

Cg Toolkit

Cg 1.2
Release Notes

808-00505-0000-005 2

 Cg Toolkit Release Notes

The Cg Toolkit allows developers to write and run Cg programs using a wide variety of
hardware platforms and graphics APIs.

Originally released in December 2002, the Toolkit supports 14 different DirectX and
OpenGL profile targets. It provides a compiler for the Cg language, runtime libraries
for use with the OpenGL and DirectX graphics APIs, runtime libraries for CgFX,
example applications, and extensive documentation.

This 1.2 release of Cg introduces several significant new features:

! Interfaces, a language construct that facilitates the creation of general,
reconfigurable Cg programs, are now supported by the Cg compiler and runtime.

! Unsized arrays are now supported in the Cg compiler and runtime
! Parameter instances may be created and shared between multiple programs via

the Cg runtime.
! Parameters may be marked as compile-time constants via the Cg runtime, leading

to more efficient compiled code
Note that some of this new functionality is currently only supported when using the
CgGL OpenGL runtime library. The Direct3D-specific Cg runtime libraries currently
do not support shared parameters, for example.

An Addendum to the Cg Users’ Manual covering the new language and runtime features
is included in this release. In addition, documentation for the new runtime entry points
may be found in the docs/manuals directory. Example source code demonstrating the
use of some of these new features may be found in the examples/interfaces_ogl
directory.

The Cg 1.2 core, CgGL, and CgD3D runtime libraries are backward compatible with
those of the Cg 1.1 release, although some low-level implementation details have
changed. The vast majority of applications compiled under Cg 1.1 will work using the
Cg 1.2 runtime libraries without the need for recompilation.

The CgFX API has been substantially modified to provide better compatibility and
better support for OpenGL profiles. See the CgFX Overview document for more
details. The CgFX runtime libraries are not backward-compatible with previous releases
of CgFX.

Cg is available for a wide variety of hardware and OS platforms. Please visit the
NVIDIA Cg website at developer.nvidia.com/Cg for complete availability and
compatibility information.

Please report any bugs, issues, and feedback to NVIDIA by email at
cgsupport@nvidia.com. We will expeditiously address any reported problems.

http://developer.nvidia.com/Cg
mailto:cgsupport@nvidia.com

 Cg Release Notes

808-00505-0000-005 3

Supported Profiles and Platforms
The Cg compiler currently supports the following hardware profiles:

OpenGL
! arbvp1 (ARB_vertex_program 1.0)
! arbfp1 (ARB_fragment_program 1.0)
! vp30 (NV_vertex_program 2.0)
! fp30 (NV_fragment_program 1.0)
! vp20 (NV_vertex_program 1.0)
! fp20 (NV_register_combiners and NV_texture_shader)

DirectX 8 & 9
! vs_1_1 (Vertex Shader 1.1)
! ps_1_1, ps_1_2 and ps_1_3 (Pixel Shader 1.1, 1.2, 1.3)

DirectX 9
! vs_2_0 and vs_2_x (Vertex Shader 2.0 and Extended VS 2.0)
! ps_2_0, and ps_2_x/ps_2_a (Pixel Shader PS 2.0 and Extended PS 2.0)

The Cg Runtime libraries include:

! The Cg core runtime library for managing parameters and loading programs
! The CgGL runtime library for OpenGL based applications
! The CgD3D8 runtime library for DirectX 8 based applications
! The CgD3D9 runtime library for DirectX 9 based applications

The CgFX Runtime libraries include:

! The CgFX core/parser runtime library
! The CgFXGL library for OpenGL-based applications
! The CgFXD3D8 library for Direct3D 8-based applications
! The CgFXD3D9 library for Direct3D 9-based applications

 Cg Release Notes

808-00505-0000-005 4

Improvements & Bug Fixes

New features
! A new “MaxTexIndirections” profile option is now supported under the arbfp1

profile. If the indicated maximum is less than the maximum allowed number of
texture instructions, the Cg compiler will attempt to minimize the number of texture
indirections in the generated assembly program.

! Support for interfaces, a language feature that greatly simplifies the creation of
general, reconfigurable Cg programs, has been added to the compiler and core
runtime.

! Structures may contain methods, and may optionally implement a single interface.
! Program parameter instances may be created via runtime and shared between

multiple programs.
! A parameter may be “connected” to another, which causes it to inherit its value and

variability from other parameters. This feature provides “copy by reference”
parameter assignment and value setting.

! Parameter variability may be changed via the runtime, including marking uniforms as
compile-time constants (literals), allowing for more targeted and efficient compiled
programs.

! The core runtime now includes entry points for directly setting parameters.
! The CgGL runtime can now automatically enable texture parameters (by making

calls to cgGLEnableTextureParameter() when a program is bound. This
behavior is disabled by default, and may be toggled via the
cgGLSetManageTextureParameters() entry point.

! Many new core Cg API entry points have been added to support these new features.
See the Cg User Manual Addendum and on-line documentation for more details.

! The CgFX API has been changed substantially. Please see the CgFX Overview
document for details.

