<

RVIDIA.

Cg Toolkit

CgFX 1.2
Overview

CgFX 1.2
Overview

What is CgFX?

CgFX is a powerful and versatile shader specification and interchange format. The
CgFX Runtime, like Cg, supports OpenGL as well as DirectX 8 and DirectX 9. For
artists and developers of real-time graphics, this format provides several key benefits:

Cross-APlI, cross-platform compatibility and portability.

Encapsulation of multiple techniques, enabling fallbacks for level-of-detail,
functionality, or performance.

Support for Cg, assembly language, and fixed-function shaders.
Editable parameters and GUI descriptions embedded in the file.
Multipass shaders.

Render state and texture state specification.

In practical terms, by wrapping both Cg vertex programs and Cg fragment programs
together with render state, texture state, and pass information, developers can describe a
complete rendering effect in a CgFX file. Although individual Cg programs may contain
the core rendering algorithms necessary for an effect, only when combined with this
additional environmental information does the shader become complete and self-
contained. The addition of artist-friendly GUI descriptions and fallbacks enables CgFX
files to integrate well with the production workflow used by artists and programmers.

CgFX File Format Overview

The Cg language lets you easily express how an object should be rendered. Although
current Cg profiles describe only a single rendering pass, many shading techniques, such
as shadow volumes or shadow maps, require more than one rendering pass.

Many applications need to target a wide range of graphics hardware functionality and
performance. Thus, versions of shaders that run on older hardware, and versions that
aid performance for distant objects are important.

Each Cg program typically targets a single profile, and doesn’t specify how to fall back
to other profiles, to assembly-language shaders, or to fixed-function vertex or fragment
processing.

808- 00507- 0000- 000 2

CgFX 1.2 Overview

To generate images with Cg programs, some information about their environment is
needed. For instance, some programs might require alpha blending to be turned on and
depth writes to be disabled. Others may need a certain texture format to work correctly.
This information is not present in standard Cg source files.

CgFX addresses these kinds of issues through a text-based file containing Cg, assembly,
and fixed-function shaders, along with the render states and environment information
needed to render the effect. This text file syntax is similar to the Microsoft .fx 2.0
format (the DirectX 9.0 Effect format).

CgFX encapsulates, in a single text file, everything needed to apply a rendering effect.
This feature lets a third-party tool or another 3D application use a CgFX text file as is,
with no external information other than the necessary geometry and texture data. In this
sense, CgFX acts as an interchange format. CgFX allows shaders to be exchanged
without the associated C++ code that is normally necessary to make a Cg program work
with OpenGL or Direct3D.

Techniques

Each CgFX file usually presents a certain effect that the shader author is trying to
achieve—such as bump mapping, environment mapping, or anisotropic lighting. The
CgFX file contains one or more techniques, each of which describes a way to achieve the
effect. Each technique usually targets a certain level of GPU functionality, so a CgFX
file may contain one technique for an advanced GPU with powerful fragment
programmability, and another technique for older graphics hardware supporting fixed-
function texture blending. CgFX techniques can also be used for functionality, level-of-
detail, or performance fallbacks. For example:

ef fect myEffect Nane

t echni que Pi xel Shader Ver si on

{3

t echni que Fi xedFuncti onVersi on

Todis

t echni que LowDet ai | Ver si on
{.}:
i

An application can make queries about which techniques are present in an effect and can
choose an appropriate one at runtime, based on whatever criteria are appropriate.

Passes

Each technique contains one or more passes. Each pass represents a set of render states
and shaders to apply for a single rendering pass within a technique. For instance, the
first pass might lay down depth only, so that subsequent passes can apply an additive
alpha-blending technique without requiring polygon sorting.

Each pass may contain a vertex program, a fragment program, or both, and each pass
may use fixed-function vertex or pixel processing, or both. For example, a first pass
might use fixed-function pixel processing to output the ambient color. The next pass
could use a ps_1_1 fragment program, and pass 2 might use a ps_2_0 fragment

808- 00507- 0000- 000 3

CgFX 1.2 Overview

program. In practice, all passes within a technique typically use fixed-function
processing, or all use Cg or assembly programs. This method prevents depth-fighting
artifacts that can occur when the fixed-function and programmable parts of some GPUs
process the same data in different ways.

Render States

Each pass also contains render states such as alpha blending, depth writes, and texture
filtering modes, to name a few. For example:

pass firstPass

{
Dept hW it eEnabl e = true;
Al phaBl endEnabl e = fal se;
MnFilter[O] = Linear;
MagFilter[O] = Linear;
MpFilter[O] = Linear;
/1 Pixel shader witten in assenbly
Pi xel Shader = asm
ps.1.1
tex tO;
mov r0, tO;
b
&

Notice that CgFX, in addition to embedding Cg programs, allows you to encode
assembly-language vertex and fragment programs with the as mkeyword.

Variables and Semantics

Finally, the CgFX file contains global and per-technique Cg-style variables. These
variables are usually passed as uniform parameters to Cg functions, or as the value for a
render or texture state setting. For instance, a bool variable might be used as a uniform
parameter to a Cg function, or as a value enabling or disabling the alpha blend render
state:

bool Al phaBl endi ng = fal se;
fl oat bunpHei ght = 0. 5f;

These variables can contain a user-defined semantic, which helps applications provide
the correct data to the shader without having to decipher the variable names:

fl oat4x4 nyViewMatrix : ViewMatri x;
texture2D someTexture : DiffuseMap;

A CgFX-enabled application can then query the CgFX file for its variables and their
semantics.

Annotations

Additionally, each variable can have an optional annotation. The annotation is a per-
variable-instance structure that contains data that the effect author wants to
communicate to a CgFX-aware application, such as an artist tool. The application can

808- 00507- 0000- 000 4

CgFX 1.2 Overview

then allow the variable to be manipulated, based on a GUI element that is appropriate
for the type of annotation.

An annotation can be used to describe a user interface element for manipulating
uniform variables, or to describe the type of render target a rendering pass is expecting.

fl oat bunpHei ght
<

string gui = “slider”;
float uimn = 0.0f;
float uinax = 1.0f;
float wuistep = 0.1f;

> = 0. 5f;

The annotation appears after the optional semantic, and before variable initialization.

Applications can query for annotations, and use them to expose certain parameters to
artists in a CgFX-aware tool, such as Discreet’s 3ds max 5 or Alias|Wavefront’s Maya
45,

A Sample CgFX File

The example below shows a sample CgFX file that calculates basic diffuse and specular
lighting.

808- 00507- 0000- 000 5

CgFX 1.2 Overview

struct VS | NPUT

float4 vPosition : PGSITION,
float4 vNor nmal : NORMAL;
float4 vTexCoords : TEXCOORDO;

i
struct VS _OUTPUT

float4 vTexCoordO : TEXCOORDO;
float4 vDi ffuse : COLORO;
float4 vPosition : PGSITION,
float4 vSpecular : COLOR1;

}s

VS _QUTPUT nyvs(uni form fl oat 4x4 Mdel Vi ewPr oj ,
uni form f| oat 4x4 Mbdel Vi ew,
uni form fl oat 4x4 Model Vi ew T,
uni form fl oat 4x4 View T,
uni form fl oat 4x4 Vi ew,
const VS_I NPUT vin,
uni form fl oat4 |i ght Pos,
uni form float4 diffuse,
uni form fl oat 4 specul ar,
uni form fl oat 4 anbi ent)

VS_OUTPUT vout ;
float4 position = nul (Model Vi ew, vin.vPosition);

float4 normal = mul (Model Viewl T, vin.vNornmal);
float4 viewLi ght Pos = nmul (View, |ightPos);

float4 |ightvec = nornalize(viewLi ghtPos - position);
float4 eyevec = normal i ze(View T[3]) ;

float self_shadow = nmax(dot (normal, |ightvec), 0);

float4 halfangle = normalize(lightvec + eyevec);
float spec_term= max(dot(normal, halfangle), 0);

float4 diff_term = anbient + diffuse * self_shadow +
sel f_shadow * spec_term * specul ar;

vout.vDi ffuse = diff_term

vout . vPosi tion = mul (Mbdel Vi ewProj, vin.vPosition);

return vout;

}

float4x4 vit : ViemT;

float4x4 viewrat : View,

fl oat 4x4 nv : Worl dVi ew,

float4x4 nvit : Wrldview T;

fl oat 4x4 mvp : Worl dVi ewPr oj ecti on;

float4 diffuse : DIFFUSE = { 0.1f, 0.1f, 0.5f, 1.0f };
float4 specular : SPECULAR = { 1.0f, 1.0f, 1.0f, 1.0f };
fl oat 4 anbi ent : AMBIENT = { 0.1f, 0.1f, 0.1f, 1.0f };

float4 |lightPos : Position
<

string Cbject = "PointlLight";
string Space = "Wrld";
> = { 100.0f, 100.0f, 100.0f, 0.0f };

techni que t0

{
pass poO

808- 00507- 0000- 000 6

CgFX 1.2 Overview

Zenabl e = true;

ZWiteEnable = true;

Cul | Mode = None;

VertexShader = conmpile vs_1 1 myvs(nvp, m/, nmvit, vit,

vi ewmat, |ight Pos,
di ffuse, specul ar,
anmbi ent) ;

}
}

A Sample CgFX File

CgFX Runtime APl Overview

The CgFX Runtime API provides functions and interfaces for creating and using effects.
One of the key ideas in the API is the difference between an effect and an effect
compiler. Given a CgFX input file, either an effect object or an effect compiler object
can be created to represent the effect inside the file. The difference between the two is
that an effect represents a specialized version of the effect for use in a particular API
(OpenGL or Direct3D) and specialized for use in a particular rendering device. An
effect compiler represents the effect independently of any particular API. The effect
compiler therefore supports fewer operations than effects, though it does have a method
to create the effect that corresponds to it.

Effect Creation Functions

There are four creation methods, two for effects and two for effect compilers. For each
type, one takes a string holding the effect, and the other takes the path to a filename
holding the effect.

CgFXCr eat eEf f ect (LPCSTR pSrcData, const char *conpil erArgs,

| CgFXEf f ect **ppEffect, const char **ppConpil ati onErrors) —
Creates an effect from a string containing the effect source and stores it in
*ppEffect. Returns any compilation errors in ppConpi | ati onError s. Returns a
HRESULT success code.

CgFXCr eat eEf f ect FronFi | eA(LPCSTR pSrcFil e, const char
*conpi l er Args, | CgFXEffect **ppEffect, const char

**ppConpi | ati onErrors) — Creates an effect from a file containing the effect
source and stores it in *ppEffect. Returns any compilation errors in
ppConpi | ati onErrors. Returns a HRESULT success code.

CgFXCr eat eEf f ect Conpi | er (LPCSTR pSrcData, const char
*conpi | er Args, | CgFXEf f ect Conpi | er** ppEf fect Conpil er, const

char **ppConpil ationErrors) — Creates an effect compiler from a string
containing the effect source. Returns any compilation errors in
ppConpi | ati onErrors. Returns a HRESULT success code.

CgFXCr eat eEf f ect Conpi | er FronFi | eA(LPCSTR pSrcFil e, const char
*conpi | er Args, | CgFXEf f ect Conpi |l er** ppEffect Conpiler, const

char **ppConpil ationErrors) — Creates an effect compiler from a file
containing the effect source. Returns any compilation errors in
ppConpi | ati onErrors. Returns a HRESULT success code.

808- 00507- 0000- 000 7

CgFX 1.2 Overview

Device and Resource Management Functions

e (CgFXSet Devi ce(const char* pDevi ceType, LPVA D pDevi ce) — Set the
current device to be used for all subsequent effect invocations. The device types
supported are: “ Di rect 3D8”, “Direct 3D9” and “ Open@.”. The parameter
pDevi ce should contain a pointer to the particular (hardware) device.

* CgFXFreeDevi ce(const char* pDevi ceType, LPVO D pDevice) — Frees the
specified device for the particular device type. All resources associated with the
device are released.

e CgFXGetErrors(const char** ppErrors) — Gets the current error string.

Interfaces

There are three key interfaces in the CgFX API:

| CgFXBaseEf f ect — Base interface for | CgFXEf f ect and
| CgFXEf f ect Conpi | er. Pure base-class with no direct implementation.

| CgFXEf f ect — Interface derived from | CgFXBaseEf f ect . Represents a
device-specific effect. An object of type | CgFXEf f ect can be created from an
effect file through invocation of CgFXCr eat eEf f ect FronFi | eA() or from a
string via CgFXCr eat eEf f ect () .

| CgFXEf f ect Conpi | er — Interface derived from | CgFxBaseEf f ect .
Represents a device-independent effect. An object of this type can be created
from an effect file through invocation of

CgFXCr eat eEf f ect Conpi | er FronFi | eA() or from a string via

CgFXCr eat eEf f ect Conpi | er (). This provides a device-independent proxy for
an effect when one is needed. An object of this type can be used to create an

| CgFXEf f ect with a particular device by invoking the member function

Conpi | eEf f ect .

ICgFXBaseEffect Methods

One of the key ideas in the CgFX API is the notion of a handle. The CGFXHANDLE type
is an opaque data type that is returned from many CgFX routines. It can be tested for
NULL, which indicates that the routine that returned it failed for some reason, but
otherwise has no user-visible semantics. The handle then is passed into other routines
and acts as a reference to some item.

For example, | CgFxBaseEf f ect has two methods that return the handle representing
one of the techniques in an effect:

CGFXHANDLE Get Techni que(Ul NT i ndex) ;

CCGFXHANDLE Get Techni queByNane(LPCSTR nane) ;

The first method returns a handle to the nth technique in the effect, and the second
returns a handle to the named technique. If index is greater than the number of
techniques, or if there is no technique named name, the two respective methods return a
NULL handle.

Other API methods take handles as parameters. For example,

808- 00507- 0000- 000 8

CgFX 1.2 Overview

HRESULT Get Techni queDesc(CGFXHANDLE pTechni que,
CgFXTECHNI QUE_DESC* pDesc) ;

Returns information about a technique in a CgFXTECHNI QUE_DESC structure:

struct CgFXTECHNI QUE_DESC {
LPCSTR Nane;
Ul NT Annot ati ons;
U NT Passes;

b

The Get Techni queDesc() method must be passed a CGFXHANDLE to a technique that
was returned by Get Techni que() Or Get Techni queByNane().

In a similar manner, given the handle to a technique, there are methods to return the
handle to one of the passes in the technique:

CCGFXHANDLE Get Pass(CGFXHANDLE t echni que, Ul NT i ndex);
CGFXHANDLE Get PassByName(CGFXHANDLE t echni que, LPCSTR nan®) ;

These handles can be passed to the Get PassDesc() method, which returns information
about the pass in a structure.

HRESULT Get PassDesc(CGFXHANDLE pPass, CgFXPASS DESC* pDesc);

struct CgFXPASS _DESC {
LPCSTR Nane;
U NT Annot ati ons;
DWORD VSVer si on;
DWORD PSVer si on;
U NT VertexVaryi ngUsed;
CgFXVARYI NG Vert exVaryi ng[MAX_CGFX_DECL_LENGTH] ;
U NT Fragment Varyi ngUsed;
CgFXVARYI NG Fr agnent Var yi ng[MAX_CGFX_DECL_LENGTH] ;
U NT PSSanpl er sUsed;
CgFXSAMPLER | NFO PSSanpl er s[16] ;

b

There is also a method that returns information about the complete effect. No handle is
necessary, since the | CgBaseEf f ect pointer identifies the effect.

