A Developer’s Guide to Programmable Graphics

Release 1.4
September 2005

Cg Language Toolkit

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED
"AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH
RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes
no responsibility for the consequences of use of such information or for any infringement of patents or
other rights of third parties that may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. NVIDIA Corporation products are not authorized for use as critical
components in life support devices or systems without express written approval of NVIDIA
Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
United States and other countries.

Microsoft, Windows, the Windows logo, and DirectX are registered trademarks of Microsoft
Corporation.

OpenGL is a trademark of SGI.
Other company and product names may be trademarks of the respective companies with which they
are associated.

Updates
Any changes, additions, or corrections will be posted at the NVIDIA Cg Web site:

http://developer.nvidia.com/Cg
Refer to this site often to keep up on the latest changes and additions to the Cg language.

Copyright
© 2002—2005 NVIDIA Corporation. All rights reserved.

<
AVIDIA.

NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050
www.nvidia.com

http://www.nvidia.com
http://developer.nvidia.com/Cg

B e .“_\\—

//// \\\\\
- .

o Table of Contents
FOreWOrd. . . e Xiii
Preface XV

Release NOteS XVi
Online Updates.ot XVi

Introduction
tothe CgLanguageot e 1
The Cg Language oot e 2
Cg's Programming Model for GPUS 2
Cg Language Profiles 3
Declaring Programs in Cgottt e 5
Program Inputs and OULPULSo 5
Working with Data 11
BasiC Data TYPES . . o v ot it 11
TYPE CONVEISIONS . . o v ot e e e et e e e e e e e e e e e e e 12
Structures and Member Functions 13
AT Y S . . o e 14
Statements and OPerators.ottt 18
Control FIOoWo 19
Function Definitions and Function Overloading 19
Arithmetic Operators from C 20
Multiplication FUNCLIONS. 20
Vector CONSEIUCEON o e e e e e e e e e e e 21
Boolean and Comparison Operatorsottt e 21
Swizzle Operator 22
Write Mask Operator.ttt e e e e 22
Conditional Operator.ot e 22
Texture Lookups in Advanced Fragment Profiles 23
EffectS. . . o 24
Techniques 25
PaSSES. . . 26
State ASSIgNMENTS e 26
Parameters and Semantics 27
Vertex and Fragment Programsottt e 27
Textures and Samplers 29
Interfaces and Unsized Arrayso 29
Running Cg Programs onthe CPU e 30
808-00504-0000-006

NVIDIA

Cg Language Toolkit

ANNOLALIONS o e 32
More Details. e 32
Cg Standard Library Functions. e 33
Mathematical FUNCLIONS. e 33
Geometric FUNCLIONSo 38
Texture Map FUNCLIONS o e e e 38
Derivative FUNCLIONS e 41
Debugging FUNCLION e 41
Predefined Fragment Program Output Structures. 42
Introduction to the

CgRuntime Library 43
Introducing the Cg Runtime. e 43
Benefits of the Cg Runtime 44
Overview of the CQRuUNtimMe e e e 45
Core Cg RUNLIME e e 49
Core Cg CoNtext.ot e 50
Core Cg Program e 50
Core Cg Parameters 54
Core Cg Error Reporting oo ot 71
API-Specific Cg RUNLIMES. e e e e e 72
Parameter Shadowing 73
OpenGL Cg RUNtiMEo 73
Direct3D Cg RUNLIMEo e e 85
Introduction to COFX e 117
CORX OVBIVIBW . . . ot ot e e e e e e e 117
KeY CONCEPES . . . o o ot 117
Getting Started 118
Technique Validation. e 120
Passes and Pass State 120
Effect Parameters 121
Vertex and Fragment Programso u ittt e 121
Textures and Samplers e 123
Interfaces and UNnSized Arrays oot i e 125
Evaluating Cg Programs using the Virtual Machine 127
ANNOLAtIONS o e 128
OpPeNGL State e 129
OpenGL Sampler Stateo e 141
OpenGL State Not Specifiable with State Assignments 142
ABrief Tutorial 145
Loading the Workspace 145
Understanding Simple.Cgo 146
Program Listing for simple.cg. 147
Definitions for Structures with VaryingData 148
PasSiNg ArgUMENTS ot e 149

ii 808-00504-0000-006

NVIDIA

Basic Transformations. e e 149

Prepare for Lighting 150
Calculating the Vertex Color 151
Further Experimentation 152
Advanced Profile Sample Shaders. 153
Improved SKINNING oo 154
DesSCription 154
Vertex Shader Source Code for Improved Skinning 155
Improved Water e 157
DESCIPtION . . . 157
Vertex Shader Source Code for Improved Water 158
Pixel Shader Source Code for Improved Water 160
Melting Paint e 161
DesSCription 161
Vertex Shader Source Code for Melting Paint. 161
Pixel Shader Source Code for Melting Paint. 163
MUItiPaINt . . . 165
DeSCHIPtiON . . . o 165
Vertex Shader Source Code for MultiPaint. 166
Pixel Shader Source Code for MultiPaint 167
Ray-Traced Refraction e 170
DESCIIPtION . . . e 170
Vertex Shader Source Code for Ray-Traced Refraction 171
Pixel Shader Source Code for Ray-Traced Refraction 172
SKIN o 175
DesSCription e 175
Pixel Shader Source Code for SKin 175
Thin Film Effect 180
DESCIIPtION . . . o 180
Vertex Shader Source Code for Thin Film Effect. 180
Pixel Shader Source Code for Thin Film Effect. 182
Car Paint 9. 183
DesCription 183
Vertex Shader Source Code for CarPaint 9. 184
Pixel Shader Source Code for CarPaint 9 186
Basic Profile Sample Shaders 189
Anisotropic Lighting 190
DesSCription o 190
Vertex Shader Source Code for Anisotropic Lighting. 191
Bump Dot3x2 Diffuse and Specular e 192
DeSCriPtiON . . . o 192
Vertex Shader Source Code for Bump Dot3x2 193
Pixel Shader Source Code for Bump DOt3x2 i 194
Bump-Reflection Mapping oo e 196
DESCIIPtiON . . . 196
808-00504-0000-006

NVIDIA

Cg Language Toolkit

Vertex Shader Source Code for Bump-Reflection Mapping. 197
Pixel Shader Source Code for Bump and Reflection Mapping. 199
Fresnel e 200
DESCIIPtION . . . 200
Vertex Shader Source Code for Fresnel. 200
GlaSS. .« . e 202
DeSCriPtioN o 202
Vertex Shader Source Code for Grass ittt e e e 202
Refraction e 205
DESCIIPtION . . . 205
Vertex Shader Source Code for Refraction. 206
Pixel Shader Source Code for Refraction. 207
Shadow Mapping oo 208
DeSCriPtion o 208
Vertex Shader Source Code for Shadow Mapping. 209
Pixel Shader Source Code for Shadow Mapping 210
Shadow Volume EXtrusion 211
DESCIiPtiON . . . o e 211
Vertex Shader Source Code for Shadow Volume Extrusion 212
SineWave DEmMO e 214
DeSCription o 214
Vertex Shader Source Code for SineWave 215
Matrix Palette SKiNNiNg 217
DESCIiPtiON . . . o e 217
Vertex Shader Source Code for Matrix Palette Skinning. 218
Appendix A

Cg Language Specification i e 221
Language OVEIVIEWottt e e e e e 221
Silent Incompatibilities 221
Similar Operations That Must be Expressed Differently. 222
Differences from ANSI C 222
Detailed Language Specification. 224
DefiNitioNS 224
Profiles o e 225
The Uniform Modifier e 225
Function Declarations i e e 226
Overloading of Functions by Profile 226
Syntax for Parameters in Function Definitions 227
Function Calls e 228
Method Calls 228
INterfaces e 228

Ty S o e i 229
Partial Support of Types e 231
TYpe Categories oo ot e e 232
CONStANTS . . o e e 232

iv 808-00504-0000-006

NVIDIA

Type Qualifiers. 233

TYpe CONVEISIONS ot e e e e e e e e e e e e e 234
Type EqUIVAIENCY o 236
Type-Promotion RUIES. 236
NaMESPACES .« . . v ittt e e 237
Arrays and SUDSCHIPLING oot 238
UNSIZEA AITaYS . . . o ot e e e e e 239
Function Overloading 240
Global Variables 241
Use of Uninitialized Variables. 241
PrEPIOCESSOr .« o o o vt e e 241
Overview of Binding Semantics e 241
Binding SemantiCs 242
Aliasing of Semantics 243
Restrictions on Semantics Within a Structure 243
Additional Details for Binding Semantics. i 243
How Programs Receive and Return Data., 243
StatEMENTS 244
Minimum Requirements for if, while, and for Statements 244
New Vector Operators.ot e e 244
Arithmetic Precision and Range 246
Operator PreCedenceot 247
Operator Enhancements e 247
OPEIALOrS . . v it e e e 248
Reserved WOrds. 249
Cg Standard Library FUNCtions 250
Vertex Program Profiles. 250
Mandatory Computation of Position Qutput. 250
Position INvarianCe.o 250
Binding Semantics for QULPULS. oot e 251
Fragment Program Profiles 252
Binding Semantics for QUtpULS. 252
Appendix B
Language Profiles e 255
OpenGL ARB Vertex Program Profile (arbvpl) 256
OV IV W . . . ot e 256
Accessing OpenGL State 256
Position INvarianCe e 258
Data TYPES . . . o 258
Compatibility with the vp20 Vertex Program Profile. 259
Loading Constantsottt e 260
BINdiNgs o 260
OPIONS . . o e 262
OpenGL ARB Fragment Program Profile (arbfpl). 263
Accessing OpenGL State 263
808-00504-0000-006

NVIDIA

Cg Language Toolkit

MRT SUPPOIT . . . e 263
Resource LIMIts o 264
Language Constructs and SUpport 264
BiNdiNgS . . . o 265
OPtIONS . o et 266
OpenGL NV_vertex_program 3.0 Profile (vp40). i 267
Vertex TeXtUNNG o o ot e e e e e e 267
OpenGL NV_fragment_program 2.0 Profile (fp40). o .. 268
Branching 268
FACE SEmMantiC. oottt 269
OpenGL NV_vertex_program 2.0 Profile (vp30). oo 270
Position INvarianCe 270
Language CONSIIUCESo ittt e e e e 270
BiNdiNgS . . . o 271
OpenGL NV_fragment_program Profile (fp30) 274
Language Constructs and SUPpOrt e 274
BINdINgS 275
Pack and Unpack FUNCLIONSo 276
OpenGL NV_vertex_program 1.0 Profile (vp20). i 279
OVBIVIBW . . o . e 279
Position Invariance 279
Data TYPES . o vt e e e 279
BINdINgS 280
OpenGL NV_texture_shader and NV_register_combiners Profile (fp20). 283
OVBIVIBW . . o . e e e e 283
RESIICHIONS o 283
MOIfIErS . . o o 284
Language Constructs and SUPpOrto 285
Standard Library FUNCLIONS 286
BINdINgS 288
Auxiliary Texture FUNCLIONSo e 290
EXamples. 295
DirectX Vertex Shader 2.x Profiles (VS_2_*) i 296
OVEIVIBW . o o et et e e e e e e e e e e e e e 296
1YL= 0 T Y2 296
Statements and Operators.ttt 297
Data TYPES . . o e 297
USING AITAYS . . . o et it e e e e e e e e e 297
BiNdiNgS . . . o 298
OPIONS . . ot e 299
DirectX Pixel Shader 2.x Profiles (pS_2_*) i 300
MmOy . . o 300
Language Constructs and SUpport 301
BINdiNgS . . . o 302
OPLIONS . . o e e 303
vi 808-00504-0000-006

NVIDIA

Limitations in this Implementation. 303

DirectX Vertex Shader 1.1 Profile (vsS_1_1) e 304
Memory RestriCtioNS 304
Language Constructs and SUPPOrt ot 304
BINdiNgs o 306
OPtIONS . . o o 307

DirectX Pixel Shader 1.x Profiles (pS_1_*) o oo 308
OVBIVIBW . o e e 308
MOdIfiErS . . . 309
Language Constructs and SUPPOrt ot e 310
Standard Library FUNCLIONSo 311
BINdiNgs o 312
Auxiliary Texture FUNCLIONS e 315
EXamples 319

Appendix C

Nine Steps to High-Performance Cg. 321
Appendix D

Cg Compiler OpLioNS 329
INdeX. .o e 331
808-00504-0000-006

NVIDIA

Vi

Cg Language Toolkit

viii 808-00504-0000-006
NVIDIA

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

© 0N OAMODNRE

Fig.

=
o

Fig.

=
=

Fig.

=
N

Fig.

=
.

Fig.

=
»

Fig.

=
o

Fig.

=
o

Fig.

=
N

Fig.

=
o

Fig.

=
©

Fig.

N
o

Fig.

N
=

Fig.

N
N

Fig.

808-00504-0000-006

Cg’s Model of the GPU
The Parts of the Cg Runtime API
The Cg_Simple Workspace
The simple.cg Shader
Example of Improved Skinning
Example of Improved Water
Example of Melting Paint
Example of MultiPaint
Example of Ray-Traced Refraction
Example of Skin
Example of Thin Film Effect
Example of Car Paint 9
Example of Anisotropic Lighting

Example of Bump-Reflection Mapping
Example of Fresnel
Example of Grass

Example of Refraction
Example of Shadow Mapping
Example of Shadow Volume Extrusion
Example of Sine Wave
Example of Matrix Palette Skinning

Example of Bump Dot3x2 Diffuse and Specular

NVIDIA

Contents, Figures, and Tables

List of Figures

Cg Language Toolkit

List of Figures

X 808-00504-0000-006
NVIDIA

List of Tables

Table 1. Mathematical Functions. 34
Table 2. Geometric Functions oL 38
Table 3. Texture Map Functionso 39
Table 4. Derivative Functionso 41
Table 5. Debugging Functiono 42
Table 6. CgFX OpenGL State Manager States 130
Table 7. Enable/Disable States. 139
Table 8. sampler_state State Assignments 141
Table 9. Type Conversions. i it e e e e e 235
Table 10. Expanded Operators. o o e 247
Table 11. Vertex Output Binding Semantics. 251
Table 12. Fragment Output Binding Semantics 252
Table 16. arbvpl Uniform Input Binding Semantics 260
Table 17. arbvpl Varying Input Binding Semantics. 261
Table 18. arbvpl Varying Output Binding Semantics. 261
Table 19. arbfpl Uniform Input Binding Semantics 265
Table 20. arbfpl Varying Input Binding Semantics 265
Table 21. arbfpl Varying Output Binding Semantics. 265
Table 22. fp40 Compiler Branching Options 269
Table 23. vp30 Uniform Input Binding Semantics 271
Table 24. wvp30 Varying Input Binding Semantics 272
Table 25. vp30 Varying Output Binding Semantics 272
Table 26. fp30 Uniform Input Binding Semantics 275
Table 27. fp30 Varying Input Binding Semantics. 275
Table 28. fp30 Varying Output Binding Semantics 276
Table 29. vp20 Uniform Input Binding Semantics 280
Table 30. vp20 Varying Input Binding Semantics. 281
Table 31. vp20 Varying Output Binding Semantics 281
Table 32. NV_texture_shader and NV_register_combiners Instruction Set Modifiers . . . 285
Table 33. Supported Standard Library Functions 286
Table 34. Required Projective Texture Lookup Swizzles 288
808-00504-0000-006 xi

NVIDIA

Cg Language Toolkit

List of Tables

Table 35. fp20 Uniform Binding Semantics 289
Table 36. fp20 Varying Input Binding Semantics. 289
Table 37. fp20 Varying Output Binding Semantics 290
Table 38. fp20 Auxiliary Texture Functions 291
Table 39. vs_2_* Uniform Input Binding Semantics 298
Table 40. vs_2_* Varying Input Binding Semantics 298
Table 41. vs_2_* Varying Output Binding Semantics. 299
Table 42. ps_2_* Uniform Input Binding Semantics 302
Table 43. ps_2_* Varying Input Binding Semantics 302
Table 44. ps_2_* Varying Output Binding Semantics 302
Table 45. vs_1_1 Uniform Input Binding Semantics 306
Table 46. vs_1 1 Varying Input Binding Semantics. 306
Table 47. vs_1_1 Varying Output Binding Semantics. 307
Table 48. ps_1_x Instruction Set Modifiers 309
Table 49. Supported Standard Library Functions 311
Table 50. Required Projective Texture Lookup Swizzles 312
Table 51. ps_1_x Uniform Input Binding Semantics 313
Table 52. ps_1_x Varying Input Binding Semantics 314
Table 53. ps_1_x Varying Output Binding Semantics. 314
Table 54. ps_1_ x Auxiliary Texture Functions 315
Xii 808-00504-0000-006

NVIDIA

Foreword

We are in the midst of a great transition in computer graphics, both in terms
of graphics hardware and in terms of the visual quality and authoring
process for games, interactive applications, and animation. Graphics
hardware has evolved from “big iron” graphics workstations costing
hundreds of thousands of dollars to single-chip graphics processing units
(GPUs) whose performance and features have grown to match and now even
to exceed traditional workstations. The processing power provided by a
modern GPU in a single frame rivals the amount of computation that used to
be expended for an offline-rendered animation frame. Indeed, at the launch
of GeForce3 on the Apple Macintosh, a convincing version of Pixar’s Luxo, Jr.
was demonstrated running interactively in real-time. At the 2001 SIGGRAPH
conference, an interactive version of a more recent film, Square Studios’ Final
Fantasy, was shown running in real-time, again on a GeForce3.

Although these feats of computation are astounding, there is much more to
come. Today’s GPUs evolve very quickly. Typically, a product generation is
only six months long, and with each new product generation comes a two-
fold increase in performance. Graphics processor performance increases at
approximately three times the rate of microprocessors-Moore’s Law cubed!
In addition to the performance increases, each year brings new hardware
features, supported by new application programming interfaces (APIs). This
dizzying pace is difficult for developers to adapt to, but adapt they must.

Developers and users are demanding better rendering quality and more
realistic imagery and experiences. Users don’t care about the details; they
simply want games and other interactive applications to look more like
movies, special effects, and animation. Developers want more power (always
more), along with more flexibility in controlling the massively capable GPUs
of today and tomorrow. APIs do not, and cannot, keep up with the rapid
pace of innovation in GPUs. As APIs and underlying technologies change,
programmers, artists, and software publishers struggle to adapt to the
change and the churn of the hardware/software platform.

What's needed is to raise the level of abstraction for interaction with GPUs.
Continued updates and improvements to the hardware and APIs are too
painful if developers are too “close to the metal.” This problem was

808-00504-0000-006 Xiii
NVIDIA

Cg Language Toolkit

exacerbated by the advent of programmability in GPUs. Older GPUs had a
small number of controllable or configurable rendering paths, but the most
recent technology is highly programmable, and becoming ever more so. We
can now write short vertex and fragment programs to be executed by the
GPU. This requires great skill, and is only possible with short programs.