Improvements
! Compilation time for longer programs has been reduced.
! The compiler now performs more aggressive constant folding and constant

propagation. This often results in shorter, more efficient programs, especially in
cases where parameter variability is set to CG_LITERAL via
cgSetParameterVariability()

 Cg Release Notes

808-00505-0000-005 5

Removed features
! The original Cg core runtime API, previously deprecated in the Cg 1.1 release, is no

longer supported.

Bug Fixes
! Problems with the order of arguments to lerp() have been fixed.
! ps2.X assembly language constants are now printed in a higher-precision format.
! Reads of uninitialized values in vp2.X/vp30 assembly programs have been fixed.
! Problems accessing string annotations in CgFX using GetValue() have been fixed.
! Issues with negation range analysis in ps1.X profiles have been fixed.
! Fixed issue wherein incorrect texture unit could be referenced when using parameter

instances.
! cgGLSetParameterPointer() now takes a const pointer argument
! Fixed problem wherein compiler could ‘successfully’ compile some programs that

used more than the maximum number of temporary registers.
! Fixed problem with incorrect swizzles being generated when e.g. dot products were

interspersed with vector ops.
! Fixed issues with certain kinds of conditions in vertex programs.
! Fixed several issues with conditional matrix assignment
! Fixed bug wherein unrecognized function parameter qualifiers were silently ignored.
! Fixed scoping-related problems with identically-named variables
! Many smaller fixes and improvements

Known issues

Known runtime issues
! The CgD3D runtimes do not work in conjunction with the

cgSetParameter*() or cgConnectParameter() core entry points. As a
result, many of the new Cg 1.2 features, including parameter sharing and the use of
top-level interface parameters, are effectively not supported when using the CgD3D
runtimes.

! The cgIsParameterReferenced() entry point sometimes returns true even
if a parameter may not be referenced in the final compiled output.

! Setting a parameter that is declared but never referenced can sometimes cause the
runtime to return an error.

 Cg Release Notes

808-00505-0000-005 6

! The 1.2 Cg core runtime currently consumes more memory than the 1.1 runtime.

Known compiler issues
! Determining the length of a multidimensional array via “a[].length” is

currently not supported. Instead, the syntax “a[0].length” must be used.
! When using interfaces or unsized arrays, the compiler sometimes emits spurious

warnings about uninitialized variables.
! The compiler does not currently optimize instructions involving matrix parameters

whose variability is set to CG_LITERAL via the Cg core runtime.
! The # and ## preprocessor macro operators are not supported
! Some error and warning messages are less clear than we would like them to be. Some

of the issues to be aware of are:
" reported line numbers do not match source code lines when standard library

functions are being used,
" in some cases, errors are not reported in the order they appear in the program,
" errors are not reported when constants are out of range for untyped constants.

! Side effects in conditional (?:) and logical expressions (&& and ||) are always
evaluated, regardless of the condition; currently warnings are not always issued.

! Only one return statement is allowed per function.
! Return statements in if/for blocks are not supported.
! while loops, loops with multiple induction variables, and loops that use a ==

conditional test are not currently unrolled. In these cases, compilation errors will
result under profiles that do not support dynamic branching.

! All matrices are assumed to be row-major. Currently, column-major matrices are not
supported.

! At most one binding semantic per uniform variable is supported by the compiler.
Multiple profile-specific binding semantics per uniform variable are not supported.

! The % operator is not supported. Integer division is not fully emulated, and is
implemented as floating point division.

! Conditional assignments to arrays and matrices do not work in all cases.

Known profile-specific issues:

! Directly accessing the OpenGL state structure is not yet supported under the ARB
fragment program (arbfp1) profile. This limitation can be somewhat inefficiently
overcome by setting explicit uniform parameters to the OpenGL state in the
application.

! Some third-party graphics drivers use a conservative method for computing the
number of ‘indirect’ or ‘dependent’ texture reads in a compiled program. The Cg

 Cg Release Notes

808-00505-0000-005 7

compiler currently does not calculate the number of dependent texture reads in the
same way; and as a result, some drivers will sometimes fail to load compiled Cg
programs under the more recent fragment program profiles (e.g., arbfp1, ps_2_*).

! Writing to multiple color outputs is not yet supported under the ps_2_* profiles.
! Because the underlying hardware support for the fp20 and ps_1_* profiles is quite

limited and inflexible, it is not always possible to compile seemingly simple Cg
programs under these profiles. For more details on these limitations, please see the
NV_register_combiners, NV_texture_shader OpenGL extension specifications, or
the DirectX PixelShader 1.* specifications.

! The FOG varying input semantic is not yet supported under the fp20 profile.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility for
the consequences of use of such information or for any infringement of patents or other rights of third parties that may
result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA
Corporation. Specifications mentioned in this publication are subject to change without notice. This publication supersedes
and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as critical
components in life support devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation.

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft Corporation.

OpenGL is a trademark of SGI.

Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

Copyright © 2004 NVIDIA Corporation. All rights reserved.

	Cg Toolkit Release Notes
	Supported Profiles and Platforms
	
	
	OpenGL
	DirectX 8 & 9
	DirectX 9

	Improvements & Bug Fixes
	New features
	Improvements
	Removed features
	Bug Fixes

	Known issues
	Known runtime issues
	Known compiler issues
	Known profile-specific issues:

