the results into 
individual floating point values between 0.0 and 1.0.  

pack_4byte() 

Converts the four components of a into 8-bit signed integers. The signed 
integers are such that a representation with all bits set to 0 corresponds to the 
value -(128/127), and a representation with all bits set to 1 corresponds to 
+(127/127). The four signed integers are then packed into a single 32-bit result. 
This operation may be reversed using the unpack_4byte() function.

float pack_2ushort(float2 a);
float pack_2ushort(half2 a);

// C Pseudocode 
ushort.x = round(65535.0 * clamp(a.x, 0.0, 1.0));
ushort.y = round(65535.0 * clamp(a.y, 0.0, 1.0));
result = (ushort.y << 16) | ushort.y;

float2 unpack_2ushort(float a);

// C Pseudocode 
result.x = ((x >>  0) & 0xFFFF) / 65535.0;
result.y = ((x >> 16) & 0xFFFF) / 65535.0;

float pack_4byte(float4 a);
float pack_4byte(half4 a);

// C Pseudocode
ub.x = round(127 * clamp(a.x, -128/127, 127/127) + 128);
ub.y = round(127 * clamp(a.y, -128/127, 127/127) + 128);
ub.z = round(127 * clamp(a.z, -128/127, 127/127) + 128);
ub.w = round(127 * clamp(a.w, -128/127, 127/127) + 128);
result = (ub.w << 24) | (ub.z << 16) | (ub.y << 8) | ub.x;
 808-00504-0000-004 221
NVIDIA



Cg Language Toolkit
unpack_4byte() 

Unpacks four 8-bit integers from a and scales the results into individual 16-bit 
floating point values between -(128/127) and +(127/127). 

pack_4ubyte() 

Converts the four components of a into 8-bit unsigned integers. The unsigned 
integers are such that a representation with all bits set to 0 corresponds to 0.0, 
and a representation with all bits set to 1 corresponds to 1.0. The four unsigned 
integers are then packed into a single 32-bit result. This operation can be 
reversed using the unpack_4ubyte() function.

unpack_4ubyte()

Unpacks the four 8-bit integers in a and scales the results into individual 16-bit 
floating point values between 0.0 and 1.0.

half4 unpack_4byte(float a);

// C Pseudocode
result.x = (((a >>  0) & 0xFF) - 128) / 127.0;
result.y = (((a >>  8) & 0xFF) - 128) / 127.0;
result.z = (((a >> 16) & 0xFF) - 128) / 127.0;
result.w = (((a >> 24) & 0xFF) - 128) / 127.0;

float pack_4ubyte(float4 a);
float pack_4ubyte(half4 a);

// C Psuedocode
ub.x = round(255.0 * clamp(a.x, 0.0, 1.0));
ub.y = round(255.0 * clamp(a.y, 0.0, 1.0));
ub.z = round(255.0 * clamp(a.z, 0.0, 1.0));
ub.w = round(255.0 * clamp(a.w, 0.0, 1.0));
result = (ub.w << 24) | (ub.z << 16) | (ub.y << 8) | ub.x;

half4 unpack_4ubyte(float a);

// C Pseudocode
result.x = ((a >>  0) & 0xFF) / 255.0;
result.y = ((a >>  8) & 0xFF) / 255.0;
result.z = ((a >> 16) & 0xFF) / 255.0;
result.w = ((a >> 24) & 0xFF) / 255.0;
222 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
DirectX Vertex Shader 1.1 Profile (vs_1_1)
The DirectX Vertex Shader 1.1 profile is used to compile Cg source code to 
DirectX 8.1 Vertex Shaders and DirectX 9 VS 1.1 shaders5. 

Profile name: vs_1_1
How to invoke: Use the compiler option -profile vs_1_1. 

The vs_1_1 profile limits Cg to match the capabilities of DirectX Vertex 
Shaders. 
This section describes how using the vs_1_1 profile affects the Cg source code 
that the developer writes. 

Memory Restrictions
DirectX 8 vertex shaders have a limited amount of memory for instructions and 
data. 

Program Instruction Limits

The DirectX 8 vertex shaders are limited to 128 instructions. If the compiler 
needs to produce more than 128 instructions to compile a program, it reports 
an error. 

Vector Register Limits

Likewise, there are limited numbers of registers to hold program parameters 
and temporary results. Specifically, there are 96 read-only vector registers and 
12 read/write vector registers. If the compiler needs more registers to compile a 
program than are available, it generates an error. 

Language Constructs and Support

Data Types

This profile implements data types as follows:
float data types are implemented as IEEE 32-bit single precision.
half and double data types are treated as float.
int data type is supported using floating point operations, which adds extra 
instructions for proper truncation for divides, modulos and casts from 
floating point types.

5. To understand the DirectX VS 1.1 Vertex Shaders and the code the compiler produces, 
see the Vertex Shader Reference in the DirectX 8.1 SDK documentation.
 808-00504-0000-004 223
NVIDIA



Cg Language Toolkit
fixed or sampler* data types are not supported, but the profile does 
provide the minimal partial support that is required for these data types by 
the core language specification—that is, it is legal to declare variables using 
these types, as long as no operations are performed on the variables.

Statements and Operators

The if, while, do, and for statements are allowed only if the loops they define 
can be unrolled, because there is no branching in VS 1.1 shaders. 
There are no subroutine calls either, so all functions are inlined. Comparison 
operators are allowed (>, <, >=, <=, ==, !=) and Boolean operators (||, &&, ?:) 
are allowed. However, the logic operators (&, |, ^, ~) are not allowed.

Using Arrays 

Variable indexing of arrays is allowed as long as the array is a uniform constant. 
For compatibility reasons arrays indexed with variable expressions need not be 
declared const just uniform. However, writing to an array that is later indexed 
with a variable expression yields unpredictable results.
Array data is not packed because vertex program indexing does not permit it. 
Each element of the array takes a single 4-float program parameter register. For 
example, float arr[10], float2 arr[10], float3 arr[10], and float4 
arr[10] all consume ten program parameter registers.
It is more efficient to access an array of vectors than an array of matrices. 
Accessing a matrix requires a floor calculation, followed by a multiply by a 
constant to compute the register index. Because vectors (and scalars) take one 
register, neither the floor nor the multiply is needed. It is faster to do matrix 
skinning using arrays of vectors with a premultiplied index than using arrays of 
matrices.

Constants 

Literal constants can be used with this profile, but it is not possible to store 
them in the program itself. Instead the compiler will issue, as comments, a list 
of program parameter registers and the constants that need to be loaded into 
them. The Cg run-time system will handle loading the constants, as directed by 
the compiler. 

Note:  If the Cg run-time system is not used, it is the responsibility of the programmer to 
make sure that the constants are loaded properly. 
224 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Bindings

Binding Semantics for Uniform Data 

Table 31 summarizes the valid binding semantics for uniform parameters in the 
vs_1_1 profile. 

Binding Semantics for Varying Input/Output Data

Table 32 summarizes the valid binding semantics for uniform parameters in the 
vs_1_1 profile. These map to the input registers in DirectX 8.1 vertex shaders.  

Table 31 vs_1_1 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c95)
C0–C95 

Constant register [0..95].
The aliases c0–c95 (lowercase) are also 
accepted. 
If used with a variable that requires more than 
one constant register (for example, a matrix), 
the semantic specifies the first register that is 
used.

Table 32 vs_1_1 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

POSITION Vertex shader input register: v0

BLENDWEIGHT Vertex shader input register: v1

BLENDINDICES Vertex shader input register: v2

NORMAL Vertex shader input register: v3

PSIZE Vertex shader input register: v4

COLOR0, DIFFUSE Vertex shader input register: v5

COLOR1, SPECULAR Vertex shader input register: v6

TEXCOORD0–TEXCOORD7 Vertex shader input register: v7–v14

TANGENTi

i. TANGENT is an alias for TEXCOORD7. 

Vertex shader input register: v14

BINORMAL Vertex shader input register: v15
 808-00504-0000-004 225
NVIDIA



Cg Language Toolkit
Table 33 summarizes the valid binding semantics for varying output parameters 
in the vs_1_X profile.These map to output registers in DirectX 8.1 vertex 
shaders.

Options
When using the vs_1_1 profile under DirectX 9 it is necessary to tell the 
compiler to produce dcl statements to declare varying inputs. The option 
-profileopts dcls causes dcl statements to be added to the compiler output.

Table 33 vs_1_1 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION Output position: oPos

PSIZE Output point size: oPts

FOG Output fog value: oFog

COLOR0–COLOR1 Output color values: oD0, oD1

TEXCOORD0–TEXCOORD7 Output texture coordinates: oT0–oT7
226 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
DirectX Pixel Shader 1.x Profiles (ps_1_*)
The DirectX pixel shader 1_X profiles are used to compile Cg source code to 
DirectX PS 1.1, PS 1.2, or PS 1.3 pixel shader assembly. 

Profile names 
ps_1_1 (for DirectX PS 1.1 pixel shaders)
ps_1_2 (for DirectX PS 1.2 pixel shaders)
ps_1_3 (for DirectX PS 1.3 pixel shaders)
How to invoke: Use the compiler options 
-profile ps_1_1 
-profile ps_1_2 
-profile ps_1_3

The deprecated profile dx8ps is also available and is synonymous with ps_1_1. 
This document describes the capabilities and restrictions of Cg when using the 
DirectX pixel shader 1_X profiles.

Overview
DirectX PS 1.4 is not currently supported by any Cg profile; all statements 
about ps_1_X in the remainder of this document refer only to ps_1_1, ps_1_2 
and ps_1_3.
The underlying instruction set and machine architecture limit programmability 
in these profiles compared to what is allowed by Cg constructs6. Thus, these 
profiles place additional restrictions on what can and cannot be done in a Cg 
program. 
The main differences between these profiles from the Cg perspective is that 
additional texture addressing operations are exposed in ps_1_2 and ps_1_3 and 
the depth value output is made available (in a limited form) in ps_1_3.
Operations in the DirectX pixel shader 1_X profiles can be categorized as 
texture addressing operations and arithmetic operations. Texture addressing 
operations are operations which generate texture addressing instructions, 
arithmetic operations are operations which generate arithmetic instructions. A 
Cg program in one of these profiles is limited to generating a maximum of four 
texture addressing instructions and eight arithmetic instructions. Since these 
numbers are quite small, users need to be very aware of this limitation while 
writing Cg code for these profiles.
There are certain simple arithmetic operations that can be applied to inputs of 
texture addressing operations and to inputs and outputs of arithmetic 

6. For more details about the underlying instruction sets, their capabilities, and their 
limitations, refer to the MSDN documentation of DirectX pixel shaders 1.1, 1.2 and 1.3.
 808-00504-0000-004 227
NVIDIA



Cg Language Toolkit
operations without generating an arithmetic instruction. From here on, these 
operations are referred to as input modifiers and output modifiers.
The ps_1_X profiles also restrict when a texture addressing operation or 
arithmetic operation can occur in the program. A texture addressing operation 
may not have any dependency on the output of an arithmetic operation unless

The arithmetic operation is a valid input modifier for the texture addressing 
operation.
The arithmetic operation is part of a complex texture addressing operation 
(which are summarized in the section on Auxiliary Texture Functions).

Modifiers
Input and output modifiers may be used to perform simple arithmetic 
operations without generating an arithmetic instruction. Instead, the arithmetic 
operation modifies the assembly instruction or source registers to which it is 
applied. For example, the following Cg expression:

z = (x - 0.5 + y) / 2

could generate the following pixel shader instruction (assuming x is in t0, y is in 
t1, and z is in r0):

add_d2 r0, t0_bias, t1

Table 34 summarizes how different DirectX pixel shader 1_X instruction set 
modifiers are expressed in Cg programs. For more details on the context in 
which each modifier is allowed and ways in which modifiers may be combined 
refer to the DirectX pixel shader 1_X documentation.

Table 34 ps_1_x Instruction Set Modifiers

Instruction/Register 
Modifier Cg Expression

instr_x2 2*x

instr_x4       4*x

instr_d2     x/2

instr_sat saturate(x) (i.e. min(x, max(x, 1), 0))

reg_bias x-0.5

1-reg       1-x

-reg         -x

reg_bx2       2*(x-0.5)
228 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Language Constructs and Support

Data Types

In the ps_1_X profiles, operations occur on signed clamped floating point 
values in the range MaxPixelShaderValue to MaxPixelShaderValue, where 
MaxPixelShaderValue is determined by the DirectX implementation. These 
profiles allow all data types to be used, but all operations are carried out in the 
above range. Refer to the DirectX pixel shader 1_X documentation for more 
details.

Statements and Operators

The DirectX pixel shader 1_X profiles support all of the Cg language 
constructs, with the following exceptions:

Arbitrary swizzles are not supported (though arbitrary write masks are). 
Only the following swizzles are allowed 
.x/.r .y/.g .z/.b .w/.a
.xy/.rg .xyz/.rgb .xyzw/.rgba
.xxx/.rrr .yyy/.ggg .zzz/.bbb .www/.aaa
.xxxx/.rrrr .yyyy/.gggg .zzzz/.bbbb .wwww/.aaaa

Matrix swizzles are not supported.
Boolean operators other than <, <=, > and >= are not supported. 
Furthermore, <, <=, > and >= are only supported as the condition in the ?: 
operator.
Bitwise integer operators are not supported.
/ is not supported unless the divisor is a non-zero constant or it is used to 
compute the depth output in ps_1_3. 
% is not supported.
Ternary ?: is supported if the boolean test expression is a compile-time 
boolean constant, a uniform scalar boolean or a scalar comparison to a 
constant value in the range [-0.5, 1.0] (for example, a > 0.5 ? b : c).
do, for, and while loops are supported only when they can be completely 
unrolled. 
arrays, vectors, and matrices may be indexed only by compile-time constant 
values or index variables in loops that can be completely unrolled. 
The discard statement is not supported. The similar but less general 
clip() function is supported.
The use of an allocation-rule-identifier for an input or output 
struct is optional.
 808-00504-0000-004 229
NVIDIA



Cg Language Toolkit
Standard Library Functions 
Because the DirectX pixel shader 1_X profiles have limited capabilities, not all 
of the Cg standard library functions are supported. Table 35 presents the Cg 
standard library functions that are supported by these profiles. See the standard 
library documentation for descriptions of these functions.

Note:  The non-projective texture lookup functions are actually done as projective 
lookups on the underlying hardware. Because of this, the w component of the 
texture coordinates passed to these functions from the application or vertex 
program must contain the value 1.

Texture coordinate parameters for projective texture lookup functions must 
have swizzles that match the swizzle done by the generated texture addressing 
instruction. While this may seem burdensome, it is intended to allow ps_1_X 
profile programs to behave correctly under other pixel shader profiles. 

Table 35 Supported Standard Library Functions

dot(floatN, floatN)

lerp(floatN, floatN, floatN)

lerp(floatN, floatN, float)

tex1D(sampler1D, float)

tex1D(sampler1D, float2)

tex1Dproj(sampler1D, float2)

tex1Dproj(sampler1D, float3)

tex2D(sampler2D, float2)

tex2D(sampler2D, float3)

tex2Dproj(sampler2D, float3)

tex2Dproj(sampler2D, float4)

tex3D(sampler3D, float3)

tex3Dproj(sampler3D, float4)

texCUBE(samplerCUBE, float3)

texCUBEproj(samplerCUBE, float4)
230 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Table 36 lists the swizzles required on the texture coordinate parameter to the 
projective texture lookup functions. 

Table 36 Required Projective Texture Lookup Swizzles

Texture Lookup Function Texture Coordinate Swizzle

tex1Dproj .xw/.ra

tex2Dproj .xyw/.rga

texRECTproj .xyw/.rga

tex3Dproj .xyzw/.rgba

texCUBEproj .xyzw/.rgba
 808-00504-0000-004 231
NVIDIA



Cg Language Toolkit
Bindings

Manual Assignment of Bindings

The Cg compiler can determine bindings between texture units and uniform 
sampler parameters/texture coordinate inputs automatically. This automatic 
assignment is based on the context in which uniform sampler parameters and 
texture coordinate inputs are used together. 
To specify bindings between texture units and uniform parameters/texture 
coordinates to match their application, all sampler uniform parameters and 
texture coordinate inputs that are used in the program must have matching 
binding semantics—that is, TEXUNIT<n> may only be used with TEXCOORD<n>.
Partially specified binding semantics may not work in all cases. Fundamentally, 
this restriction is due to the close coupling between texture samplers and texture 
coordinates in DirectX pixel shaders 1_X.

Binding Semantics for Uniform Data

If a binding semantic for a uniform parameter is not specified then the compiler 
will allocate one automatically. Scalar uniform parameters may be allocated to 
either the xyz or the w portion of a constant register depending on how they are 
used within the Cg program. When using the output of the compiler without 
the Cg runtime, you must set all values of a scalar uniform to the desired scalar 
value, not just the x component. 
Table 37 summarizes the valid binding semantics for uniform parameters in the 
ps_1_X profiles:

Table 37 ps_1_x Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)—register(s3)
TEXUNIT0—TEXTUNIT3

Texture unit N, where N is in range [0..3].
May be used only with uniform inputs with 
sampler* types.

register(c0)–register(c7)
C0–C7

Constant register [0..7]
232 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Binding Semantics for Varying Input/Output Data

The varying input binding semantics in the ps_1_X profiles are the same as the 
varying output binding semantics of the vs_1_1 profile.
Varying input binding semantics in the ps_1_X profiles consist of COLOR0, 
COLOR1, TEXCOORD0, TEXCOORD1, TEXCOORD2 and TEXCOORD3. These map to 
output registers in DirectX vertex shaders. 
Table 38 summarizes the valid binding semantics for varying input parameters 
in the ps_1_X profiles.

Additionally, the ps_1_X profiles allow POSITION, FOG, PSIZE, TEXCOORD4, 
TEXCOORD5, TEXCOORD6, and TEXCOORD7 to be specified on varying inputs, 
provided these inputs are not referenced. This allows Cg programs to have the 
same structure specify the varying output of a vs_1_1 profile program and the 
varying input of a ps_1_X profile program.
Table 39 summarizes the valid binding semantics for varying output parameters 
in the ps_1_X profile. 

Table 38 ps_1_x Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0
COL, COL0

Input color value v0

COLOR1
COL1

Input color value v1

TEXCOORD0—TEXCOORD3
TEX0—TEX3

Input texture coordinates t0–t3

Table 39 ps_1_x Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0
COL, COL0

Output color (float4)

DEPTH
DEPR

Output depth (float)
 808-00504-0000-004 233
NVIDIA



Cg Language Toolkit
The output depth value is special in that it may only be assigned a value in the 
ps_1_3 profile, and must be of the form 

...
float4 t = <texture addressing operation>;
float z = dot(texCoord<n>, t.xyz);
float w = dot(texCoord<n+1>, t.xyz);
depth = z / w;
...

Auxiliary Texture Functions
Because the capabilities of the texture addressing instructions are limited in 
DirectX pixel shader 1_X, a set of auxiliary functions are provided in these 
profiles that express the functionality of the more complex texture addressing 
instructions. These functions are merely provided as a convenience for writing 
ps_1_X Cg programs. The same result can be achieved by writing the expanded 
form of each function directly. Using the expanded form has the additional 
advantage of being supported on other profiles. 
Table 40 summarizes these functions.

Table 40 ps_1_x Auxiliary Texture Functions

Texture Function

Description

offsettex2D(uniform sampler2D tex, float2 st, 
           float4 prevlookup, uniform float4 m)

Performs the following:
   float2 newst = st + m.xy * prevlookup.xx + m.zw * prevlookup.yy;
   return tex2D(tex, newst);
where 
   st are texture coordinates associated with sampler tex, 
   prevlookup is the result of a previous texture operation, and 
   m is the 2-D bump environment mapping matrix.
This function can generate the texbem instruction in all ps_1_X profiles.
234 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
offsettex2DScaleBias(uniform sampler2D tex, float2 st, 
                    float4 prevlookup, uniform float4 m,
                    uniform float scale, uniform float bias)

Performs the following
   float2 newst = st + m.xy * prevlookup.xx + m.zw * prevlookup.yy;
   float4 result = tex2D(tex, newst);
   return result * saturate(prevlookup.z * scale + bias);
where 
   st are texture coordinates associated with sampler tex, 
   prevlookup is the result of a previous texture operation, 
   m is the 2-D bump environment mapping matrix, 
   scale is the 2-D bump environment mapping scale factor, and 
     bias is the 2-D bump environment mapping offset.
This function can generate the texbeml instruction in all ps_1_X profiles.

tex1D_dp3(sampler1D tex, float3 str, float4 prevlookup)

Performs the following
   return tex1D(tex, dot(str, prevlookup.xyz));
where 
 str are texture coordinates associated with sampler tex, and
    prevlookup is the result of a previous texture operation. 
This function can be used to generate the texdp3tex instruction in the 
ps_1_2 and ps_1_3 profiles.

tex2D_dp3x2(uniform sampler2D tex, float3 str, 
           float4 intermediate_coord, float4 prevlookup)

Performs the following
   float2 newst = float2(dot(intermediate_coord.xyz, prevlookup.xyz), 
                  dot(str, prevlookup.xyz));
   return tex2D(tex, newst);
where 
   str are texture coordinates associated with sampler tex, 
  prevlookup is the result of a previous texture operation, and
   intermediate_coord are texture coordinates associated with the previous
   texture unit. 
This function can be used to generate the texm3x2pad/texm3x2tex 
instruction combination in all ps_1_X profiles.

Table 40 ps_1_x Auxiliary Texture Functions (continued)

Texture Function

Description
 808-00504-0000-004 235
NVIDIA



Cg Language Toolkit
tex3D_dp3x3(sampler3D tex, float3 str, 
           float4 intermediate_coord1, 
           float4 intermediate_coord2, float4 prevlookup)
texCUBE_dp3x3(samplerCUBE tex, float3 str, 
             float4 intermediate_coord1, 
             float4 intermediate_coord2, float4 prevlookup)

Performs the following
   float3 newst = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
                  dot(intermediate_coord2.xyz, prevlookup.xyz),
                  dot(str, prevlookup.xyz));
   return tex3D/CUBE(tex, newst);
where 
   str are texture coordinates associated with sampler tex,
   prevlookup is the result of a previous texture operation,
   intermediate_coord1 are texture coordinates associated with the n-2
   texture unit, and
  intermediate_coord2 are texture coordinates associated with the n-1
   texture unit. 
This function can be used to generate the texm3x3pad/texm3x3pad/
texm3x3tex instruction combination in all ps_1_X profiles.

Table 40 ps_1_x Auxiliary Texture Functions (continued)

Texture Function

Description
236 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
texCUBE_reflect_dp3x3(uniform samplerCUBE tex, float4 strq,
                     float4 intermediate_coord1, 
                     float4 intermediate_coord2, 
                     float4 prevlookup)

Performs the following
   float3 E = float3(intermediate_coord2.w, intermediate_coord1.w,
           strq.w);
   float3 N = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
              dot(intermediate_coord2.xyz, prevlookup.xyz),
              dot(strq.xyz, prevlookup.xyz));
  return texCUBE(tex, 2 * dot(N, E) / dot(N, N) * N - E);
where 
   strq are texture coordinates associated with sampler tex, 
   prevlookup is the result of a previous texture operation,
  intermediate_coord1 are texture coordinates associated with the n-2
    texture unit, and
   intermediate_coord2 are texture coordinates associated with the n-1
   texture unit. 
This function can be used to generate the texm3x3pad/texm3x3pad/
texm3x3vspec instruction combination in all ps_1_X profiles.

Table 40 ps_1_x Auxiliary Texture Functions (continued)

Texture Function

Description
 808-00504-0000-004 237
NVIDIA



Cg Language Toolkit
texCUBE_reflect_eye_dp3x3(uniform samplerCUBE tex, 
                         float3 str, float4 intermediate_coord1,
                       float4 intermediate_coord2, 
                       float4 prevlookup, uniform float3 eye)

Performs the following
   float3 N = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
              dot(intermediate_coord2.xyz, prevlookup.xyz),
              dot(coords.xyz, prevlookup.xyz));
   return texCUBE(tex, 2 * dot(N, E) / dot(N, N) * N - E);
where 
   strq are texture coordinates associated with sampler tex,
   prevlookup is the result of a previous texture operation, 
   intermediate_coord1 are texture coordinates associated with the n-2
   texture unit, 
   intermediate_coord2 are texture coordinates associated with the n-1
   texture unit, and 
  eye is the eye-ray vector. 
This function can be used to generate the texm3x3pad/texm3x3pad/
texm3x3spec instruction combination in all ps_1_X profiles.

tex_dp3x2_depth(float3 str, float4 intermediate_coord, 
               float4 prevlookup)

Performs the following
   float z = dot(intermediate_coord.xyz, prevlookup.xyz);
   float w = dot(str, prevlookup.xyz);
   return z / w;
where 
   str are texture coordinates associated with the nth texture unit, 
   intermediate_coord are texture coordinates associated with the n-1
      texture unit, and 
   prevlookup is the result of a previous texture operation. 
This function can be used with the DEPTH varying out semantic to generate the 
texm3x2pad/texm3x2depth instruction combination in ps_1_3.

Table 40 ps_1_x Auxiliary Texture Functions (continued)

Texture Function

Description
238 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Examples
The following examples illustrate how a developer can use Cg to achieve 
DirectX pixel shader 1_X functionality.

Example 1

Example 2  

struct VertexOut {
  float4 color     : COLOR0;
  float4 texCoord0 : TEXCOORD0;
  float4 texCoord1 : TEXCOORD1;
};
float4 main(VertexOut IN,
            uniform sampler2D diffuseMap,
            uniform sampler2D normalMap) : COLOR
{
  float4 diffuseTexColor = tex2D(diffuseMap, IN.texCoord0.xy);
  float4 normal = 2 * (tex2D(normalMap, IN.texCoord1.xy)-0.5);
  float3 light_vector = 2 * (IN.color.rgb - 0.5);
  float4 dot_result = saturate(dot(light_vector,
                               normal.xyz).xxxx);
  return dot_result * diffuseTexColor;
}

struct VertexOut {
    float4 texCoord0 : TEXCOORD0;
    float4 texCoord1 : TEXCOORD1;
    float4 texCoord2 : TEXCOORD2;
    float4 texCoord3 : TEXCOORD3;
};

float4 main(VertexOut IN,
            uniform sampler2D normalMap,
            uniform sampler2D intensityMap,
            uniform sampler2D colorMap) : COLOR
{
  float4 normal = 2 * (tex2D(normalMap, IN.texCoord0.xy)-0.5);
  float2 intensCoord = float2(
                         dot(IN.texCoord1.xyz, normal.xyz), 
                         dot(IN.texCoord2.xyz, normal.xyz));
  float4 intensity = tex2D(intensityMap, intensCoord);
  float4 color = tex2D(colorMap, IN.texCoord3.xy);
  return color * intensity;
}

 808-00504-0000-004 239
NVIDIA



Cg Language Toolkit
OpenGL NV_vertex_program 1.0 Profile (vp20) 
The vp20 Vertex Program profile is used to compile Cg source code to vertex 
programs for use by the NV_vertex_program OpenGL extension7. 

Profile name: vp20
How to invoke: Use the compiler option -profile vp20. 

This section describes the capabilities and restrictions of Cg when using the 
vp20 profile.

Overview
The vp20 profile limits Cg to match the capabilities of the NV_vertex_program 
extension. NV_vertex_program has the same capabilities as DirectX 8 vertex 
shaders, so the limitations that this profile places on the Cg source code written 
by the programmer is the same as the DirectX VS 1.1 shader profile8. 
Aside from the syntax of the compiler output, the only difference between the 
vp20 Vertex Shader profile and the DirectX VS 1.1 profile is that the vp20 
profile supports two additional outputs: BCOL0 (for back-facing primary color) 
and BCOL1 (for back-facing secondary color).

Position Invariance
The vp20 profile supports position invariance, as described in the core 
language specification. 
The modelview-projection matrix must be specified using a binding 
semantic of _GL_MVP.

7. To understand the NV_vertex_program and the code produced by the compiler using the 
vp20 profile, see the GL_NV_vertex_program extension documentation.

8. See “DirectX Vertex Shader 1.1 Profile (vs_1_1)” on page 223 for a full explanation of 
the data types, statements, and operators supported by this profile. 
240 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Data Types
This profile implements data types as follows:

float data types are implemented as IEEE 32-bit single precision.
half and double data types are implemented as float.
int data type is supported using floating point operations, which add extra 
instructions for proper truncation for divides, modulos, and casts from 
floating point types.
fixed or sampler* data types are not supported, but the profile does 
provide the minimal partial support that is required for these data types by 
the core language specification—that is, it is legal to declare variables using 
these types, as long as no operations are performed on the variables.

Bindings 

Binding Semantics for Uniform Data

Table 41 summarizes the valid binding semantics for uniform parameters in the 
vp20 profile.  

Table 41 vp20 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c95)
C0–C95

Constant register [0..95].
The aliases c0–c95 (lowercase) are also 
accepted. 
If used with a variable that requires more 
than one constant register (for example, a 
matrix), the semantic specifies the first 
register that is used.
 808-00504-0000-004 241
NVIDIA



Cg Language Toolkit
Binding Semantics for Varying Input/Output Data

Table 42 summarizes the valid binding semantics for varying input parameters 
in the vp20 profile. 
One can also use TANGENT and BINORMAL instead of TEXCOORD6 and 
TEXCOORD7. A second set of binding semantics, ATTR0–ATTR15, can also be 
used. The two sets act as aliases to each other.   

Table 43 summarizes the valid binding semantics for varying output parameters 
in the vp20 profile.
These binding semantics map to NV_vertex_program output registers. The 
two sets act as aliases to each other.   

Table 42 vp20 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, ATTR0 Input Vertex, Generic Attribute 0 

BLENDWEIGHT, ATTR1 Input vertex weight, Generic Attribute 1 

NORMAL, ATTR2 Input normal, Generic Attribute 2

COLOR0, DIFFUSE, ATTR3 Input primary color, Generic Attribute 3

COLOR1, SPECULAR, ATTR4 Input secondary color, Generic Attribute 4

TESSFACTOR, FOGCOORD, ATTR5 Input fog coordinate, Generic Attribute 5

PSIZE, ATTR6 Input point size, Generic Attribute 6

BLENDINDICES, ATTR7 Generic Attribute 7

TEXCOORD0-TEXCOORD7,
ATTR8–ATTR15

Input texture coordinates (texcoord0-
texcoord7), Generic Attributes 8-15

TANGENT, ATTR14 Generic Attribute 14

BINORMAL, ATTR15 Generic Attribute 15

Table 43 vp20 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, HPOS Output position

PSIZE, PSIZ Output point size

FOG, FOGC Output fog coordinate
242 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
The profile also allows WPOS to be present as binding semantics on a member of 
a structure of a varying output data structure, provided the member with this 
binding semantics is not referenced. This allows Cg programs to have the same 
structure specify the varying output of a vp20 profile program and the varying 
input of an fp30 profile program.

COLOR0, COL0 Output primary color 

COLOR1, COL1 Output secondary color

BCOL0 Output backface primary color

BCOL1 Output backface secondary color

TEXCOORD0-TEXCOORD3, TEX0-TEX3 Output texture coordinates

Table 43 vp20 Varying Output Binding Semantics (continued)

Binding Semantics Name Corresponding Data
 808-00504-0000-004 243
NVIDIA



Cg Language Toolkit
OpenGL NV_texture_shader and NV_register_combiners 
Profile (fp20)

The OpenGL NV_texture_shader and NV_register_combiners profile is used 
to compile Cg source code to the nvparse text format for the 
NV_texture_shader and NV_register_combiners family of OpenGL 
extensions9. 

Profile name: fp20
How to invoke: Use the compiler option -profile fp20.

This document describes the capabilities and restrictions of Cg when using the 
fp20 profile. 

Overview
Operations in the fp20 profile can be categorized as texture shader operations 
and arithmetic operations. Texture shader operations are operations which 
generate texture shader instructions, arithmetic operations are operations which 
generate register combiners instructions. 
The underlying instruction set and machine architecture limit programmability 
in this profile compared to what is allowed by Cg constructs. Thus, this profile 
places additional restrictions on what can and cannot be done in a Cg program.

Restrictions 
A Cg program in one of these profiles is limited to generating a maximum of 
four texture shader instructions and eight register combiner instructions. Since 
these numbers are quite small, users need to be very aware of this limitation 
while writing Cg code for these profiles.
The fp20 profile also restricts when a texture shader operation or arithmetic 
operation can occur in the program. A texture shader operation may not have 
any dependency on the output of an arithmetic operation unless

the arithmetic operation is a valid input modifier for the texture shader 
operation
the arithmetic operation is part of a complex texture shader operation 
(which are summarized in the section “Auxiliary Texture Functions” on 
page 251)

9. For more details about the underlying instruction sets, their capabilities, and their 
limitations, please refer to the NV_texture_shader and NV_register_combiners extensions 
in the OpenGL Extensions documentation.
244 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Modifiers
There are certain simple arithmetic operations that can be applied to inputs of 
texture shader operations and to inputs and outputs of arithmetic operations 
without generating a register combiner instruction. These operations are 
referred to as input modifiers and output modifiers. 
Instead of generating a register combiners instruction, the arithmetic operation 
modifies the assembly instruction or source registers to which it is applied. For 
example, the following Cg expression

        z = (x - 0.5 + y) / 2
could generate the following register combiner instruction (assuming x is in 
tex0, y is in tex1, and z is in col0) 

Table 44 summarizes how different NV_texture_shader and 
NV_register_combiners instruction set modifiers are expressed in Cg 
programs. For more details on the context in which each modifier is allowed 
and ways in which modifiers may be combined refer to the NV_texture_shader 
and NV_register_combiners documentation.

rgb
  {
    discard = half_bias(tex0.rgb);
    discard = tex1.rgb;
    col0 = sum();
    scale_by_one_half();
  }
alpha
  {
    discard = half_bias(tex0.a);
    discard = tex1.a;
    col0 = sum();
    scale_by_one_half();
  }

Table 44 NV_texture_shader and NV_register_combiners 
Instruction Set Modifiers

Instruction/Register Modifier Cg Expression

scale_by_two() 2*x

scale_by_four() 4*x

scale_by_one_half()                         x/2

bias_by_negative_one_half() x-0.5
 808-00504-0000-004 245
NVIDIA



Cg Language Toolkit
Language Constructs and Support 

Data Types

In the fp20 profile, operations occur on signed clamped floating-point values in 
the range -1 to 1. These profiles allow all data types to be used, but all 
operations are carried out in the above range. Refer to the NV_texture_shader 
and NV_register_combiners documentation for more details.

Statements and Operators

The fp20 profile supports all of the Cg language constructs, with the following 
exceptions:

Arbitrary swizzles are not supported (though arbitrary write masks are). 
Only the following swizzles are allowed 
.x/.r .y/.g .z/.b .w/.a
.xy/.rg .xyz/.rgb .xyzw/.rgba
.xxx/.rrr .yyy/.ggg .zzz/.bbb .www/.aaa
.xxxx/.rrrr .yyyy/.gggg .zzzz/.bbbb .wwww/.aaaa

Matrix swizzles are not supported.
Boolean operators other than <, <=, > and >= are not supported. 
Furthermore, <, <=, > and >= are only supported as the condition in the ?: 
operator.
Bitwise integer operators are not supported.
/ is not supported unless the divisor is a non-zero constant or it is used to 
compute the depth output. 

bias_by_negative_one_half_scale_by_two() 2*(x-0.5)

unsigned(reg)      saturate(x) 
(i.e. min(x, max(x, 1), 0))

unsigned_invert(reg)   1-saturate(x)

half_bias(reg)       x-0.5

-reg       -x

expand(reg) 2*(x-0.5)

Table 44 NV_texture_shader and NV_register_combiners 
Instruction Set Modifiers (continued)

Instruction/Register Modifier Cg Expression
246 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
% is not supported.
Ternary ?: is supported if the boolean test expression is a compile-time 
boolean constant, a uniform scalar boolean or a scalar comparison to a 
constant value in the range [-0.5, 1.0] (for example, a > 0.5 ? b : c).
do, for, and while loops are supported only when they can be 
completely unrolled. 
arrays, vectors, and matrices may be indexed only by compile-time constant 
values or index variables in loops that can be completely unrolled. 
The discard statement is not supported. The similar but less general 
clip() function is supported.
The use of an allocation-rule-identifier for an input or output 
struct is optional.

Standard Library Functions
Because the fp20 profile has limited capabilities, not all of the Cg standard 
library functions are supported. 
Table 45 presents the Cg standard library functions that are supported by this 
profile. See the standard library documentation for descriptions of these 
functions.

Table 45 Supported Standard Library Functions

dot(floatN, floatN)

lerp(floatN, floatN, floatN)

lerp(floatN, floatN, float)

tex1D(sampler1D, float)

tex1D(sampler1D, float2)

tex1Dproj(sampler1D, float2)

tex1Dproj(sampler1D, float3)

tex2D(sampler2D, float2)

tex2D(sampler2D, float3)

tex2Dproj(sampler2D, float3)

tex2Dproj(sampler2D, float4)

texRECT(samplerRECT, float2)
 808-00504-0000-004 247
NVIDIA



Cg Language Toolkit
Note:  The nonprojective texture lookup functions are actually done as projective 
lookups on the underlying hardware. Because of this, the w component of the 
texture coordinates passed to these functions from the application or vertex 
program must contain the value 1.

Texture coordinate parameters for projective texture lookup functions must 
have swizzles that match the swizzle done by the generated texture shader 
instruction. While this may seem burdensome, it is intended to allow fp20 
profile programs to behave correctly under other pixel shader profiles. 
Table 46 lists the swizzles required on the texture coordinate parameter to the 
projective texture lookup functions. 

texRECT(samplerRECT, float3)

texRECTproj(samplerRECT, float3)

texRECTproj(samplerRECT, float4)

tex3D(sampler3D, float3)

tex3Dproj(sampler3D, float4)

texCUBE(samplerCUBE, float3)

texCUBEproj(samplerCUBE, float4)

Table 46 Required Projective Texture Lookup Swizzles

Texture Lookup Function Texture Coordinate Swizzle

tex1Dproj .xw/.ra

tex2Dproj .xyw/.rga

texRECTproj .xyw/.rga

tex3Dproj .xyzw/.rgba

texCUBEproj .xyzw/.rgba

Table 45 Supported Standard Library Functions (continued)
248 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
Bindings

Manual Assignment of Bindings

The Cg compiler can determine bindings between texture units and uniform 
sampler parameters/texture coordinate inputs automatically. This automatic 
assignment is based on the context in which uniform sampler parameters and 
texture coordinate inputs are used together. 
To specify bindings between texture units and uniform parameters/texture 
coordinates to match their application, all sampler uniform parameters and 
texture coordinate inputs that are used in the program must have matching 
binding semantics—for example, TEXUNIT<n> may only be used with 
TEXCOORD<n>. Partially specified binding semantics may not work in all cases. 
Fundamentally, this restriction is due to the close coupling between texture 
samplers and texture coordinates in the NV_texture_shader extension.

Binding Semantics for Uniform Data

If a binding semantic for a uniform parameter is not specified, then the 
compiler will allocate one automatically. Scalar uniform parameters may be 
allocated to either the xyz or the w portion of a constant register depending on 
how they are used within the Cg program. When using the output of the 
compiler without the Cg runtime, you must set all values of a scalar uniform to 
the desired scalar value, not just the x component. 
Table 47 summarizes the valid binding semantics for uniform parameters in the 
fp20 profile:

The ps_1_X profiles allow the programmer to decide which constant register a 
uniform variable will reside in by specifying the C<n>/register(c<n>) 
binding semantic. This is not allowed in the fp20 profile since the 
NV_register_combiners extension does not have a single bank of constant 
registers. While the NV_register_combiners extension does describe 
constant registers, these constant registers are per-combiner stage and 
specifying bindings to them in the program would overly constrain the 
compiler.

Table 47 fp20 Uniform Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)—register(s3)
TEXUNIT0—TEXTUNIT3

Texture unit N, where N is in range [0..3].
May be used only with uniform inputs with 
sampler* types.
 808-00504-0000-004 249
NVIDIA



Cg Language Toolkit
Binding Semantics for Varying Input/Output Data 

The varying input binding semantics in the fp20 profile are the same as the 
varying output binding semantics of the vp20 profile.
Varying input binding semantics in the fp20 profile consist of COLOR0, COLOR1, 
TEXCOORD0, TEXCOORD1, TEXCOORD2 and TEXCOORD3. These map to output 
registers in vertex shaders. 
Table 48 summarizes the valid binding semantics for varying input parameters 
in the fp20 profile.

Additionally, the fp20 profile allows POSITION, PSIZE, TEXCOORD4, 
TEXCOORD5, TEXCOORD6, and TEXCOORD7 to be specified on varying inputs, 
provided these inputs are not referenced. This allows Cg programs to have the 
same structure specify the varying output of a vp20 profile program and the 
varying input of a fp20 profile program. 
Table 49 summarizes the valid binding semantics for varying output parameters 
in the fp20 profile. 

Table 48 fp20 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0
COL, COL0

Input color value v0

COLOR1
COL1

Input color value v1

TEXCOORD0—TEXCOORD3
TEX0—TEX3

Input texture coordinates t0–t3 

FOGP
FOG 

Input fog color and factor

Table 49 fp20 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0
COL, COL0

Output color (float4)

DEPR
DEPTH

Output depth (float)
250 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
The output depth value is special in that it may only be assigned a value of the 
form 

      ...
   float4 t = <texture shader operation>;
   float z = dot(texCoord<n>, t.xyz);
   float w = dot(texCoord<n+1>, t.xyz);
   depth = z / w;
   ...

Auxiliary Texture Functions
Because the capabilities of the texture shader instructions are limited in 
NV_texture_shader, a set of auxiliary functions are provided in these profiles 
that express the functionality of the more complex texture shader instructions. 
These functions are merely provided as a convenience for writing fp20 Cg 
programs. The same result can be achieved by writing the expanded form of 
each function directly. Using the expanded form has the additional advantage of 
being supported on other profiles. 
Table 50 summarizes these functions. 

Table 50 fp20 Auxiliary Texture Functions

Texture Function

Description

offsettex2D(uniform sampler2D tex, float2 st,
            float4 prevlookup, uniform float4 m)
offsettexRECT(uniform samplerRECT tex, float2 st,
             float4 prevlookup, uniform float4 m)

Performs the following:
   float2 newst = st + m.xy * prevlookup.xx + m.zw * prevlookup.yy;
   return tex2D/RECT(tex, newst);
where 
   st are texture coordinates associated with sampler tex, 
   prevlookup is the result of a previous texture operation, and 
   m is the offset texture matrix.
This function can be used to generate the offset_2d or 
offset_rectangle NV_texture_shader instructions.
 808-00504-0000-004 251
NVIDIA



Cg Language Toolkit
offsettex2DScaleBias(uniform sampler2D tex, float2 st,
                     float4 prevlookup, uniform float4 m,
                     uniform float scale, uniform float bias)
offsettexRECTScaleBias(uniform samplerRECT tex, float2 st,
                      float4 prevlookup, uniform float4 m,
                        uniform float scale, uniform float bias)

Performs the following
   float2 newst = st + m.xy * prevlookup.xx + m.zw * prevlookup.yy;
   float4 result = tex2D/RECT(tex, newst);
   return result * saturate(prevlookup.z * scale + bias);
where 
   st are texture coordinates associated with sampler tex, 
   prevlookup is the result of a previous texture operation, 
   m is the offset texture matrix, 
   scale is the offset texture scale, and 
     bias is the offset texture bias.
This function can be used to generate the offset_2d_scale or        
offset_rectangle_scale NV_texture_shader instructions.

tex1D_dp3(sampler1D tex, float3 str, float4 prevlookup)

Performs the following
   return tex1D(tex, dot(str, prevlookup.xyz));
where 
  str are texture coordinates associated with sampler tex, and
   prevlookup is the result of a previous texture operation. 
This function can be used to generate the dot_product_1d 
NV_texture_shader instruction.

Table 50 fp20 Auxiliary Texture Functions (continued)

Texture Function

Description
252 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
tex2D_dp3x2(uniform sampler2D tex, float3 str, 
           float4 intermediate_coord, float4 prevlookup)
texRECT_dp3x2(uniform samplerRECT tex, float3 str, 
             float4 intermediate_coord, float4 prevlookup)

Performs the following
   float2 newst = float2(dot(intermediate_coord.xyz, prevlookup.xyz), 
                  dot(str, prevlookup.xyz));
   return tex2D/RECT(tex, newst);
where 
   str are texture coordinates associated with sampler tex, 
  prevlookup is the result of a previous texture operation, and
   intermediate_coord are texture coordinates associated with the previous
   texture unit. 
This function can be used to generate the dot_product_2d or        
dot_product_rectangle NV_texture_shader instruction combinations.

tex3D_dp3x3(sampler3D tex, float3 str, 
           float4 intermediate_coord1,
           float4 intermediate_coord2, float4 prevlookup)
texCUBE_dp3x3(samplerCUBE tex, float3 str, 
             float4 intermediate_coord1, 
             float4 intermediate_coord2, float4 prevlookup)

Performs the following
   float3 newst = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
                  dot(intermediate_coord2.xyz, prevlookup.xyz),
                  dot(str, prevlookup.xyz));
   return tex3D/CUBE(tex, newst);
where 
   str are texture coordinates associated with sampler tex,
   prevlookup is the result of a previous texture operation,
   intermediate_coord1 are texture coordinates associated with the n-2
   texture unit, and
   intermediate_coord2 are texture coordinates associated with the n-1
   texture unit. 
This function can be used to generate the dot_product_3d or 
dot_product_cube_map NV_texture_shader instruction combinations.

Table 50 fp20 Auxiliary Texture Functions (continued)

Texture Function

Description
 808-00504-0000-004 253
NVIDIA



Cg Language Toolkit
texCUBE_reflect_dp3x3(uniform samplerCUBE tex, float4 strq,
                     float4 intermediate_coord1, 
                     float4 intermediate_coord2, 
                     float4 prevlookup)

Performs the following
   float3 E = float3(intermediate_coord2.w, intermediate_coord1.w,
           strq.w);
   float3 N = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
              dot(intermediate_coord2.xyz, prevlookup.xyz),
              dot(strq.xyz, prevlookup.xyz));
  return texCUBE(tex, 2 * dot(N, E) / dot(N, N) * N - E);
where 
   strq are texture coordinates associated with sampler tex, 
   prevlookup is the result of a previous texture operation,
   intermediate_coord1 are texture coordinates associated with the n-2
    texture unit, and
   intermediate_coord2 are texture coordinates associated with the n-1
   texture unit. 
This function can be used to generate the 
dot_product_reflect_cube_map_eye_from_qs NV_texture_shader 
instruction combination.

Table 50 fp20 Auxiliary Texture Functions (continued)

Texture Function

Description
254 808-00504-0000-004 
NVIDIA



Appendix B Language Profiles
texCUBE_reflect_eye_dp3x3(uniform samplerCUBE tex, 
                          float3 str, 
                          float4 intermediate_coord1, 
                          float4 intermediate_coord2, 
                          float4 prevlookup, 
                          uniform float3 eye)

Performs the following
   float3 N = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
              dot(intermediate_coord2.xyz, prevlookup.xyz),
              dot(coords.xyz, prevlookup.xyz));
   return texCUBE(tex, 2 * dot(N, E) / dot(N, N) * N - E);
where 
   strq are texture coordinates associated with sampler tex,
   prevlookup is the result of a previous texture operation, 
   intermediate_coord1 are texture coordinates associated with the n-2
   texture unit, 
   intermediate_coord2 are texture coordinates associated with the n-1
  texture unit, and 
  eye is the eye-ray vector. 
This function can be used generate the 
dot_product_reflect_cube_map_const_eye NV_texture_shader 
instruction combination.

tex_dp3x2_depth(float3 str, float4 intermediate_coord, 
               float4 prevlookup)

Performs the following
   float z = dot(intermediate_coord.xyz, prevlookup.xyz);
   float w = dot(str, prevlookup.xyz);
   return z / w;
where 
   str are texture coordinates associated with the nth texture unit, 
   intermediate_coord are texture coordinates associated with the n-1
      texture unit, and 
   prevlookup is the result of a previous texture operation. 
This function can be used in conjunction with the DEPTH varying out semantic 
to generate the dot_product_depth_replace NV_texture_shader 
instruction combination.

Table 50 fp20 Auxiliary Texture Functions (continued)

Texture Function

Description
 808-00504-0000-004 255
NVIDIA



Cg Language Toolkit
Examples
The following examples illustrate how a developer can use Cg to achieve 
NV_texture_shader and NV_register_combiners functionality. 

Example 1 

Example 2 

struct VertexOut {
    float4 color     : COLOR0;
    float4 texCoord0 : TEXCOORD0;
    float4 texCoord1 : TEXCOORD1;
};

float4 main(VertexOut IN,
            uniform sampler2D diffuseMap,
            uniform sampler2D normalMap) : COLOR
{
  float4 diffuseTexColor = tex2D(diffuseMap, IN.texCoord0.xy);
  float4 normal = 2 * (tex2D(normalMap, IN.texCoord1.xy)-0.5);
  float3 light_vector = 2 * (IN.color.rgb - 0.5);
  float4 dot_result = saturate(
                         dot(light_vector, normal.xyz).xxxx);
  return dot_result * diffuseTexColor;
}

struct VertexOut {
    float4 texCoord0 : TEXCOORD0;
    float4 texCoord1 : TEXCOORD1;
    float4 texCoord2 : TEXCOORD2;
    float4 texCoord3 : TEXCOORD3;
};

float4 main(VertexOut IN,
            uniform sampler2D normalMap,
            uniform sampler2D intensityMap,
            uniform sampler2D colorMap) : COLOR
{
  float4 normal = 2 * (tex2D(normalMap, IN.texCoord0.xy)-0.5);
  float2 intensCoord = float2(
                         dot(IN.texCoord1.xyz, normal.xyz),
                         dot(IN.texCoord2.xyz, normal.xyz));
  float4 intensity = tex2D(intensityMap, intensCoord);
  float4 color = tex2D(colorMap, IN.texCoord3.xy);
  return color * intensity;
}

256 808-00504-0000-004 
NVIDIA



Appendix C
Nine Steps to High-Performance Cg

Writing Cg code that compiles to efficient programs requires techniques and 
approaches that are different from efficient programming in C, C++, or Java. 
While some of the basic lessons are the same (such as using efficient underlying 
algorithms), the hardware programming model of modern GPUs is substantially 
different from that of modern CPUs. This can lead to pitfalls—where you may 
be disappointed by your shader’s performance—as well as to opportunities—
where you can push the GPU to its limits though careful programming.
The Cg language shields you from the majority of the low-level details of GPU 
hardware, enabling you to think about your shaders at a higher level than the 
low-level GPU instruction sets. However, just as an understanding of modern 
computer architecture (such as cache and memory hierarchy issues) is important 
for writing fast C and C++ code, understanding a bit about the GPU can help 
you write better Cg code. This appendix focuses on techniques for maximizing 
performance from vertex and fragment programs written in Cg and running on 
the NVIDIA GeForce FX architecture (specifically the vp30, fp30, arbfp1, 
ps_2_0, ps_2_x, vs_2_0, and vs_2_x profiles), although many of the 
principles are more broadly applicable.

1. Program for Vectorization
The GPU can generally perform four arithmetic operations as quickly as it can 
perform a single operation. Therefore, if you have two vectors of four floating 
point values, 

you can add the two vectors together 

with no more computational expense than adding together two of their 
elements 

This has two implications for efficient programming. First, you should try to 
write code that naturally maps to these vector operations. If you want to add 

float4 a, b;

float4 c = a+b; 

float d = a.x + b.x;
808-00504-0000-004 257
NVIDIA



Cg Language Toolkit
two float4 variables together, it may be substantially less efficient to write it 
this way:

than to write it this way:

The compiler does its best to find vectorization in your programs, but the more 
vectorized your original code is, the better starting place it has to work from.
A more specific example comes from a common computation done for 
tangent-space bump mapping. Given a texture map that encodes a bump map 
by storing the offset along the tangent direction in x, the offset along the 
binormal in y, and the offset along the normal in z, the bump-mapped normal is 
computed by scaling the tangent, binormal, and normal appropriately. In C or 
C++, the natural way to write this computation is as shown:

However, here we have written a series of computations that add and multiply 
single pairs of floating point values at a time. After a little algebra, we can 
rewrite this as three multiplies of a float3 and a float and two float3 
additions—which runs several times faster than the original! 

2. Use Swizzles to Make the Most of Vectorization
The GPU can swizzle the values in vectors with no performance penalty (recall 
that a swizzle can be used to rearrange the elements of a vector). Given a vector:

swizzles construct new vectors:

and so forth. By swizzling your data carefully, you can still take advantage of 
vectorization, even when you don’t want to use the same component of both 

float4 c = float4(a.x + b.x, a.x + b.y, a.z + b.z, 
                  a.w + b.w);

float4 c = a+b;

// Tangent, binormal, normal.  Passed in from vertex program. 
Float3 T, B, N; 
Float3 Nbump;    // Bump-mapped normal
Float3 bump = tex2D(bumpSampler, uv);
Nbump.x = bump.x * T.x + bump.y * B.x + bump.z * N.x;
Nbump.y = bump.x * T.y + bump.y * B.y + bump.z * N.y;
Nbump.z = bump.x * T.z + bump.y * B.z + bump.z * N.z;

Nbump = bump.x * T + bump.y * B + bump.z * N;

float3 a = float3(0, 1, 2);

a.xxx = float3(0, 0, 0);
a.yzz = float3(1, 2, 2);
a.zy  = float2(2, 1);
258 808-00504-0000-004 
NVIDIA



Appendix C Nine Steps to High-Performance Cg
vectors on both sides of your computation. For example, consider the 
computation of the cross product. Given two three-dimensional vectors, the 
cross product returns a new vector that is perpendicular to the given vectors. It 
is computed by 

Here we’ve again got a lot of arithmetic operations, each using a single pair of 
float values. Some cleverness lets us turn this into a vectorized operation. 
Below is the implementation of the cross() function from the Cg Standard 
Library, requiring just two vector multiply operations and one vector 
subtraction operation:

Confirm for yourself that this computes the same value as the first section of 
code for the cross product; note that it exposes much more vectorized 
computation for the GPU to efficiently process.

3. Use the Cg Standard Library
The functions in the Cg Standard Library have been carefully written for both 
efficiency and correctness. By using Standard Library functions when 
appropriate, you can automatically take advantage of the work that went into 
making sure they compile to fast code on GPUs while you concentrate on the 
hard problems you’re solving in your own shaders.
Particularly fast Standard Library functions include dot(), which computes the 
dot product of two vectors, abs(), which computes the absolute value of a 
variable, saturate(), which clamps a value to be between zero and one, and 
min() and max(), which return the minimum and maximum of a pair of values. 
You won’t be able to write more efficient implementations of these functions 
than the Standard Library provides because many of them compile directly to 
GPU assembly language instructions. Writing a dot product function of your 
own, 

compiles to a handful of instructions, while the built-in dot() function 
compiles to a single specialized dot product instruction. There’s no other way to 
get to this instruction other than by using the Standard Library.

float3 a, b;
float3 c = float3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z,
                  a.x*b.y - a.y*b.x);

float3 cross(float3 a, float3 b) {
  return  a.yzx * b.zxy - a.zxy * b.yzx;
}

float mydot(float3 a, float3 b) { 
  return a.x*b.x + a.y*b.y + a.z*b.z; 
}

 808-00504-0000-004 259
NVIDIA



Cg Language Toolkit
Two functions deserve particular attention. The abs() function usually has no 
cost in either vertex or fragment programs because the GPU can evaluate the 
function while executing other instructions. Similarly, the saturate() function 
usually has no cost in fragment programs. Do not hesitate to use these 
functions when appropriate.

4. Use Texture Maps to Encode Complex Functions
For profiles that support texture maps, filtered texture map lookups are 
extraordinarily efficient. If you have a complex function that takes more than a 
handful of arithmetic operations to evaluate, you might want to encode the 
function in a texture map. Say that you have written a function f(x,y) that is a 
bottleneck in your shader. Assume for now that it is always called with values of 
x and y between zero and one, and that the value that f(x,y) computes is 
always between zero and one. If the function is reasonably smooth and you 
don’t need to compute it at extremely high precision, you can precompute the 
function in your application and store it in a texture map, replacing calls like

with code like 

This method can also be applied to one- and three-dimensional functions, using 
1D and 3D texture maps.
More generally, the values you pass to the function may not be in the range 
[0,1], and the values your function returns may not be in the range [0,1]. In 
this case, the following two utility functions can serve as a base: remapTo01() 
remaps the range [low,high] into [0,1], remapFrom01() does the opposite.

Don’t forget vectorization here as well. If two float-valued functions have the 
same domain and range, you can pack them into two texture components of the 
same texture. Only one texture lookup is needed to load them both, and 
vectorized versions of the remap*() can be used to do the remapping more 
efficiently as well.

float val = f(x,y);

float val = tex2D(fSampler, float2(x, y)).x;

float4 remapTo01(float4 v, float4 low, float4 high) {
  return saturate((v - low)/(high-low)); 
}

float4 remapFrom01(float4 v, float4 low, float4 high) {
  return lerp(low, high, v);
}

260 808-00504-0000-004 
NVIDIA



Appendix C Nine Steps to High-Performance Cg
5. Use Data Types with Minimum Sufficient Precision
For profiles that support multiple precisions, a general rule of thumb is that if 
you can do a computation with fixed precision variables, the computation is 
faster than if you use half; and if you use half, the computation is faster than 
if you use float. Although sometimes you need the range and extra precision 
that half and float offer, you should avoid using them unless necessary.

6. Use the Right Standard Library Routines for Shading 
Computations

If you’re implementing a shading model (such as Lambertian, Blinn, or Phong), 
you’ll generally be performing some dot product routines, clamping negative 
results to zero, and raising some of the values to a power, to compute a specular 
exponent. There are a few tricks that can speed up this process:

Be sure to use the dot() function when computing dot products.
If you need to clamp the result of a dot product computation to the range 
[0,1] in a fragment program, use the saturate() function instead of 
max(). This is often written as max(0,dot(N,L)), but as long as the N and 
L vectors are normalized, this can be written equivalently as 
saturate(dot(N,L)) because the dot product of two normalized vectors 
is never greater than one. Given that saturate() is free in fragment 
programs (see “3. Use the Cg Standard Library” on page 259), this compiles 
to more efficient code.
Use the lit() Standard Library function, if appropriate. The lit() 
function implements a diffuse-glossy Blinn shading model. It takes three 
parameters:

The dot product of the normalized surface normal and the light vector
The dot product of a half-angle vector and the normal 
The specular exponent 

It returns a 4-vector, where
The x and w components are always one.
The y component is equal to the diffuse dot product or to zero if the 
product is less than zero.
The z component is equal to the specular dot product raised to the 
given exponent or to zero if the diffuse dot product was less than zero.

All this is done substantially more efficiently than if the corresponding 
operations were written out in Cg code.
 808-00504-0000-004 261
NVIDIA



Cg Language Toolkit
7. Take Advantage of the Different Levels of 
Computation Frequency

Always keep in mind the fact that fragment programs generally are executed 
many more times than vertex programs. Therefore, move computation from 
fragment programs into vertex programs whenever possible. Recall that varying 
outputs from vertex programs are automatically linearly interpolated before 
being passed to the fragment program.
There are three main cases where you can move computation from a fragment 
program into a vertex program:

The result is constant over all fragments
If the vertex shader computes a value that is the same for all vertices, so 
that all fragments receive the same value after interpolation, any 
computation that the fragment shaders do that is based solely on such 
values can be moved to the vertex shader (as long as it doesn’t require 
texture map lookups or other fragment-only operations).
The result is linear across a triangle.
If the fragment shader is computing a value that varies linearly over the face 
of the triangle (for example, the distance from the fragment to a light 
source, to be used for attenuation), the value can be computed in the vertex 
shader at each vertex, passed to the fragment shader, and automatically 
interpolated by the GPU along the way.
The result is nearly linear across a triangle.
When a value computed by a fragment shader varies slowly over triangles, it 
may be an acceptable approximation to compute its value at each vertex 
and use its linearly interpolated value in the fragment shader. For example, 
the usual Gouraud shading algorithm takes advantage of this situation to 
compute lighting per-vertex, rather than per-pixel.

In a similar manner, it may be advantageous to move any vertex shader 
computation that is solely dependent on the values of uniform parameters to 
the CPU and then to pass the result of the computation into the vertex shader 
with different uniform parameters. For example, if the vertex shader is passed a 
float3 vector giving the direction of a distant light source, the vector should be 
normalized on the CPU and passed to the vertex shader. This avoids the need 
to repeatedly and unnecessarily recompute normalize(lightvector) in the 
vertex shader.
262 808-00504-0000-004 
NVIDIA



Appendix C Nine Steps to High-Performance Cg
8. Avoid Matrix Transposes Just for Multiplication
Computing the transpose of a matrix can often be avoided. If you would like to 
multiply transposed float3x3 matrix m by a float3 v, 

is equivalent to and more efficient than 

9. Minimize Conditional Code in Fragment Programs
GPUs don’t currently support branching in fragment programs; a program with 
a large amount of code that is conditionally executed—for example in an if/
else expression—tends to run at the same speed as if all of it were executed. 
Therefore, if you have a large amount of conditional code and it is possible to 
evaluate the condition on the CPU, it may be advantageous to have multiple 
versions of the shader source code and to bind the one with the appropriate 
code path at run-time. 
An example of this situation would be a fragment shader that supported a 
generic light source model for shading. Depending on how its parameters were 
set, it might implement a point light, a spotlight, or a light source that projected 
a texture map to determine the light distribution. Rather than having a series of 
if/else tests to determine which light model to use, having a separate version 
of the shader for each light type is generally more efficient.

mul(v, m);

mul(transpose(m), v);
 808-00504-0000-004 263
NVIDIA



Cg Language Toolkit
264 808-00504-0000-004 
NVIDIA



Appendix D
Cg Compiler Options

This appendix describes the command-line options for the Cg compiler. What 
follows are the command-line options for the Cg compiler, cgc.exe:

-profile prof 
Compile for the prof profile.
-profileopts profopts 
Specify a comma-separated list of profile-specific options. See the profile 
specification for valid options.
-entry fname 
Specify the main function name as fname. 
-o fname 
Write the output to file fname.
-Dmacro[=value]
Define a macro, with optional value.
-Ipathname 
Specify path to an include directory.
-l filename 
Write compiler messages to filename rather than to standard output.
-strict
Enforce strict type checking.
-nofx
Do not treat CgFX keywords as reserved words.
-quiet 
Suppress printing the header to stdout.
-nocode   
Compile, but do not generate any code.
-nostdlib 
Do not include the stdlib.h header file before compilation.
808-00504-0000-004 265
NVIDIA



Cg Language Toolkit
-longprogs 
Allow code generation that is longer than a profile’s limit.
-debug 
Activate the debug() function.
-v    
Print the compiler’s version to stdout. 
-h 
Print a short help message.
-maxunrollcount N 
Set the maximum loop unroll count to N. Loops with greater than N 
iterations are not unrolled. Defaults to 256.
-posinv 
Generate a position-invariant vertex program if position invariance is 
supported by the current profile.
266 808-00504-0000-004 
NVIDIA



Index
A
abs() for performance 259
animation of geometry 146
anisotropic lighting

sample shader 134
vertex shader code example 135

ANSI C
differences from Cg 166
relation to Cg 165

arbfp1 profile 211
arbvp1 profile 204
arithmetic operators 14, 189
arithmetic precision 188
arithmetic range 188
array type, specification 172
arrays

declaration and use of 179
support of 12

B
binding semantics 183

defined 6
overview 183

Blinn-Phong Bump-Mapping 119
bool data type 11
bool type, specification 172
boolean operators 15, 189
built-in functions 19
bump dot3x2 diffuse and specular

pixel shader code example 138
sample shader 136
vertex shader code example 137

bump-reflection mapping
pixel shader code example 143
sample shader 140
vertex shader code example 141

C
C preprocessor

supporting 182
C++, relation to Cg 165
Car Paint 9

pixel shader code example 130
vertex shader code example 128

cfloat type, specification 172
Cg

brief tutorial 89
defined 1
language, introduction 1
necessity for xii
standard library functions 19

Cg compiler
cgc.exe 265
command-line options 265

Cg runtime 29
API specific 45
benefits 29
compiling 32
context creation 32
Direct3D 57

cgD3D9GetLastError() 87
CGerror 86
debugging mode 83
error callbacks 87
error testing 87
error types 85

Direct3D 
cgD3D9EnableDebugTracing() 85

Direct3D cgD3D9TranslateHRESULT() 87
Direct3D expanded interface 69

cgD3D8LoadProgram() 75
cgD3D8SetSamplerState() 73
cgD3D9BindProgram() 76
cgD3D9EnableParameterShadowing()
808-00504-0000-004 267
NVIDIA



Cg Language Toolkit
74
cgD3D9GetDevice() 70
cgD3D9GetLatestPixelProfile() 76
cgD3D9GetLatestVertexProfile() 76
cgD3D9GetOptimalOptions() 77
cgD3D9IsParameterShadowingEnable

d() 74
cgD3D9IsProgramLoaded() 76
cgD3D9LoadProgram() 74
cgD3D9SetDevice() 69
cgD3D9SetSamplerState() 73
cgD3D9SetTexture() 73
cgD3D9SetTextureWrapMode() 74
cgD3D9SetUniform() 72
cgD3D9SetUniformArray() 73
cgD3D9SetUniformMatrix() 72
cgD3D9SetUniformMatrixArray() 73
cgD3D9UnloadProgam() 76
Direct3D 8 application 81
Direct3D 9 application 78
Direct3D device 69
fragment program 77
lost devices 70
parameters 72

array 73
sampler 73
uniform 72

profile support 76
program executiion 74
vertex program 77

Direct3D HRESULT 86
Direct3D minimal interface 57

cgD3D8ResourceToDeclUsage() 61
cgD3D8ValidateVertexDeclaration()

60
cgD3D9ResourceToDeclUsage() 61
cgD3D9ValidateVertexDeclaration()

60
Direct3D 8 application 67
Direct3D 9 application 64
fragment program 63
type retrieval 63
vertex declaration 57
vertex declaration for Direct3D 8 58
vertex declaration for Direct3D 9 58

vertex program 63
header files 32
loading 32
modifying parameters 33
OpenGL 46

error reporting 57
OpenGL application 54
OpenGL parameter setting 46
parameter shadowing 46
program execution 33
releasing resources 34

Cg Runtime Library
overview 30

Cg standard library 19
Cg_Simple file 89
cgc.exe, Cg compiler 265
cgD3D9EnableParameterShadowing() 74
CGerror

Direct3D 86
OpenGL 57

cint type, specification 172
command-line options, Cg compiler 265
comparison operators 189

introduction 15
compilation profiles, use of 168
compiler options

command-line 265
-debug 266
-Dmacro 265
-entry 265
-h 266
-Ipathname 265
-l filename 265
-longprogs 266
-maxunrollcount 266
-nocode 265
-nofx 265
-nostdlib 265
-o 265
-profile 265
-profileopts 265
-quiet 265
-strict 265
-v 266

compile-time type category 174
268 808-00504-0000-004 
NVIDIA



 

computation frequency for performance 262
concrete type category 174
conditional code in fragment programs and 

performance 263
conditional operator 190
conditional operators 17
constants, typing of 174
construction operator, described 186
context

core Cg 35
control constructs used 13
core Cg context 35
core Cg runtime 34

D
data types

bool 11
fixed 11
float 10
half 11
int 11
sampler 11
supported 10

data types for performance 261
debugging function 28
declaration, Cg definition 168
definition, as used in Cg 168
derivative functions 27
Direct3D Cg runtime 57

cgD3D9EnableDebugTracing() 85
cgD3D9GetLastError() 87
cgD3D9TranslateHRESULT() 87
CGerror 86
debugging mode 83
error callbacks 87
error testing 87
error types 85
expanded interface 69

cgD3D8LoadProgram() 75
cgD3D8SetSamplerState() 73
cgD3D9BindProgram() 76
cgD3D9EnableParameterShadowing()

74
cgD3D9GetDevice() 70
cgD3D9GetLatestPixelProfile() 76

cgD3D9GetLatestVertexProfile() 76
cgD3D9GetOptimalOptions() 77
cgD3D9IsParameterShadowingEnable

d() 74
cgD3D9IsProgramLoaded() 76
cgD3D9LoadProgram() 74
cgD3D9SetDevice() 69
cgD3D9SetSamplerState() 73
cgD3D9SetTexture() 73
cgD3D9SetTextureWrapMode() 74
cgD3D9SetUniform() 72
cgD3D9SetUniformArray() 73
cgD3D9SetUniformMatrix() 72
cgD3D9SetUniformMatrixArray() 73
cgD3D9UnloadProgam() 76
Direct3D 8 application 81
Direct3D 9 application 78
Direct3D device 69
fragment program 77
lost devices 70
parameters 72

array 73
sampler 73
uniform 72

profile support 76
program executiion 74
vertex program 77

HRESULT 86
minimal interface 57

cgD3D8ResourceToDeclUsage() 61
cgD3D8ValidateVertexDeclaration()

60
cgD3D9ResourceToDeclUsage() 61
cgD3D9ValidateVertexDeclaration()

60
Direct3D 8 application 67
Direct3D 9 application 64
fragment program 63
type retrieval 63
vertex declaration 57
vertex declaration for Direct3D 8 58
vertex declaration for Direct3D 9 58
vertex program 63

Direct3D debug DLL, using 85
DirectX pixel shader 1.x profiles 227
DirectX pixel shader 2.x profile 200
808-00504-0000-004 269
NVIDIA



Cg Language Toolkit
DirectX vertex shader 1.1 profile 223
DirectX vertex shader 2.x profile 196
dot() for performance 259
dx8ps profile, deprecated 227

E
explicit casts

compile-time 177
numeric 177
numeric matrix 177
numeric vector 177

F
fixed data type 11
fixed type, specification 171
float data type 10
float type, specification 171
floating type category 174
for statements 185
fp20 profile 244
fp30 profile 218
fragment profiles

texture lookups 17
fragment program

predefined output structures 28
varying output 8

fragment program profiles 193
OpenGL ARB 211
OpenGL NV_fragment_program 218

fragment program, defined 2
fresnel 144

sample shader 144
vertex shader code example 144

function
calls 171
multiplying 15
open profile 170

function definitions
introduction 14

function overloading 181
introduction 14

functions
debugging 28
declaring 169
derivative 27

geometric 24
mathematical 19
overloading by profile 170
standard library 19
texture map 25

G
geometric functions 24
GL_ARB_vertex 204
global variables 182
graphics hardware, evolution of xi
grass

sample shader 146
vertex shader code example 146

H
half data type 11
half type, specification 171

I
if statements 185
inputs

uniform 5
varying 5

int data type 11
int type, specification 171
integral type category 174

J
Java, relation to Cg 165

L
language profiles

concept of 3

M
mathematical functions 19
matrices, multiplying 15
matrices, support of 11
matrix palette skinning 161

sample shader 161
vertex shader code example 162

matrix transposes and performance 263
melting paint
270 808-00504-0000-004 
NVIDIA



 

pixel shader code example 107
sample shader 105
vertex shader code example 105

min() for performance 259
miscellaneous operators 190
modifiable function parameters, passing 14
multipaint

pixel shader code example 111
sample shader 109
vertex shader code example 110

N
namespaces 179
numeric type category 174

O
object, Cg definition 168
open profile functions 170
OpenGL Cg runtime 46

error reporting 57
OpenGL application 54
parameter setting 46

OpenGL CGerror 57
OpenGL profiles

ARB fragment program 211
ARB vertex program 204
NV_fragment_program 218
NV_register_combiners 244
NV_texture_shader 244
NV_vertex_program 240
NV_vertex_program 2.0 214

operations
expressed differently from C 165

operator
enhancements 188
precedence 188

operators
arithmetic 14
boolean 15
conditional 17
introduction 13
swizzle 16
write-mask 16

P
packed, type modifier 172
parameter shadowing 46
parameters

modifiable function, passing 14
parameters in function definitions, syntax 171
performance techniques

abs() 259
avoiding matrix transposes 263
computation frequency 262
conditional code in fragment 

programs 263
data types 261
dot() 259
min() 259
saturate() 260
shading computations 261
swizzle 258
texture maps 260
vectorization 257

pixel program, defined 2
pixel shader, defined 2
position invariance 192
profile

arbfp1 211
arbvp1 204
fp20 244
fp30 218
ps_1_1, ps_1_2, ps_1_3 227
ps_2_0, ps_2_x 200
vp20 240
vp30 214
vs_1_1 223
vs_2_0, vs_2_x 196

profile, defined 3
program

declaring 4
kinds of inputs 5

program profiles
fragment 193
vertex 192

programming model, GPU 2
ps_1_x profile 227
ps_2_0 profile 200
ps_2_x profile 200
808-00504-0000-004 271
NVIDIA



Cg Language Toolkit
R
ray-traced refraction

pixel shader code example 116
sample shader 114
vertex shader code example 115

recursion, function 13
reflection vector 144
refraction

pixel shader code example 151
sample shader 149
vertex shader code example 150

release notes xiv
Renderman, relation to Cg 165
reserved words 191
runtime

core Cg 34

S
sampler data type 11
sampler type, specification 172
saturate() for performance 260
scalar type category 174
semantics

aliasing 184
restrictions 184

shader sample
anisotropic lighting 134
bump dot 3x2 diffuse and specular 136
bump-reflection mapping 140
fresnel 144
grass 146
improved skinning 98
improved water 101
matrix palette skinning 161
melting paint 105
multipaint 109
ray-traced refraction 114
refraction 149
shadow mapping 152
shadow volume extrusion 155
sine wave demo 158
skin 119

shader, simple.cg example 90
shaders

advanced profile samples 97

basic profile samples 133
shading computations for performance 261
shadow mapping 152

pixel shader code example 154
sample shader 152
vertex shader code example 153

shadow volume extrusion
sample shader 155
vertex shader code example 156

shadow volumes 155
silent incompatibilities with C 165
simple.cg

basic transformations 93
passing arguments 93

Sine function 146, 158
sine wave demo

sample shader 158
vertex shader code example 159

sinh(x) 23
skin

pixel shader code example 119
sample shader 119

skinning, improved
sample shader 98
vertex shader code example 99

smearing, scalar to vector 179
Stanford shading language, relation to Cg 165
statements

introduction 13
statements, in Cg 185
structures

introduction 12
swizzle

for performance 258
swizzle operator 16
swizzle operator, described 186

T
texture lookups 17
texture map functions 25
texture maps for performance 260
thin film effect

pixel shader code example 126
vertex shader code example 124

tutorial 89
272 808-00504-0000-004 
NVIDIA



 

type conversions 11, 176
array 177
matrix 176
scalar 176
structure 176
vector 176

type equivalency 178
type promotion 178

assignment 178
smearing 179

type qualifiers 175
const 175
in 175
out 175

types
general discussion 171
partial support 173

U
uniform inputs 5
uniform modifer, use of 169
uninitialized variables, use of 182

V
variables

global 182
uninitialized, use of 182

varying inputs 5
vector data types 11
vector operators, new 186
vectorization

for performance 257
vectors, constructing 15
vertex color 93
vertex position 93
vertex program

varying output 7
vertex program profiles 192
vertex programs, defined 2
void type, specification 172
vp20 profile 240
vp30 profile 214
vs_1_1 profile 223
vs_2_0 profile 196
vs_2_x profile 196

W
water, improved

pixel shader code example 104
sample shader 101
vertex shader code example 102

web site, NVIDIA xiv
while statements 185
workspace, loading 89
write-mask operator 16

described 187
808-00504-0000-004 273
NVIDIA



Cg Language Toolkit
274 808-00504-0000-004 
NVIDIA


	Foreword
	Preface
	Release Notes
	Online Updates

	Introduction to the Cg Language
	The Cg Language
	Cg’s Programming Model for GPUs
	Cg Language Profiles
	Declaring Programs in Cg
	Program Inputs and Outputs

	Working with Data
	Basic Data Types
	Type Conversions
	Structures
	Arrays

	Statements and Operators
	Control Flow
	Function Definitions and Function Overloading
	Arithmetic Operators from C
	Multiplication Functions
	Vector Constructor
	Boolean and Comparison Operators
	Swizzle Operator
	Write Mask Operator
	Conditional Operator
	Texture Lookups in Advanced Fragment Profiles
	More Details


	Cg Standard Library Functions
	Mathematical Functions
	Geometric Functions
	Texture Map Functions
	Derivative Functions
	Debugging Function
	Predefined Fragment Program Output Structures

	Using the Cg Runtime Library
	Introducing the Cg Runtime
	Benefits of the Cg Runtime
	Overview of the Cg Runtime

	Core Cg Runtime
	Core Cg Context
	Core Cg Program
	Core Cg Parameter
	Core Cg Error

	API-Specific Cg Runtimes
	Parameter Shadowing
	OpenGL Cg Runtime
	Direct3D Cg Runtime


	A Brief Tutorial
	Loading the Workspace
	Understanding simple.cg
	Program Listing for simple.cg
	Definitions for Structures with Varying Data
	Passing Arguments
	Basic Transformations
	Prepare for Lighting
	Calculating the Vertex Color
	Further Experimentation


	Advanced Profile Sample Shaders
	Improved Skinning
	Description
	Vertex Shader Source Code for Improved Skinning

	Improved Water
	Description
	Vertex Shader Source Code for Improved Water
	Pixel Shader Source Code for Improved Water

	Melting Paint
	Description
	Vertex Shader Source Code for Melting Paint
	Pixel Shader Source Code for Melting Paint

	MultiPaint
	Description
	Vertex Shader Source Code for MultiPaint
	Pixel Shader Source Code for MultiPaint

	Ray-Traced Refraction
	Description
	Vertex Shader Source Code for Ray-Traced Refraction
	Pixel Shader Source Code for Ray-Traced Refraction

	Skin
	Description
	Pixel Shader Source Code for Skin

	Thin Film Effect
	Description
	Vertex Shader Source Code for Thin Film Effect
	Pixel Shader Source Code for Thin Film Effect

	Car Paint 9
	Description
	Vertex Shader Source Code for Car Paint 9
	Pixel Shader Source Code for Car Paint 9


	Basic Profile Sample Shaders
	Anisotropic Lighting
	Description
	Vertex Shader Source Code for Anisotropic Lighting

	Bump Dot3x2 Diffuse and Specular
	Description
	Vertex Shader Source Code for Bump Dot3x2
	Pixel Shader Source Code for Bump Dot3x2

	Bump-Reflection Mapping
	Description
	Vertex Shader Source Code for Bump-Reflection Mapping
	Pixel Shader Source Code for Bump and Reflection Mapping

	Fresnel
	Description
	Vertex Shader Source Code for Fresnel

	Grass
	Description
	Vertex Shader Source Code for Grass

	Refraction
	Description
	Vertex Shader Source Code for Refraction
	Pixel Shader Source Code for Refraction

	Shadow Mapping
	Description
	Vertex Shader Source Code for Shadow Mapping
	Pixel Shader Source Code for Shadow Mapping

	Shadow Volume Extrusion
	Description
	Vertex Shader Source Code for Shadow Volume Extrusion

	Sine Wave Demo
	Description
	Vertex Shader Source Code for Sine Wave

	Matrix Palette Skinning
	Description
	Vertex Shader Source Code for Matrix Palette Skinning


	Appendix A Cg Language Specification
	Language Overview
	Silent Incompatibilities
	Similar Operations That Must be Expressed Differently
	Differences from ANSI C

	Detailed Language Specification
	Definitions
	Profiles
	The Uniform Modifier
	Function Declarations
	Overloading of Functions by Profile
	Syntax for Parameters in Function Definitions
	Function Calls
	Types
	Partial Support of Types
	Type Categories
	Constants
	Type Qualifiers
	Type Conversions
	Type Equivalency
	Type-Promotion Rules
	Namespaces
	Arrays and Subscripting
	Function Overloading
	Global Variables
	Use of Uninitialized Variables
	Preprocessor

	Overview of Binding Semantics
	Binding Semantics
	Aliasing of Semantics
	Restrictions on Semantics Within a Structure
	Additional Details for Binding Semantics
	How Programs Receive and Return Data
	Statements
	Minimum Requirements for if, while, and for Statements
	New Vector Operators
	Arithmetic Precision and Range
	Operator Precedence
	Operator Enhancements
	Operators
	Reserved Words

	Cg Standard Library Functions
	Vertex Program Profiles
	Mandatory Computation of Position Output
	Position Invariance
	Binding Semantics for Outputs

	Fragment Program Profiles
	Binding Semantics for Outputs


	Appendix B Language Profiles
	DirectX Vertex Shader 2.x Profiles (vs_2_*)
	Overview
	Memory
	Statements and Operators
	Data Types
	Using Arrays
	Bindings
	Options

	DirectX Pixel Shader 2.x Profiles (ps_2_*)
	Memory
	Language Constructs and Support
	Bindings
	Options
	Limitations in this Implementation

	OpenGL ARB Vertex Program Profile (arbvp1)
	Overview
	Accessing OpenGL State
	Position Invariance
	Data Types
	Compatibility with the vp20 Vertex Program Profile
	Loading Constants
	Bindings

	OpenGL ARB Fragment Program Profile (arbfp1)
	Memory
	Language Constructs and Support
	Bindings
	Options
	Limitations in the Implementation

	OpenGL NV_vertex_program 2.0 Profile (vp30)
	Position Invariance
	Language Constructs
	Bindings

	OpenGL NV_fragment_program Profile (fp30)
	Language Constructs and Support
	Bindings
	Pack and Unpack Functions

	DirectX Vertex Shader 1.1 Profile (vs_1_1)
	Memory Restrictions
	Language Constructs and Support
	Bindings
	Options

	DirectX Pixel Shader 1.x Profiles (ps_1_*)
	Overview
	Modifiers
	Language Constructs and Support
	Standard Library Functions
	Bindings
	Auxiliary Texture Functions
	Examples

	OpenGL NV_vertex_program 1.0 Profile (vp20)
	Overview
	Position Invariance
	Data Types
	Bindings

	OpenGL NV_texture_shader and NV_register_combiners Profile (fp20)
	Overview
	Restrictions
	Modifiers
	Language Constructs and Support
	Standard Library Functions
	Bindings
	Auxiliary Texture Functions
	Examples


	Appendix C Nine Steps to High-Performance Cg
	Appendix D Cg Compiler Options