HRESULT Get Desc(CgFXEFFECT DESC* pDesc);

Some of the key functions provided by | cgBaseEf f ect implementations center around
parameter management. The values of parameters to the vertex and fragment programs
in the effect can be queried and set via these methods. First, there are four methods to
get the handles to parameters. The first parameter to each of them is a CGFXHANDLE,
which can either be NULL, indicating that a regular parameter is desired, or it can be the
handle to another parameter that is a structure, if the handle to a member of the
structure is wanted.

CGFXHANDLE Get Par anet er (CGFXHANDLE parent, U NT i ndex);

CCGFXHANDLE Get Par anet er ByNane(CGFXHANDLE par ent, LPCSTR nane);

CGFXHANDLE Get Par anet er BySenmant i ¢(CG-XHANDLE parent, LPCSTR nane);
CCGFXHANDLE Get Par anet er El enment (CGFXHANDLE parent, Ul NT el enent);

In the CgFX API, annotations are managed by many of the parameter-related methods
(e.g. getting and setting their values, querying their type, etc.). The first parameter to the
methods to get handles to annotations is a CGFXHANDLE to a parameter, a technique, or

808- 00507- 0000- 000 9

CgFX 1.2 Overview

a pass, giving the object that has the annotation. The second parameter identifies the
particular annotation attached to the particular entity.

CGFXHANDLE Get Annot at i on(CGFXHANDLE obj ect, U NT num ;
CCGFXHANDLE Get Annot at i onByName(CGFXHANDLE obj ect, LPCSTR nane);

These handles to parameters and to annotations can be used to get information about
the parameter or annotation:

HRESULT Get Par anmet er Desc(CGFXHANDLE pPar anet er,
CgFXPARAMETER DESC* pDesc) ;

This method returns information about it in a CgFXPARAMETER_DESC structure.

struct CgFXPARAMETER DESC {
LPCSTR Nane;
LPCSTR Senmanti c;
CgFXPARANMETERCLASS d ass;
CgFXPARAMETERTYPE Type;
U NT Rows, Col umms, El enents;
U NT Annot ati ons;
U NT Struct Menbers;
U NT Byt es;
DWORD Fl ags;

}s

Furthermore, these handles can be used to get and set the values of parameters via the
following methods. These methods will fail and return an error code in HRESULT if the
wrong number of array elements are passed or if the type of the parameter doesn’t
match the method used.

HRESULT Set Fl oat (CGFXHANDLE pNane, FLOAT f);
HRESULT Cet Fl oat (CGFXHANDLE pNane, FLOAT* f);
HRESULT Get Fl oat Array(CGFXHANDLE pName, FLOAT* f, U NT count);
HRESULT Set Fl oat Array(CGFXHANDLE pName, const FLOAT* f, U NT count);
HRESULT Get | nt (CGFXHANDLE pName, int *val ue);
HRESULT Set | nt (CGFXHANDLE pNane, int val ue);
HRESULT Get | nt Array(CGFXHANDLE pNane, int *val ue, U NT count);
HRESULT Set | nt Array(CGFXHANDLE pName, const int *value, U NT count);
HRESULT Set DWORD(CGFXHANDLE pNanme, DWORD dw) ;
HRESULT Get DWORD(CGFXHANDLE pNane, DWORD* dw) ;
HRESULT Set Bool (CGFXHANDLE pNane, bool bval ue);
HRESULT Get Bool (CGFXHANDLE pNane, bool * bval ue);
HRESULT Get Bool Array(CGFXHANDLE pNane, bool *bval ue, U NT count);
HRESULT Set Bool Array(CG-XHANDLE pNane, const bool *bval ue,

U NT count);

There are also specialized methods for setting the values of vector and matrix
parameters. Matrices can optionally be transposed before being bound to shaders.

808- 00507- 0000- 000 10

CgFX 1.2 Overview

HRESULT Set Vect or (CGFXHANDLE pNane, const float *pVector, U NT
vecSi ze) ;
HRESULT Get Vect or (CGFXHANDLE pNane, float *pVector, Ul NT vecSize);
HRESULT Set Vect or Arr ay(CGFXHANDLE pNane, const float *pVector,
U NT vecSi ze, U NT count);
HRESULT Get Vect or Array(CGFXHANDLE pNane, float *pVector,
U NT vecSi ze, U NT count);
HRESULT Set Matri x(CGFXHANDLE pNane, const float* pMatri x,
U NT nRows, Ul NT nCol s);
HRESULT Get Matri x(CGFXHANDLE pNane, float* pMatrix, U NT nRows,
U NT nCol s);
HRESULT Set Matri xArray(CGFXHANDLE pNane, const float* pMatri X,
U NT nRows, U NT nCols, U NT count);
HRESULT Get Matri xArray(CGFXHANDLE pName, float* pMatrix,
U NT nRows, U NT nCols, U NT count);
HRESULT Set Matri xTr anspose(CGFXHANDLE pNane, const float* pMatri X,
U NT nRows, Ul NT nCol s);
HRESULT Get Matri xTr anspose(CGFXHANDLE pNane, float* pMatri x,
U NT nRows, Ul NT nCol s);
HRESULT Set Matri xTr ansposeArr ay(CG-XHANDLE pNane,
const float *pMatrix, U NT nRows, U NT nCols, U NT count);
HRESULT Get Matri xTr ansposeArray(CGFXHANDLE pNane, float *pMatri x,
U NT nRows, U NT nCols, U NT count);

Finally, the following methods are used to set and get identifiers for parameters of the
appropriate type. The methods will fail if the type does not match that of the parameter.

HRESULT Set Text ur e(CGFXHANDLE pName, DWORD t ext ur eHandl e) ;
HRESULT Get Text ur e(CGFXHANDLE pName, DWORD* t ext ur eHandl e) ;
HRESULT Set Vert exShader (CGFXHANDLE pNarme, DWORD vsHandl e) ;
HRESULT Get Vert exShader (CG-XHANDLE pNane, DWORD* vsHandl e);
HRESULT Set Pi xel Shader (CGFXHANDLE pNane, DWORD psHandl e) ;
HRESULT Get Pi xel Shader (CGFXHANDLE pName, DWORD* psHandl e) ;

ICgFXEffect Members

A | cgFXEf f ect interface object can be used to manage and use techniques for
rendering. Not all of the techniques in an effect may be usable, so the

Val i dat eTechni que() method can be used to determine if a particular technique can
be run using the particular API being used and graphics hardware available on the
system.

HRESULT Val i dat eTechni que(CGFXHANDLE t echni que) ;
Validation can fail for any of the following reasons:
o Ifaninvalid state is used for any pass within the technique
o Ifaninvalid value is set for any state in any pass within the technique
0 If assembly vertex or pixel shaders do not compile for the particular device.
o Ifinvalid shaders are assigned to vertex or pixel shaders.

o If the device does not support the functionality required to implement an
effect. (For example, a DirectX8 device will not support vs_2_0and ps_2_0
shaders.)

808- 00507- 0000- 000 11

CgFX 1.2 Overview

It is possible to iterate through the valid techniques. If a NULL handle is passed in
hTechni que, the first valid technique is returned. Otherwise, the next valid technique
after hTechni que is returned.

HRESULT Fi ndNext Val i dTechni que(CGFXHANDLE hTechni que,
CCGFXHANDLE *pTechni que) ;

The current technique can be set by passing a technique’s handle to Set Techni que() .

HRESULT Set Techni que(CGFXHANDLE pTechni que) ;
CCGFXHANDLE Get Current Techni que() ;

After the current technique has been set with Set Techni que(), the technique’s passes
can be run in order. The Begi n() method prepares to run the technique; it returns the
total number of passes in pPasses. Before each pass, Pass() should be called with the
pass number before the geometry is drawn for that pass. After the last pass is finished,
the End() method should be called. CgFX automatically handles loading the
appropriate vertex and fragment shaders and/or setting up state in the fixed-function
pipeline before each pass.

HRESULT Begi n(Ul NT* pPasses, DWORD Fl ags);

HRESULT Pass(U NT passNum) ;
HRESULT End();

The d oneEf f ect () method creates a duplicate of the given effect. The new effect will
use the same device as that of the original. Device-specific entities such as texture and
shader handles will not be cloned and need to be set for the effect to provide a complete
replica.

HRESULT Cl oneEf f ect (| CgFXEf f ect ** ppNewEf f ect) ;
A few methods support device management for the Direct3D APIl. OnLost Devi ce()
releases all device-specific resources associated with the effect. OnReset Devi ce()

should be called if the application-provided device is reset, and nLost Devi ce()
should be called if it is lost.

HRESULT Get Devi ce(LPVO D* ppDevi ce) ;
HRESULT OnLost Devi ce() ;
HRESULT OnReset Devi ce();

ICgFXEffectCompiler Members

The | cgFXEf f ect Conpi | er interface only provides one method beyond those in the
base | CgFxBaseEf f ect interface—Conpi | eEf f ect (), which compiles the device-
independent | CgFXEf f ect Conpi | er to a device-specific | CgFXEf f ect .

HRESULT Conpi | eEf f ect (const char **conpil er Args,
| CgFXEf f ect ** ppEffect, const char** ppConpil ati onErrors);

Differences With Respect To Direct3D FX

CgFX provides similar functionality and uses a similar file format to the Direct3D FX
routines and file format. The main differences between them include:

CgFX supports additional profiles for shaders for OpenGL, including arbvpl,
arbfpl, vp20, vp30, fp20, and fp30.

808- 00507- 0000- 000 12

CgFX 1.2 Overview

CgFX does not support evaluating Cg functions and directly storing their results
into texture maps

Cg Plug-ins Supporting the CgFX Format

At the time of publication, Cg plug-ins are available for major digital content creation
(DCC) applications, such as Alias| Wavefront's Maya 4.5 and Discreet’s 3ds max 5,
which directly support the CgFX format.

The Cg Plug-in for 3ds max allows an artist to view and adjust the editable parameters of a
CgFX shader right from within 3ds max. All changes made to the shader settings are
displayed in real time in the native 3ds max viewports while running max under DirectX.
This affords the artist more direct control of real-time 3D shaders.

The Cq Plug-in for Maya also allows an artist to view and adjust the editable parameters of
a Cg shader “live,” right within Maya’s shading editor windows (such as the attribute
editor and animation graph windows). Again, changes made to the shader settings are
displayed in real time in Maya's OpenGL viewports.

Learning More About CgFX

CgFX-related software is available from the NVIDIA Cg Web site:
http://developer.nvidia.com/Cg

Refer to this site often to keep up with the latest applications, plug-ins, and other
software that leverages the CgFX file format. Information on how to report any bugs
you may find in the release is also available on this site. Also, see the DirectX 9.0 effect
reference documentation for additional specification details and examples.

808- 00507- 0000- 000 13

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS 1S.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.
Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright

© 2004 by NVIDIA Corporation. All rights reserved

<

RVIDIA.

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
www.nvidia.com

	CgFX 1.2�Overview
	What is CgFX?
	CgFX File Format Overview
	Techniques
	Passes
	Render States
	Variables and Semantics
	Annotations
	A Sample CgFX File

	CgFX Runtime API Overview
	Effect Creation Functions
	Device and Resource Management Functions
	Interfaces
	ICgFXBaseEffect Methods
	ICgFXEffect Members
	ICgFXEffectCompiler Members

	Differences With Respect To Direct3D FX
	Cg Plug-ins Supporting the CgFX Format
	Learning More About CgFX