When GPU hardware grows to allow programs of hundreds, thousands, or
even more instructions, assembly coding will no longer be practical. Rather
than programming each rendering state, each bit, byte, and word of data and
control through a low-level assembly language, we want to express our ideas
in a more straightforward form, using a high-level language.

Thus Cg, “C for Graphics,” becomes necessary and inevitable. Just as C was
derived to expose the specific capabilities of processors while allowing
higher-level abstraction, Cg allows the same abstraction for GPUs. Cg
changes the way programmers can program: focusing on the ideas, the
concepts, and the effects they wish to create-not on the details of the
hardware implementation. Cg also decouples programs from specific
hardware because the language is functional, not hardware implementation-
specific. Also, since Cg can be compiled at run time on any platform,
operating system, and for any graphics hardware, Cg programs are truly
portable. Finally, and perhaps best of all, Cg programs are future-proof and
can adapt to run well on future products. The compiler can optimize directly
for a new target GPU that perhaps did not even exist when the original Cg
program was written.

This book is intended as an introduction to Cg, as well as a practical
handbook to get programmers started developing in Cg. It includes a
language description, a reference for the standard and run-time libraries, and
is full of helpful examples. The goal for this book is to be both an
introduction and a tool for the new user, as well as a reference and resource
for developers as they become more proficient.

Welcome to the world of Cg!

David Kirk
Chief Scientist

NVIDIA Corporation

Xiv 808-00504-0000-006
NVIDIA

The

Preface

goal of this book is to introduce to you Cg, a new high-level language for

graphics programming. To that end, we have organized this document into
the following sections:

a

808-00504-0000-006

“Introduction to the Cg Language” on page 1
A quick introduction to the current release of Cg, with everything you
need to know to start working it.

“Cg Standard Library Functions” on page 33
A list of the Standard Library functions, which can help to reduce your
program development time.

“Introduction to the Cg Runtime Library” on page 43
An introduction to the Cg runtime APIs, which allow you to easily
compile Cg programs and pass data to them from within applications.

“Introduction to CgFX” on page 117
The CgFX API, which supports this Cg extended file format, is described.

“A Brief Tutorial” on page 145

A description of a simple Cg program and Microsoft Visual Studio
workspace (both provided on the accompanying CD) that you can use to
start experimenting with Cg.

“Advanced Profile Sample Shaders” on page 153
A list of sample NV30 shaders, complete with source code.

“Basic Profile Sample Shaders” on page 189

A list of sample NV2X shaders, complete with source code.

Appendix A, “Cg Language Specification” on page 221

The formal Cg language specification.

Appendix B, “Language Profiles” on page 255

Describes features and restrictions of the currently supported language
profiles: DirectX 8 vertex, DirectX 8 pixel, OpenGL ARB vertex, NV2X
OpenGL vertex, NV30 OpenGL vertex, NV30 OpenGL fragment,

OpenGL ARB fragment, NV40 OpenGL vertex, and NV40 OpenGL
fragment.

XV
NVIDIA

Cg Language Toolkit

O Appendix C, “Nine Steps to High-Performance Cg” on page 321
Strategies for getting the most out of your Cg code.

O Appendix D, “Cg Compiler Options” on page 329
A list of the various command-line options that the Cg compiler accepts.

O Cg Developer’s CD
The CD provided with this book contains the entire Cg release, which
allows you get started immediately. The readme.txt file on the CD
describes the contents of the release in detail.

You can begin working with Cg immediately by reading the “Introduction to
the Cg Language” on page 1 and then going through “A Brief Tutorial” on
page 145. Once you have a basic understanding of the Cg language, use the
“Advanced Profile Sample Shaders” on page 153 and “Basic Profile Sample
Shaders” on page 189 as a basis to build your own effects.

Release Notes

Release notes for Cg are now contained in a separate document that is part of
the Cg distribution.

Please report any bugs, issues, and feedback to NVIDIA by e-mailing
cgsupport@nvidia.com. We will expeditiously address any reported
problems.

Online Updates

Any changes, additions, or corrections are posted at the NVIDIA Cg Web
site:

http://developer.nvidia.com/Cg

Refer to this site often to keep up on the latest changes and additions to the
Cg language. Information on how to report any bugs you may find in the
release is also available on this site.

XVi 808-00504-0000-006
NVIDIA

http://developer.nvidia.com/Cg

Introduction
to the Cg Language

Historically, graphics hardware has been programmed at a very low level.
Fixed-function pipelines were configured by setting states such as the
texture-combining modes. More recently, programmers configured
programmable pipelines by using programming interfaces at the assembly
language level. In theory, these low-level programming interfaces provided
great flexibility. In practice, they were painful to use and presented a serious
barrier to the effective use of hardware.

Using a high-level programming language, rather than the low-level
languages of the past, provides several advantages:

O A high-level language speeds up the tweak-and-run cycle when a shader
is developed. The ultimate test for a shader is “Does it look right?” To
that end, the ability to quickly prototype and modify a shader is crucial
to the rapid development of high-quality effects.

O The compiler optimizes code automatically and performs low-level
tasks, such as register allocation, that are tedious and prone to error.

O Shading code written in a high-level language is much easier to read and
understand. It also allows new shaders to be easily created by modifying
previously written shaders. What better way to learn than from a shader
written by the best artists and programmers?

Q Shaders written in a high-level language are portable to a wider range of
hardware platforms than shaders written in assembly code.

This chapter introduces Cg (C for Graphics), a high-level language tailored
for programming GPUs. Cg offers all the advantages just described, allowing
programmers to finally combine the inherent power of the GPU with a
language that makes GPU programming easy.

808-00504-0000-006 1
NVIDIA

Cg Language Toolkit

The Cg Language

Cg is based on C, but with enhancements and modifications that make it easy
to write programs that compile to highly optimized GPU code. Cg code looks
almost exactly like C code, with the same syntax for declarations, function
calls, and most data types.

Before describing the Cg language in detail, it is important to explain the
reason for some of the differences that exist between Cg and C.
Fundamentally, it comes down to the difference in the programming models
for GPUs and for CPUs.

Cg's Programming Model for GPUs

CPUs normally have only one programmable processor. In contrast, GPUs
have at least two programmable processors, the vertex processor and the
fragment processor, plus other non-programmable hardware units. The
processors, the non-programmable parts of the graphics hardware, and the
application are all linked through data flows. Cg’s model of the GPU is
illustrated by Fig. 1.

3D
Application
or Game
3D API

Commands

3D API:

OpenGL

or Direct3D
CPU - GPU Boundary
GPU
Command & .
Data Stream Assembled Pixel i
Vertex Index Polygons, Lines Location Pixel
Stream & Points Stream Updates
GPU) Primitive | o Rasterization & | mummmp Raster | ey Buffer

Front EndI Assembly Interpolation Operations Frame

Pretransformed Transformed Rasterized Transformed
Vertices Vertices Pretransformed Fragments
Fragments Pr bl
Programmable ‘;9"”“"“’ ey
Vertex Processol P::ﬂ;:i::

Fig. 1. Cg’s Model of the GPU

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

The Cg language allows you to write programs for both the vertex processor
and the fragment processor. We refer to these programs as vertex programs and
[fragment programs, respectively. (Fragment programs are also known as pixe/
programs or pixel shaders, and we use these terms interchangeably in this
document.) Cg code can be compiled into GPU assembly code, either on
demand at run time or beforehand.

Cg makes it easy to combine a Cg fragment program with a handwritten
vertex program, or even with the non-programmable OpenGL or DirectX
vertex pipeline. Likewise, a Cg vertex program can be combined with a
handwritten fragment program, or with the non-programmable OpenGL or
DirectX fragment pipeline.

Cg Language Profiles

Because all CPUs support essentially the same set of basic capabilities, the C
language supports this set on all CPUs. However, GPU programmability has
not quite yet reached this same level of generality. For example, the current
generation of programmable vertex processors supports a greater range of
capabilities than do the programmable fragment processors. Cg addresses
this issue by introducing the concept of language profiles. A Cg profile defines
a subset of the full Cg language that is supported on a particular hardware
platform or APIL The current release of the Cg compiler supports the
following profiles:

0 OpenGL ARB vertex programs
Runtime profile: CG_PROFILE_ARBVP1
Compiler option: -profile arbvpl

O OpenGL ARB fragment programs
Runtime profile: CG_PROFILE_ARBFP1
Compiler option: -profile arbfpl

0 OpenGL NV40 vertex programs
Runtime profile: CG_PROFILE_VP40
Compiler option: ~ -profile vp40

O OpenGL NV40 fragment programs
Runtime profile: CG_PROFILE_FP40
Compiler option: -profile fp40

O OpenGL NV30 vertex programs
Runtime profile: CG_PROFILE_VP30
Compiler option: -profile vp30

808-00504-0000-006 3
NVIDIA

Cg Language Toolkit

O OpenGL NV30 fragment programs
Runtime profile: CG_PROFILE_FP30
Compiler option: -profile fp30

0O OpenGL NV2X vertex programs
Runtime profile: CG_PROFILE_VP20
Compiler option: -profile vp20

O OpenGL NV2X fragment programs
Runtime profile: CG_PROFILE_FP20
Compiler option: -profile fp20

O DirectX 9 vertex shaders
Runtime profiles: CG_PROFILE_VS_2_X
CG_PROFILE_VS 2 0
Compiler options: -profile vs_2_x
-profile vs_2 0

O DirectX 9 pixel shaders
Runtime profiles: CG_PROFILE_PS_2_X
CG_PROFILE_PS 2 0
Compiler options: -profile ps_2_x
-profile ps_ 2 0

Q DirectX 8 vertex shaders
Runtime profile: CG_PROFILE_VS 1 1
Compiler option: -profile vs_1_1

O DirectX 8 pixel shaders
Runtime profiles: CG_PROFILE_PS_1_3
CG_PROFILE_PS 1 2
CG_PROFILE_PS_1 1
Compiler options: -profile ps_1_3
-profile ps_1_2
-profile ps_1 1
The DirectX 9 profiles (vs_2_x and ps_2_x), OpenGL ARB profiles (arbfpl
and arbvpl), NV30 OpenGL profiles (fp30 and vp30), and NV40 OpenGL
profiles (fp40 and vp40) generally support longer, more complex programs
and offer more features and functionality to the developer. These are referred
to as adpanced profiles.

