
Release Notes
Release 1.1
February 2003

Cg Language Toolkit
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED
“AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents or
other rights of third parties that may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical
components in life support devices or systems without express written approval of NVIDIA
Corporation.

Trademarks
NVIDIA and the NVIDIA logo are trademarks of NVIDIA Corporation.

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft
Corporation.

OpenGL is a trademark of SGI.

Other company and product names may be trademarks of the respective companies with which they
are associated.

Updates
Any changes, additions, or corrections will be posted at the NVIDIA Cg Web site:

 http://developer.nvidia.com/Cg

Refer to this site often to keep up on the latest changes and additions to the Cg language.

Copyright
Copyright NVIDIA Corporation 2002
NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

http://www.nvidia.com
http://developer.nvidia.com/Cg

808-00505-0000-004 1
NVIDIA

Cg Toolkit Release Notes

The Cg Toolkit, originally released in December 2002, supports 14 different
DirectX 8, DirectX 9, and OpenGL profile targets. The Cg Toolkit allows
developers to write Cg programs for a wide variety of hardware platforms and
graphics APIs.
Release 1.1 of the Cg Toolkit adds these benefits:

CgFX beta support for DirectX 8, DirectX 9, and OpenGL
Fixes for bugs in Release 1.0 (December 2002)
Additional optimizations

These benefits are described more fully in “Changes for Cg Toolkit Release 1.1”
on page 2.
Please report any bugs, issues, and feedback to NVIDIA by e-mailing
cgsupport@nvidia.com. We will expeditiously address any reported problems.

Supported Profiles and Runtime Libraries
The Cg compiler currently supports these profiles:

vs_1_1 for DirectX 8 and DirectX 9, targeting VertexShader VS 1.1
vs_2_0 and vs_2_x (known collectively as vs_2_*) for DirectX 9,
targeting VertexShader VS 2.0 and Extended VS 2.0
ps_1_1, ps_1_2, and ps_1_3 (collectively, ps_1_*) for DirectX 8 and
DirectX 9, targeting PixelShader PS 1.1, 1.2, and 1.3
ps_2_0 and ps_2_x (collectively, ps_2_*) for DirectX 9, targeting
PixelShader PS 2.0 and Extended PS 2.0
arbvp1 for OpenGL, targeting ARB_Vertex_Program 1.0
arbfp1 for OpenGL, targeting ARB_Fragment_Program 1.0
vp20 and vp30 for OpenGL, targeting NV_Vertex_program 1.0 and
NV_Vertex_program 2.0
fp30 for OpenGL, targeting NV_Fragment_Program 1.0

2 808-00505-0000-004
NVIDIA

Cg Language Toolkit

fp20 for OpenGL, targeting NV_register_combiners and
NV_Texture_shader

Cg includes these runtime libraries:
Core runtime library for parameter management and loading programs
Runtime library for applications based on DirectX 8
Runtime library for applications based on DirectX 9
Runtime library for applications based on OpenGL
CgFX beta runtime libraries for applications based on DirectX 8,
DirectX 9, and OpenGL.

In response to developer feedback, the Cg runtime libraries have been designed
to have an intuitive API with a clean and consistent interface and to expose new
features. To help the transition from the runtime API prior to that of
Cg Toolkit 1.0, a runtime transition guide has been included in this package.

Changes for Cg Toolkit Release 1.1

New Feature
The CgFX beta runtime libraries for DirectX 8, DirectX 9, and OpenGL. The
library supports vs_1_1, vs_2_0, vs_2_x, ps_2_0, ps_2_x, arbvp1, and
arbfp1 as compile targets.

Deprecated Feature
The mechanism to define connector structures using tags, such as
vertex2fragment or fragment2framebuffer, has been deprecated.

Fixed Bugs
Fixed compilation of discard statement with booleans so it generates
correct assembly.
Fixed clip() functionality.
Fixed pack*() and unpack*(), which are supported in fp30 only.
Input varying parameters may now be declared const.
Global variables are now initialized properly in vp30, arbfp1, and vp20.
Negation now works properly when used in conjunction with saturate().
COLOR semantic names are now consistent in arbvp1.

 808-00505-0000-004 3
NVIDIA

 Cg Toolkit Release Notes

Fixed parameter binding issues in arbvp1 and arbfp1.
Fixed problems with the assignment of arrays of sampler to texture units.
Improved the test for a texture unit being bound to multiple sampler
instances in ps_1_*.
Constant binding conflict issues have been fixed in ps_1_*.
Problems using uniform variables with the ternary operator have been
fixed in ps_1_*.
Fixed handling of scalar program output for vs_1_1.
Using glstate matrices and lights no longer produces invalid assembly.
CG_PROFILE_UNKNOWN may now be used in cgCreateProgram().
Fixed NULL pointer issue with cgGLSetParameterPointer().
Variants of cgGLGetMatrixParameterArray*() are now available in the
cgGL library.
Internal C++ symbols in runtime libraries are now hidden under Linux.

Known Issues and Unimplemented Features
The issues and features listed below will be addressed in future releases.

Features Not Yet Supported in the Preprocessor
The # and ## macro operators are not supported.

Known Issues in CgFX
CgFX is still in a developmental stage, and there are known issues. As CgFX
evolves and more functionality and more support for other platforms is added,
these known issues will be addressed. For more information on CgFX, please
refer to CgFX_Overview.pdf in the docs directory of the Cg Toolkit.

Known Issues in the Language Implementation
Error reporting
Some issues to be aware of are

Reported line numbers do not match source code lines when Standard
Library functions are used.
In some cases, errors are not reported in the order they appear in the
program.

4 808-00505-0000-004
NVIDIA

Cg Language Toolkit

Errors are not reported when constants are out of range for untyped
constants.
The wording of some error messages could be improved.

Work on these issues is in progress.
You should also take care not to use keywords as identifiers in your
programs. (Using in or out as a variable name is a common pitfall.) Errors
issued in such cases may be difficult to understand.
Unwritten out parameters contain undefined values, which can lead to bugs
in the application. The Cg compiler issues a warning in this case.
Side-effects in conditional expressions (?:) and logical expressions (&& and
||) are always evaluated, regardless of the condition. Currently, warnings
are not always issued and you need to watch out for these cases.
It is legal to overload Standard Library functions; the compiler does not
issue any warnings in this case. Hence, you need to watch out for conflicts
in names of user-defined and Standard Library functions.
Unless defined as static, const globals are not constant folded, which
may lead to inefficient code. However, static constant globals and locals are
constant folded. One way to avoid inefficient code is to use static constant
variables whenever possible.
There is no support for inout parameters to the entry function of a
program, but inout parameters to non-entry functions work well.
Semantics is not supported on varying array data. This should be fixed in
the next release.
All matrices are row-major only. Currently, column-major matrices are not
supported.
At most, one binding semantic per uniform variable is supported by the
compiler. Using multiple binding semantics per uniform variable where
each semantic is for a different profile is not supported.

Known Issues in the Runtime
The API entry point cgIsParameterReferenced() returns true even if a
parameter may not be referenced in the final compiled output.
In some cases, setting a parameter that is declared in a Cg program but
never referenced can cause the runtime to return an error.

 808-00505-0000-004 5
NVIDIA

 Cg Toolkit Release Notes

Known Issues in the ARB Fragment Program Profile
Accessing OpenGL state structure similar to the ARB vertex program
profile of Cg is not yet supported. This limitation can be somewhat
inefficiently overcome by setting explicit uniform parameters to OpenGL
state in an application.
This profile is still in a developmental stage because very limited
implementations of the ARB fragment program in OpenGL have been
available.

Known Issue in the ps_2_* Profiles
Writing to multiple color outputs is not yet supported.

Known Issues in the arbfp1, fp30, and ps_2_* Profiles
Conditional assignments to array elements and assignments in if/else
blocks to array elements do not work in all cases.
The % operator is not supported. Integer division is not fully emulated and
is implemented as floating-point division

Known Issue in the fp20 Profile
The FOG varying input semantic is not yet supported in this profile

Known Issues in the ps_1_* and fp20 Profiles
Because the underlying hardware support for the fp20 and ps_1_* profiles is
very limited and rigid, it is not always possible to compile some seemingly
simple Cg programs in these profiles. To learn more about the limitations of
these profiles, please read the presentations available at

For more details, please read the NV_register_combiners and
NV_texture_shader OpenGL extensions, or the DirectX PS 1.1, PS 1.2, and
PS 1.3 pixel shader specifications.

Known Issue in the Standard Library
The noise() family of functions in the Standard Library is not yet supported.

http://developer.nvidia.com/view.asp?IO=gdc2001_texture_shaders
http://developer.nvidia.com/view.asp?IO=gdc2001_programmable_texture

6 808-00505-0000-004
NVIDIA

Cg Language Toolkit

Other Do’s and Don'ts for Using the Compiler
Specify binding semantics for all varying data. Leaving it up to the compiler
to allocate resources to varying data with unspecified binding semantics can
cause unexpected results. One complicating factor is that it is legal to have
multiple input varying variables with the same binding semantic. Hence, it is
not always easy for the compiler to allocate resources the way you might
expect
Although partial writes to outputs are allowed in profiles that support them,
they are not recommended.
Avoid using unwritten out parameters in the program.