The DirectX 8 profiles (vs_1_1 and ps_1_3) and NV2X OpenGL profiles
(fp20 and vp20) have more restrictions on program length and available

4 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

features, especially in fragment programs. These are referred to as basic
profiles.

See “Language Profiles” on page 255 for detailed descriptions of these
and related profiles.

Declaring Programs in Cg

Program

808-00504-0000-006

CPU code generally consists of one program specified by main() in C. In
contrast, a Cg program can have any name. A program is defined using the
following syntax:

<return-type> <program-name>(<parameters>)[: <semantic-name>]
{7 ...*}%

Inputs and Outputs

The programmable processors in GPUs operate on streams of data. The
vertex processor operates on a stream of vertices, and the fragment processor
operates on a stream of fragments.

A programmer can think of the main program as being executed just once on
a CPU. In contrast, a program is executed repeatedly on a GPU—once for each
element of data in a stream. The vertex program is executed once for each
vertex, and the fragment program is executed once for each fragment.

The Cg language adds several capabilities to C to support this stream-based
programming model. For new Cg programmers, these capabilities often take
some time to understand because they have no direct correspondence to C
capabilities. However, the sample programs later in this document
demonstrate that it really is easy to use these capabilities in Cg programs.

Two Kinds of Program Inputs
A Cg program can consume two different kinds of inputs:

Q Varying inputs are used for data that is specified with each element of the
stream of input data. For example, the varying inputs to a vertex
program are the per-vertex values that are specified in vertex arrays. For
a fragment program, the varying inputs are the interpolants, such as
texture coordinates.

Q Uniform inputs are used for values that are specified separately from the
main stream of input data, and don’t change with each stream element.
For example, a vertex program typically requires a transformation
matrix as a uniform input. Often, uniform inputs are thought of as
graphics state.

NVIDIA

Cg Language Toolkit

Varying Inputs to a Vertex Program

A vertex program typically consumes several different per-vertex (varying)
inputs. For example, the program might require that the application specify
the following varying inputs for each vertex, typically in a vertex array:

O Model space position
O Model space normal vector
O Texture coordinate

In a fixed-function graphics pipeline, the set of possible per-vertex inputs is
small and predefined. This predefined set of inputs is exposed to the
application through the graphics API. For example, OpenGL 1.4 provides the
ability to specify a vertex array of normal vectors.

In a programmable graphics pipeline, there is no longer a small set of
predefined inputs. It is perfectly reasonable for the developer to write a
vertex program that uses a per-vertex refractive index value as long as the
application provides this value with each vertex.

Cg provides a flexible mechanism for specifying these per-vertex inputs in
the form of a set of predefined names. Each program input must be bound to
a name from this set. In the following structure, the vertex program
definition binds its parameters to the predefined names POSITION, NORMAL,
TANGENT, and TEXCOORD3. The application must provide the vertex array data
associated with these predefined names.

struct myinputs {

float3 myPosition - POSITION;
float3 myNormal : NORMAL;
float3 myTangent = TANGENT;
float refractive_index : TEXCOORD3;

}:

outdata foo(myinputs indata) {
/* ../
// Within the program, the parameters are referred to as
// “indata.myPosition”, “indata.myNormal”, and so on.
/* ../

}

We refer to the predefined names as binding semantics. The following set of
binding semantics is supported in all Cg vertex program profiles. Some Cg
profiles support additional binding semantics.

POSITION BLENDWEIGHT
NORMAL TANGENT

6 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

BINORMAL PSI1ZE
BLENDINDICES TEXCOORDO—-TEXCOORD7

The binding semantic POSITIONO is equivalent to the binding semantic
POSITION; likewise, the other binding semantics have similar equivalents.

In the OpenGL Cg profiles, binding semantics implicitly specify the mapping
of varying inputs to particular hardware registers. However, in DirectX-
based Cg profiles there is no such implied mapping.

Binding semantics may be specified directly on program parameters rather
than on struct elements. Thus, the following vertex program definition is

legal:

outdata foo(float3 myPosition > POSITION,
float3 myNormal : NORMAL,
float3 myTangent - TANGENT,

float refractive_index : TEXCOORD3) {
VA 4
// Within the program, the parameters are referred to by
// their variable names: “myPosition”, “myNormal”,
// “myTangent”, and “‘refractive_index”.
/> .../
}

Varying Outputs to and from Vertex Programs

The outputs of a vertex program pass through the rasterizer and are made
available to a fragment program as varying inputs. For a vertex program and
fragment program to interoperate, they must agree on the data being passed
between them.

As it does with the data flow between the application and vertex program,
Cg uses binding semantics to specify the data flow between the vertex
program and fragment program.

This example shows the use of binding semantics for vertex program output:

// Vertex program
struct myvf {
float4 pout
float4 diffusecolor
float4 uvO
float4 uvl
}:
myvf foo(/* ... */) {
myvf outstuff;
/* ../

POSITION; // Used for rasterization
COLORO;

TEXCOORDO;

TEXCOORD1 ;

808-00504-0000-006 7
NVIDIA

Cg Language Toolkit

return outstuff;

}

And, this example shows how to use this same data as the input to a
fragment program:

// Fragment program
struct myvf {

float4 diffusecolor : COLORO;

float4 uvO - TEXCOORDO;

float4 uvl - TEXCOORD1;
};

fragout bar(myvf indata) {
float4 x = indata.uvO;
/> ../

}

The following binding semantics are available in all Cg vertex profiles for
output from vertex programs: POSITION, PS1ZE, FOG, COLORO—COLOR1, and
TEXCOORDO-TEXCOORD?.

All vertex programs must declare and set a vector output that uses the
POSITION binding semantic. This value is required for rasterization.

To ensure interoperability between vertex programs and fragment programs,
both must use the same struct for their respective outputs and inputs. For
example

struct myvert2frag {
float4 pos : POSITION;
float4 uv0 : TEXCOORDO;
float4 uvl TEXCOORD1;

3

// Vertex program
myvert2frag vertmain(...) {
myvert2frag outdata;
/* ../
return outdata;

}

// Fragment program

void fragmain(myvert2frag indata) {
float4 tcoord = indata.uvO;
VA 4

}

8 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Note that values associated with some vertex output semantics are intended
for and are used by the rasterizer. These values cannot actually be used in the
fragment program, even though they appear in the input struct. For
example, the indata.pos value associated with the POSITION fragment
semantic may not be read in the fragmain shader.

Varying Outputs from Fragment Programs

Binding semantics are always required on the outputs of fragment programs.
Fragment programs are required to declare and set a vector output that uses
the COLOR semantic. This value is usually used by the hardware as the final
color of the fragment. Some fragment profiles also support the DEPTH output
semantic, which allows the depth value of the fragment to be modified, and
some support additional color outputs for hardware that supports multiple
render targets (MRTs).

As with vertex programs, fragment programs may return their outputs in the
body of a structure. However, it is usually more convenient to either declare
outputs as out parameters:

void main(/* ... */,
out float4 color : COLOR, out float depth : DEPTH) {
/* ...*/
color = diffuseColor * /* __..*/;
depth = /*_.._.*/;
}
or to associate a semantic with the return value of the shader:
float4 main(/* ... */) : COLOR {
/* ... */
return diffuseColor * /* ... */;
s

The following example shows a simple vertex program that calculates
diffuse and specular lighting. Two structures for varying data, appin and
vertout, are also declared. Don’t worry about understanding exactly what
the program is doing —the goal is simply to give you an idea of what Cg code
looks like. “A Brief Tutorial” on page 145 explains this shader in detail.

// Define inputs from application.
struct appin

{
float4 Position - POSITION;
float4 Normal - NORMAL;
};
808-00504-0000-006 9

NVIDIA

Cg Language Toolkit

// Define outputs from vertex shader.
struct vertout
{
float4 HPosition
float4 Color

}:

POSITION;
COLOR;

vertout main(appin IN,
uniform float4x4 ModelViewProj,
uniform float4x4 ModelViewlT,
uniform float4 LightVec)

vertout OUT;

// Transform vertex position into homogenous clip-space.
OUT.HPosition = mul(ModelViewProj, IN.Position);

// Transform normal from model-space to view-space.
float3 normalVec = normalize(mul(ModelViewlT,
IN_Normal) .xyz);

// Store normalized light vector.
float3 lightVec = normalize(LightVec.xyz);

// Calculate half angle vector.
float3 eyeVec = float3(0.0, 0.0, 1.0);
float3 halfVec = normalize(lightVec + eyeVec);

// Calculate diffuse component.
float diffuse = dot(normalVec, lightVec);

// Calculate specular component.
float specular = dot(normalVec, halfVec);

// Use the lit function to compute lighting vector from
// diffuse and specular values.
float4 lighting = lit(diffuse, specular, 32);

// Blue diffuse material
float3 diffuseMaterial = float3(0.0, 0.0, 1.0);

// White specular material
float3 specularMaterial = float3(1.0, 1.0, 1.0);

// Combine diffuse and specular contributions and

10 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

// output final vertex color.
OUT.Color.rgb = lighting.y * diffuseMaterial +

lighting.z * specularMaterial;

OUT.Color.a = 1.0;

return OUT;

Working with Data

Like C, Cg supports features that create and manipulate data:

a

a
a
a

Basic types
Structures
Arrays

Type conversions

Basic Data Types
Cg supports seven basic data types:

a float
A 32-bit IEEE floating point (s23e8) number that has one sign bit, a 23-bit
mantissa, and an 8-bit exponent. This type is supported in all profiles,
although the DirectX 8 pixel profiles implement it with reduced
precision and range for some operations.

Q half
A 16-bit IEEE-like floating point (s10e5) number.

aQ int
A 32-bit integer. Profiles may omit support for this type or have the
option to treat int as Float.

a fixed
A 12-bit fixed-point number (s1.10) number. It is supported in all
fragment profiles.

Q bool
Boolean data is produced by comparisons and is used in if and
conditional operator (?:) constructs. This type is supported in all
profiles.

a sampler*

808-00504-0000-006 11

NVIDIA

Cg Language Toolkit

The handle to a texture object comes in six variants: sampler, sampleriD,
sampler2D, sampler3D, samplerCUBE, and samplerRECT. With one
exception, these types are supported in all pixel profiles, fragment
profiles, and the NV40 vertex program profile. The samplerRECT type is
not supported in the DirectX profiles.

a string
Although it is not possible to use strings in Cg program code for any
currently existing profile, they can be set and have their values queried
though the Cg runtime AP thus, they can be useful for storing
information about the contents of a Cg file.

Cg also includes built-in vector data types that are based on the basic data
types. A sample of these built-in vector data types includes (but is not limited
to) the following:

float4 float3 float2 floatl
bool4 bool3 bool2 booll

Additional support is provided for matrices of up to four-by-four elements.
Here are some examples of matrix declarations:

floatlxl matrixl; // One element matrix

float2x3 matrix2; // Two-by-three matrix (six elements)
float4x2 matrix3; // Four-by-two matrix (eight elements)
floatdx4 matrix4; // Four-by-four matrix (sixteen
elements)

Note that the multi-dimensional array float M[4][4] is not type-equivalent
to the matrix float4x4 M.

There are no unions or bit fields in Cg at present.

Type Conversions

12

Type conversions in Cg work largely as they do in C. Type conversions may
be explicitly specified using the C (newtype) cast operator.

Cg automatically performs type promotion in mixed-type expressions, just
as C does. For example, the expression floatvar * halfvar is compiled as
floatvar * (Float) halfvar.

Cg uses different type-promotion rules than C does in one case: A constant
without an explicit type suffix does not cause type promotion. CG compiles
the expression halfvar * 2.0 as halfvar * (half) 2.0.

In contrast, C would compile it as ((double) halfvar) * 2.0. Cg uses
different rules than C to minimize inadvertent type promotions that cause

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

computations to be performed in slower, high-precision arithmetic. If the C
behavior is desired, the constant should be explicitly typed to force the type
promotion: halfvar * 2_0f is compiled as ((float) halfvar) * 2.0f.

Cg uses the following type suffixes for constants:
Q f for float
Q h for half

Q x for fixed

Structures and Member Functions

Cg supports structures the same way C does. Cg adopts the C++ convention
of implicitly performing a typedef based on the tag name when a struct is
declared:

struct mystruct {
/> ... */ };
mystruct s; // Define “s” as a “mystruct”.

Structures may define member functions in addition to member variables.
Member functions provide a convenient way of encapsulating helper
functions associated with the data in the structure, or as a means of
describing the behavior of a data object.

Structure member functions are declared and defined within the body of the
structure definition:

struct Foo {
float val;
float helper(float x) {
return val + x;

}
}:

Member functions may reference their arguments or the member variables of
the structure in which they are defined. The result of referring to a variable
outside the scope of the enclosing structure (such as, global variables) is
undefined; instead, passing such variables as arguments to member
functions that need them is recommended.

Member functions are invoked using the usual “.” notation:

float4 main(uniform Foo myfoo, uniform float myval) : COLOR {
return myfoo.helper(myval);
¥

808-00504-0000-006 13
NVIDIA

Cg Language Toolkit

Arrays

14

Note that in the current release, member variables must be declared before
member functions that reference them; additionally, member functions may
not be overloaded based on profile.

Arrays are supported in Cg and are declared just as in C. Because Cg does
not support pointers, arrays must always be defined using array syntax
rather than pointer syntax:

// Declare a function that accepts an array
// of five skinning matrices.
returnType foo(float4x4 mymatrix[5]) {/* -.. */};

Basic profiles place substantial restrictions on array declaration and usage.
General-purpose arrays can only be used as uniform parameters to a vertex
program. The intent is to allow an application to pass arrays of skinning
matrices and arrays of light parameters to a vertex program.

The most important difference from C is that arrays are first-class types. That
means array assignments actually copy the entire array, and arrays that are
passed as parameters are passed by value (the entire array is copied before
making any changes), rather than by reference.

Unsized Arrays

Cg supports unsized arrays—arrays with one or more dimensions having no
specified length. This makes it possible to write Cg functions that operate on
arrays of arbitrary size. For example:

float myfunc(float vals[]) {

}

Here, myfunc() is declared to be a function of a single parameter, vals,
which is a one-dimensional array of floats. However, the length of the vals
array is not specified.

The effect of this declaration is that any subsequent call to myfunc() that
passes a one-dimensional array of floats of any size resolves to the declared
function. For example:

float myfunc(float vals[]) {

}

float4 main(...) {

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

float valsl[2];
float vals2[76];

float myvall
float myval2

myfunc(valsl); // match
myfunc(vals2); // match

) ‘e

The actual length of an array parameter (sized or unsized) may be queried
via the . length pseudo-member:

float myfunc(float vals[]) {
float sum = O;
for (int 1 = 0; 1 < vals.length; i++) {
sum += vals[i];

}

return sum;

}

The size of a particular dimension of a multidimensional array may be
queried by dereferencing the appropriate number of dimensions of the array.
For example, vals2d[0] - Iength gives the length of the second dimension of
the two-dimensional vals2d array:

float myfunc(float vals2d[]1[1]) {
float sum = 0;

for (int 1 = 0; i < vals2d.length; i++) {
for (int j = 0; i1 < vals2d[0].length; j++) {
sum += vals[i][i];
}
¥

return sum;

}

If the length of any dimension of an array parameter is specified, that
parameter only matches calls with variables whose corresponding
dimension is of the specified length. For example:

float func(float vals[6][]) {

)
float4 main(...) {
float vi[6][7]:

float v2[5][11];

float myvl = func(valsl); // match: 6 == 6

808-00504-0000-006 15
NVIDIA

Cg Language Toolkit

16

float myv2 = func(vals2); // no match: 5 I= 6
}

Unsized arrays may only be declared as function parameters—they may not
be declared as variables. Furthermore, in all current profiles, the actual array
length and address calculations implied by array indexing must be known at
compile time.

Unsized array parameters of top-level functions, such as, main(), may be
connected to sized arrays that are created in the runtime, or their size may be
set directly for convenience. See the cgSetArraySize() manual in the Cg
core runtime documentation for details.

Interfaces

Cg supports nterfaces, a language construct found in other languages,
including Java and C# (and in C++ as pure virtual classes). Interfaces provide
a means of abstractly describing the member functions a particular structure
provides, without specifying how those functions are implemented. When
used in conjunction with parameter instantiation by the Cg runtime, this
abstraction makes it possible to plug in any structure that implements a
given interface into a program —even if the structure was not known to the
author of the original program.

An interface declaration describes a set of member functions that a structure
must define in order to implement the named interface. Interfaces contain
only function prototype definitions. They do not contain actual function
implementations or data members. For example, the following example
defines an interface named Light consisting of two methods, illuminate()
and color():

interface Light {
float3 illuminate(float3 P, out float3 L);
float3 color(void);

L H
A Cg structure may optionally implement an interface. This is signified by
placing a “:” and the name of the interface after the name of the structure

being defined. The methods required by the interface must be defined within
the body of the structure. For example:

struct SpotLight : Light {
sampler2D shadow;
samplerCUBE distribution;
float3 Plight, Clight;
float3 illuminate(float3 P, out float3 L) {

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

L = normalize(Plight - P);
return Clight * tex2D(shadow, P).xxx *
texCUBE(distribution, L).xyz;
}
float3 color(void) {
return Clight;
}
}:
Here, the SpotLight structure is defined, which implements the Light
interface. Note that the i lluminate() and color() methods are defined
within the body of the structure, and that their implementations are able to
reference data members of the SpotLight structure (for example, Plight,
Clight, shadow, and distribution).

Function parameters, local variables, and global variables all may have
interface types. Interface parameters to top-level functions—such as
main() —must be declared as uniform.

A structure that implements a particular interface may be used wherever its
interface type is expected. For example:

float3 myfunc(Light light) {
float3 result = light_illuminate(.-..);

}

float4 main(uniform SpotLight spot) {
float3 color = myfunc(spot);

}

Here, the SpotLight variable spot may be used as a generic Light in the call
to myfunc(), because SpotLight implements the Light interface.

It is possible to declare a local variable of an interface type. However, a
concrete structure must be assigned to that variable before any of the

interface"s methods may be called. For example:
Light mylight;
SpotLight spot;
float3 color;
- /* initialize spot */ ...

color = mylight.illuminate(...); // Error
mylight = spot;
color = mylight.illuminate(...); // OK

808-00504-0000-006 17
NVIDIA

Cg Language Toolkit

Under all current profiles, the concrete implementation of all interface
method calls must be resolvable at compile time. There is no dynamic run-
time determination of which implementation to call under any current
profile.

See the interfaces_ogl example, included in the Cg distribution, for an
example of the use of interfaces.

Notes and Caveats

The following limitations may be addressed in future releases:

Q There is no inheritance per se in Cg: a structure may not inherit from
another structure.

Q Structures may only implement a single interface.
O Interfaces cannot be extended or combined.

Although there is no structure inheritance, it is possible to define a default
implementation of a particular interface method. The default
implementation can be defined as a global function, and structures that
implement that interface may then call this default method via a wrapper.

Note, also, that interface and structure parameters of top-level functions,
such as main(), may be connected to structures that are created in the
runtime. See the Cg runtime documentation for more details.

Statements and Operators

Cg supports the following types of statements and operators:
Control flow

Function definitions and function overloads

Arithmetic operators from C

Multiplication function

Vector constructor

Boolean and comparison operators

Swizzle operator

Write mask operator

0 00O 000 o0 o0

Conditional operator

18 808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Control Flow

Cg uses the following C control constructs:

Q Function calls and the return statement

a if/else
a while
a for

These control constructs require that their conditional expressions be of type
bool. Because Cg expressions like i <= 3 are of type bool, this change from
C is normally not apparent.

Profiles like vs_2_x, vp30, and vp40 support branch instructions, so for and
while loops are fully supported in these profiles. In other profiles, for and
while loops may only be used if the compiler can fully unroll them (that is, if
the compiler can determine the iteration count at compile time). Likewise,
return can only appear as the last statement in a function in these profiles.

Function recursion (and co-recursion) is forbidden in Cg.

The switch, case, and default keywords are reserved, but they are not
supported by any profiles in the current release of the Cg compiler.

Function Definitions and Function Overloading

To pass a modifiable function parameter in C, the programmer must
explicitly use pointers. C++ provides a built-in pass-by-reference mechanism
that avoids the need to explicitly use pointers, but this mechanism still
implicitly assumes that the hardware supports pointers. Cg must use a
different mechanism because the vertex and fragment hardware of the GPU
does not support the use of pointers. Cg passes modifiable function
parameters by value-result, instead of by reference. The difference between
these two methods is subtle; it is only apparent when two function
parameters are aliased by a function call. In Cg, the two parameters have
separate storage in the function, whereas in C++ they would share storage.

To reinforce this distinction, Cg uses a different syntax than C++ to declare
function parameters that are modified:

function blahl(out float x); // x is output-only
function blah2(inout float x); // x is input and output
function blah3(in float x); // x is input-only
function blah4(float x); // x is input-only (default, as in
©

808-00504-0000-006 19

NVIDIA

Cg Language Toolkit

Cg supports function overloading by the number of operands and by
operand type. The choice of a function is made by matching one operand at a
time, starting at the first operand. The formal language specification
provides more details on the matching rules, but it is not normally necessary
to study them because the overloading generally works in an intuitive
manner. For example, the following code declares two versions of a function,
one that takes two bool operands, and one that takes two float operands:

bool same(float a, float b) { return (a == b);}
bool same(bool a, bool b) { return (a == b);}

Arithmetic Operators from C

Cg includes all the standard C arithmetic operators (+, -, *, /) and allows the
operators to be used on vectors as well as on scalars. The vector operations
are always performed in elementwise fashion. For example,

float3(a, b, c) * float3(A, B, C) equals float3(a*A, b*B, c*C)

These operators can also be used in a form that mixes scalar and vector —the
scalar is “smeared” to create a vector of the necessary size to perform an
elementwise operation. Thus,

a * float3(A, B, C) isequal to float3(a*A, a*B, a*C)

The built-in arithmetic operators do #oz currently support matrix operands. It
is important to remember that matrices are not the same as vectors, even if
their dimensions are the same.

Multiplication Functions

20

Cg’s mul Q) functions are for multiplying matrices by vectors, and matrices
by matrices:

// Matrix by column-vector multiply
matrix-column vector: mul(M, v);

// Row-vector by matrix multiply
row vector-matrix: mul(v, M);

// Matrix by matrix multiply
matrix-matrix: mul(M, N);

It is important to use the correct version of mul (). Otherwise, you are likely
to get unexpected results. More detail on the mul () functions are provided
in “Cg Standard Library Functions” on page 33.

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Vector Constructor

Cg allows vectors (up to size 4) to be constructed using the following
notation:

y = x * float4(3.0, 2.0, 1.0, -1.0);

The vector constructor can appear anywhere in an expression. Furthermore,
vectors can be constructed from smaller vectors:

float2 a = ..._;
float4 b = float4(a, 0.0, 1.0);

Boolean and Comparison Operators

Cg includes three of the standard C boolean operators:

&& logical AND
Il logical OR
! logical negation

In C, these operators consume and produce values of type int, but in Cg
they consume and produce values of type bool. This difference is not
normally noticeable, except when declaring a variable that will hold the
value of a boolean expression. Cg also supports the C comparison operators,
which produce values of type bool:

< less than

<= less than or equal to

'= inequality

== equality

>= greater than or equal to
> greater than

Unlike C, Cg allows all boolean operators to be applied to vectors, in which
case boolean operations are performed in an elementwise fashion. The result
of such a boolean expression is a vector of bool elements with that number of
elements being the same as the two source vectors. Also unlike C, the logical
AND (&&) and logical OR (] |) operators cannot be used for short-circuiting
evaluation; side effects of both sides of these expressions always occur,
regardless of the value of the boolean expression.

808-00504-0000-006 21
NVIDIA

Cg Language Toolkit

Swizzle Operator

Cg has a swizgz/le operator (.) that allows the components of a vector to be
rearranged to form a new vector. The new vector need not be the same size as
the original vector —elements can be repeated or omitted. The characters x, y,
z, and w represent the first, second, third, and fourth components of the
original vector, respectively. The characters r, g, b, and a can be used for the
same purpose. Because the swizzle operator is implemented efficiently in the
GPU hardware, its use is usually free.

The following are some examples of swizzling:

float3(a, b, c).zyx yields float3(c, b, a)
float4(a, b, c, d).xxyy yields float4(a, a, b, b)
float2(a, b).yyxx vields float4(b, b, a, a)
float4(a, b, c, d).w yields d

The swizzle operator can also be used to create a vector from a scalar:
a.xxxx yields float4(a, a, a, a)

The precedence of the swizzle operator is the same as that of the array
subscripting operator ([]).

Write Mask Operator

The write mask operator (.) is placed on the left hand side of an assignment
statement. It can be used to selectively overwrite the components of a vector.
It is illegal to specify a particular component more than once in a write mask,
or to specify a write mask when initializing a variable as part of a
declaration.

The following is an example of a write mask:

float4(1.0, 1.0, 0.0, 0.0);
1.0; // Set alpha to 1.0, leaving RGB alone.

float4 color
color.a

The write mask operator can be a powerful tool for generating efficient code
because it maps well to the capabilities of GPU hardware. The precedence of
the write mask operator is the same as that of the swizzle operator.

Conditional Operator

22

Cgincludes C’s if/else conditional statement and conditional operator (?:).
With the conditional operator, the control variable may be a bool vector. If
so, the second and third operands must be similarly sized vectors, and
selection is performed on an elementwise basis. Unlike C, any side effects

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

associated with the second and third operands always occur, regardless of
the conditional.

As an example, the following would be a very efficient way to implement a
vector clamp function, if the min() and max() functions did not exist:

float3 clamp(float3 x, float minval, float maxval) {
X = (X < minval.xxx) ? minval . xxx I X;
X = (X > maxval .xxx) ? maxval .xxx I X;
return Xx;

}

Texture Lookups in Advanced Fragment Profiles

Cg’s advanced fragment profiles and the vp40 profile provide a variety of
texture lookup functions. Please note that Cg uses a different set of texture
lookup functions for basic fragment profiles because of the restricted pixel
programmability of that hardware. Basic fragment profile lookup functions
aren’t discussed in this introductory chapter.

Advanced fragment profile texture lookup functions always require at least
two parameters:

O Texture sampler
A fexture sampler is a variable with the type sampler, sampleriD,
sampler2D, sampler3D, samplerCUBE, or samplerRECT and represents
the combination of a texture image with a filter, clamp, wrap, or similar
configuration. Texture sampler variables cannot be set directly within the
Cg language; instead, they must be provided by the application as
uniform parameters to a Cg program.

QO Texture coordinate

Depending on the type of texture lookup, the coordinate may be a scalar,
a two-vector, a three-vector, or a four-vector.

The following fragment program uses the tex2D() function to perform a 2D
texture lookup to determine the fragment’s RGBA color.

void applytex(uniform sampler2D mytexture,

float2 uv = TEXCOORDO,
out floatd outcolor : COLOR) {
outcolor = tex2D(mytexture, uv);

}

Cg provides a wide variety of texture-lookup functions, a sample of which is
given below. For a complete list see “Texture Map Functions” on page 38.

808-00504-0000-006 23
NVIDIA

Cg Language Toolkit

a

Standard nonprojective texture lookup:
tex2D (sampler2D tex, float2 s);
texRECT (samplerRECT tex, float2 s);
texCUBE (samplerCUBE tex, float3 s);

Standard projective texture lookup:
tex2Dproj (sampler2D tex, float3 sq);
texRECTproj (samplerRECT tex, float3 sq)
texCUBEproj (samplerCUBE tex, float4 sq);

Nonprojective texture lookup with user-specified filter kernel size:
tex2D (sampler2D tex, float2 s,
float2 dsdx, float2 dsdy);
texRECT (samplerRECT tex, float2 s,
float2 dsdx, float2 dsdy);
texCUBE (samplerCUBE tex, float3 s,
float3 dsdx, float3 dsdy);

The filter size is specified by providing the derivatives of the texture
coordinates with respect to pixel coordinates x (dsdx) and y (dsdy). For
more information see “Texture Map Functions” on page 38.

Shadowmap lookup:

tex2Dproj (sampler2D tex, float4 szq);
tex2DRECT (samplerRECT tex, float4 szq);

In these functions, the z component of the texture coordinate holds a
depth value to be compared against the shadowmap. Shadowmap
lookups require the associated texture unit to be configured by the
application for depth compare texturing; otherwise, no depth
comparison is actually performed.

Effects

24

Cg includes a powerful, versatile shader specification and interchange
format: CgFX. For artists and developers of real-time graphics, this format
provides several key benefits:

a

Encapsulation of multiple rendering techniques, enabling fallbacks for
level-of-detail, functionality, and performance.

Support for Cg, assembly language, and fixed-function shaders.
Editable parameters and GUI descriptions embedded in the file.
Multipass shaders.

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

O Render state and texture state specification.

In practical terms, by wrapping both Cg vertex programs and Cg fragment
programs together with render state, texture state, and pass information,
developers can describe a complete rendering effect. Although individual Cg
programs may contain the core rendering algorithms necessary for an effect,
only when combined with this additional environmental information does
the shader become complete and self-contained. The addition of artist-
friendly GUI descriptions and fallbacks enables CgFX files to integrate well
with the production workflow used by artists and programmers.

CgFX encapsulates, in a single text file, everything needed to apply a
rendering effect. This feature lets a third-party tool or another 3D application
use a CgFX text file as is, with no external information other than the
necessary geometry and texture data. In this sense, CgFX acts as an
interchange format. CgFX allows shaders to be exchanged without the
associated C++ code that is normally necessary to make a Cg program work
with OpenGL or Direct3D. It addresses the following four issues:

O The Cglanguage lets you easily express how an object should be
rendered. Although current Cg profiles describe only a single rendering
pass, many shading techniques, such as shadow volumes or shadow
maps, require more than one rendering pass.

O Many applications need to target a wide range of graphics hardware
functionality and performance. Thus, versions of shaders that run on
older hardware, and versions that aid performance for distant objects are
important.

O Each Cg program typically targets a single profile, and doesn't specify
how to fall back to other profiles, to assembly-language shaders, or to
fixed-function vertex or fragment processing.

O To generate images with Cg programs, some information about their
environment is needed. For instance, some programs might require
alpha blending to be turned on and depth writes to be disabled. Others
may need a certain texture format to work correctly. This information is
not present in standard Cg source files.

Techniques

Each CgFX file usually presents a certain effect that the shader author is
trying to achieve—such as bump mapping, environment mapping, or
anisotropic lighting. The CgFX file contains one or more techniques, each of
which describes a way to achieve the effect. Each technique usually targets a

808-00504-0000-006 25
NVIDIA

Cg Language Toolkit

Passes

certain level of GPU functionality, so a CgFX file may contain one technique
for an advanced GPU with powerful fragment programmability, and another
technique for older graphics hardware supporting fixed-function texture
blending. CgFX techniques can also be used for functionality, level-of-detail,
or performance fallbacks. For example:

technique PixelShaderVersion

{.};

technique FixedFunctionVersion

{.}:

technique LowDetailVersion

{.};

An application can make queries about which techniques are present in an
effect and can choose an appropriate one at runtime, based on whatever
criteria are appropriate.

Each technique contains one or more passes. Each pass represents a set of
render states and shaders to apply for a single rendering pass within a
technique. For instance, the first pass might lay down depth only so that
subsequent passes can apply an additive alpha-blending technique without
requiring polygon sorting.

Each pass may contain a vertex program, a fragment program, or both, and
each pass may use fixed-function vertex, pixel processing, or both. For
example, a first pass might use fixed-function pixel processing to output the
ambient color. The next pass could use an fp30 fragment program, and pass
three might use an arbfp1l fragment program.

State Assignments

26

Each pass also contains render state assignments such as alpha blending,
depth writes, and texture filtering modes, to name a few. For example:

pass FfirstPass {
DepthTestEnable = true;
DepthFunc = Less;
AlphaTestEnable = true;
AlphaFunc = float2(Equal, 0);

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Parameters and Semantics

The CgFX file also contains global Cg parameters. These variables are usually
passed as uniform parameters to Cg functions, or as the values for render or
texture state settings. For instance, a bool variable might be used as a
uniform parameter to a Cg function, or as a value enabling or disabling the
alpha blend render state:

bool AlphaBlending
float bumpHeight

false;
0.5F;

These variables can contain a user-defined semantic, which helps
applications provide the correct data to the shader without having to
decipher the variable names:

float4x4 myViewMatrix : ViewMatrix;
texture2D someTexture : DiffuseMap;

A CgFX-enabled application can then query the CgFX file for its variables
and their semantics.

Vertex and Fragment Programs

With the OpenGL state manager, vertex and fragment programs are defined
via assignments to the VertexProgram and FragmentProgram states,

respectively. Three different types of expressions can be on the right-hand
side of these program types:

O Compile statements
O In-line assembly
0 NULL

These three possibilities are demonstrated in the effect file below:

float4 main(uniform float foo, float4 uv : TEXCOORDO) : COLOR{
return (foo > 0) ? uv : 2 * uv;
}

technique SimpleFrag {
pass {
VertexProgram = NULL;
FragmentProgram = compile arbfpl main(-2.T);
}
}

technique AsmFrag {
pass {

808-00504-0000-006 27

NVIDIA

Cg Language Toolkit

28

FragmentProgram = asm {

11FP1.0
TEX Oo[COLR], {0}.x, TEX6, 2D;

END
}:
}

Compile statements are generally the most commonly used of these three
options for specifying programs. They take the profile that the program is to
be compiled to (fp30, fp40, arbfpl, vp20, and so on), the name of the
function in the effect file to be compiled, and a list of expressions (-2. f in the
above example). These expressions have a one-to-one correspondence with
the uniform parameters of the program being compiled —there must be
exactly one for each uniform program parameter.

In the example above, the expression -2. f sets the value of the foo
parameter to main(). Because it is using a literal value, CgFX is able to
compile the shader into a particularly efficient version that just includes
returning the uv value.

Inline assembly is given with the asm keyword, with the assembly language
code between braces as in the example above. CgFX depends on having the
appropriate header at the start of the assembly — 1 1FP1.0" for fp30,
11ARBvp1.0 for arbvpl, and so on—to determine which assembly profile the
code is given in.

It is also possible to include effect parameters in the expression used in the
compile statement. For example:

float4 main(uniform float foo, float4 uv : TEXCOORDO) : COLOR{
return (foo > 0) ? uv : 2 * uv;

}

float bar;

technique NewSimpleFrag {
pass {
VertexProgram = NULL;
FragmentProgram = compile arbfpl main(2 * bar);

}
}

Here, the value 2*bar is associated with the foo parameter of main(). When
the value of bar is changed by the application, the value of foo in main() is
set appropriately.

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

Finally, vertex or fragment programs may be assigned the value NULL in the
state assignment. This signifies that no program should be used in this pass.

Textures and Samplers

CgFX makes it possible to define state related to textures in the effect file. The
short effect file below shows an example.

sampler2D samp = sampler_state {
generateMipMap = true;
minFilter = LinearMipMapLinear;
magFilter = Linear;

};

float4 texsimple(uniform sampler2D sampler,
float2 uv : TEXCOORDO) : COLOR {
return tex2D(sampler, uv);

¥
technique TextureSimple {
pass {
FragmentProgram = compile arbfpl texsimple(samp);
}

}

Interfaces and Unsized Arrays

CgFX also supports Cg's interfaces and unsized arrays features. Given an
effect file with Cg programs that use these features, the compile statement
can be used in two different ways to resolve the interfaces and unsized arrays
so that the program can be compiled.

Consider the following example: a Light interface has been defined with
SpotLight implementing the interface. The main() program takes an
unsized array of Light interface objects, loops over them, and returns the
sum of the values returned by their respective value() methods.

interface Light {
float4d value();

}:

struct SpotLight : Light {
float4d value() { return float4(1,2,3,4); }
}:

float4 main(uniform Light I[]) : COLOR {

808-00504-0000-006 29
NVIDIA

Cg Language Toolkit

float4 v = float4(0,0,0,0);

for (int i = 0; 1 < l_length; ++1)
v += I[1]-value(Q;

return v;

}

Recall that all uniform parameters to the program must have expressions in
the parenthesized list in the compile statement and, therefore, one expression
is necessary here for the one parameter. The first way that main() can be
compiled is to give the name of an effect parameter that resolves both the
actual size of the array as well as the concrete type that implements the
Light interface:

SpotLight spots[4];

technique {
pass {
FragmentProgram = compile arbfpl main(spots);
s
s

Alternatively, the application can leave the resolution of the concrete types
and array size until later so that they can be set via Cg runtime calls from the
application. (This was the usual approach before CgFX 1.4.)

For this case, the expression passed to the compile statement should just be
an unsized array of the abstract interface type:

Light lights[];

technique {
pass {
FragmentProgram = compile arbfpl main(lights);
}
}

Running Cg Programs on the CPU

30

There are many situations, such as tabularizing complex functions into
texture maps, where it is useful to execute Cg programs on the CPU and not
on the GPU. While the CPU path doesn't offer the same performance, it can
be useful because it doesn't have the resource limits associated with GPUs.

Programs that run on a CPU in this manner are declared like the following.

float foo = 4.F;
float4 func(float2 p : POSITION, float2 delta : PSIZE) : COLOR

{

808-00504-0000-006
NVIDIA

Introduction to the Cg Language

return foo * p.xyxy;

}

The POSITION semantic denotes the parameter or parameters that should be
set with the coordinates of each point at which the function is evaluated —
there is a coordinate value from zero to one for each dimension over which
the function is being evaluated. The PS1ZE semantic denotes a parameter that
should be initialized with the value of the spacing between samples at which
the function is being evaluated, and the COLOR semantic denotes where the
result of the function should be returned. (Thus, the function above could
have been written as a void function with an out float4 ret : COLOR
parameter and an assignment to ret instead of the return statement.)

Given an effect file with such a program, a CGprogram handle to it can be
retrieved by creating a program with the following CG_PROFILE_GENERIC
profile:

CGprogram tp = cgCreateProgramFromEffect(effect,
CG_PROFILE_GENERIC, "func'™, NULL);

With this program handle, cgEvaluateProgram() evaluates the program
over the same one-, two-, or three-dimensional domain. Its parameters are as
follows:

QO aCGprogramhandle

Q a float * to an output buffer

Q the number of components in the output buffer (1, 2, 3, or 4)
a

the number of positions in the x dimension at which to evaluate the
function

QO the number of positions in the y dimension
QO the number of positions in the z dimension

The total size of the buffer should be equal to the product of the number of
positions in each of the dimensions and the number of components in the
buffer.

#define RES 256

#define NCOMPS 4

float *buf = new Float[NCOMPS*RES*RES];
cgEvaluateProgram(tp, buf, NCOMPS, RES, RES, 1);
// Do something with buf.

delete[] buf;

It is a runtime error to pass a CGprogram that doesn't have the
CG_PROFILE_GENERIC profile to cgEvaluateProgram().

808-00504-0000-006 31
NVIDIA

Cg Language Toolkit

Annotations

Additionally, each variable, technique, pass, and program in the file can have
an optional annotation. The annotation is a per-variable-instance structure
that contains data that the effect author wants to communicate to a CgFX-
aware application, such as an artist tool. The application can then allow the
variable to be manipulated, based on a GUI element that is appropriate for
the type of annotation.

An annotation can be used to describe a user interface element for
manipulating uniform parameters, or to describe the type of render target a
rendering pass is expecting.

float bumpHeight

<
string gui = "slider";
float uimin = 0.0F;
float uimax = 1.0F;
float uistep = 0.1F;

> = 0.5F;

The annotation appears after the optional semantic and before variable
initialization. Applications can query for annotations, and use them to
expose certain parameters to artists in a CgFX-aware tool, such as Discreet's
3ds max 5 or Alias| Wavefront's Maya 4.5.

More Details

32

The purpose of this chapter has been to give you a brief overview of Cg so
that you can get started quickly and experiment to gain hands-on experience.
If you would like some more detail about any of the language features
described in this chapter, see “Cg Language Specification” on page 221.

808-00504-0000-006
NVIDIA

Cg Standard Library Functions

Cg provides a set of built-in functions and predefined structures with
binding semantics to simplify GPU programming. These functions are
similar in spirit to the C standard library, providing a convenient set of
common functions. In many cases, the functions map to a single native GPU
instruction, meaning they are executed very quickly. Of those functions that
map to multiple native GPU instructions, you may expect the most useful to
become more efficient in the near future.

Although customized versions of specific functions can be written for
performance or precision reasons, it is generally wiser to use the standard
library functions when possible. The standard library functions will continue
to be optimized for future GPUs, meaning that a shader written today will
automatically be optimized for the latest architectures at compile time.
Additionally, the standard library provides a convenient unified interface for
both vertex and fragment programs.

This section describes the contents of the Cg Standard Library, including

Mathematical functions

O Geometric functions
O Texture map functions
Q Derivative functions

Predefined helper struct types

Where appropriate, functions are overloaded to support scalar and vector
variations when the input and output types are the same.

Mathematical Functions

Table 1. “Mathematical Functions” lists the mathematical functions that the
Cg Standard Library provides. The list includes functions useful for
trigonometry, exponentiation, rounding, and vector and matrix
manipulations, among others. All functions work on scalars and vectors of
all sizes, except where noted.

808-00504-0000-006 33

NVIDIA

Cg Language Toolkit

34

Table 1. Mathematical Functions

Mathematical Functions

Function Description

abs(x) Absolute value of x.

acos(x) Arccosine of x in range [0,x], X in [-1, 1].

all(x) Returns true if every component of x is not equal to 0.
Returns false otherwise.

any(x) Returns true if any component of x is not equal to 0.
Returns false otherwise.

asin(x) Arcsine of x in range [-n/2, ©/2];
X should be in [-1, 1].

atan(x) Arctangent of X in range [-n/2, ©/2].

atan2(y, X)

Arctangent of y/x in range [-=, =].

ceil(x)

Smallest integer not less than x

clamp(x, a, b)

X clamped to the range [a, b] as follows:
e Returns a if x is less than a.

e Returns b if x is greater than b.

e Returns x otherwise.

cos(Xx)

Cosine of x.

cosh(x)

Hyperbolic cosine of x.

cross(a, b)

Cross product of vectors a and b;
a and b must be 3-component vectors.

degress(x) Radian-to-degree conversion.
determinant(M) Determinant of matrix M .

dot(a, b) Dot product of vectors a and b.

exp(x) Exponential function eX.

exp2(x) Exponential function 2%,

floor(x) Largest integer not greater than x.

fmod (X, y) Remainder of x/y, with the same sign as Xx.

If y is zero, the result is implementation-defined.

808-00504-0000-006
NVIDIA

Cg Standard Library Functions

Table 1. Mathematical Functions (continued)

Mathematical Functions

Function

Description

frac(x)

Fractional part of x.

frexp(x, out exp)

Splits x into a normalized fraction in the interval [1/2,
1), which is returned, and a power of 2, which is stored
in exp.

If x is zero, both parts of the result are zero.

isfinite(X) Returns true if x is finite.
isinf(x) Returns true if x is infinite.
isnan(x) Returns true if x is NaN (not a number).

Idexp(x, n)

x * 2N

lerp(a, b,)

Linear interpolation: (1-f)*a + b*f where aand b
are matching vector or scalar types. Parameter f can be
either a scalar or a vector of the same type as a and b.

lit(ndotl, ndoth, m)

Computes lighting coefficients for ambient, diffuse, and
specular light contributions. Returns a 4-vector as
follows:

e The x component of the result vector contains the
ambient coefficient, which is always 1.0.

e The y component contains the diffuse coefficient
which is zero if (n ® 1) < 0; otherwise (n ®).

e The z component contains the specular coefficient
which is zero if either (n ® 1) <0or (n ® h) <0;
(n ®)™ otherwise.

e The w component is 1.0.

There is no vectorized version of this function.

log(x) Natural logarithm In(x);

X must be greater than zero.
log2(x) Base 2 logarithm of x;

X must be greater than zero.
1og10(x) Base 10 logarithm of x;

X must be greater than zero.
max(a, b) Maximum of a and b.
min(a, b) Minimum of a and b.

808-00504-0000-006

35
NVIDIA

Cg Language Toolkit

36

Table 1. Mathematical Functions (continued)

Mathematical Functions

Function

Description

modf(x, out ip)

Splits x into integral and fractional parts, each with the
same sign as X.

Stores the integral part in ip and returns the fractional
part.

mul(M, N)

Matrix product of matrix M and matrix N, as shown
below:

Mll le M31 M41 Nll NZl N31 N41
Miz My M3z Maz||Ni2 Naz N3z Nap
Miz My Msz Mas||Nizs Naz N3z Naz
Mis Mas Msg Mag||Nig Naz Nzg Nag

mul(M, N) =

IfM has size AxB, and N has size BXC, returns
a matrix of size AxC.

mul(M, v)

Product of matrix M and column vector v, as shown
below:

M1z Mz M3 Mar || Vi
M.
mul(M, v) = ME
Mis My Msq Mag|| Vs

If M is an AXB matrix and v is a Bx1 vector, returns an
Ax1 vector.

mul (v, M)

Product of row vector v and matrix M, as shown below:
M1y Ma1 M3y May

mul(v, M) = [Vy Vo Vi3 V4] M2

M13

Mis Mas Mzq My

If v is a 1XA vector and M is an AXB matrix, returns a
1xB vector.

noise(x)

Either a 1-, 2-, or 3-dimensional noise function
depending on the type of its argument.

The returned value is between zero and one and is
always the same for a given input value.

pow(x, y)

xY

radians(x)

Degree-to-radian conversion.

round(x)

Closest integer to x.

808-00504-0000-006
NVIDIA

Cg Standard Library Functions

Table 1. Mathematical Functions (continued)

Mathematical Functions

Function Description

rsgrt(x) Reciprocal square root of x;
X must be greater than zero.

saturate(x) Equivalent to clamp(x, O, 1)

e Returns O if x is less than O.

e Returns 1 if x is greater than 1.
e Returns x otherwise.

sign(x) lifx>0;
-1lifx<0;
0 otherwise.
sin(x) Sine of x.
sincos(float x, S is set to the sine of x, and c is set to the cosine of x.
out s, out c) If sin(x) and cos(x) are both needed, this function
is more efficient than calculating each individually.
sinh(x) Hyperbolic sine of x.
smoothstep(min, For values of x between min and max, returns a
max, X) smoothly varying value that ranges from 0 at x = min

to 1 at x = max. X is clamped to the range [min,
max] and then the interpolation formula is evaluated:

—2*((x—min)/(max—min))3 + 3*((x—min)/(max—min))2

step(a, X) Oifx<a;
lifx>=a.
sgrt(x) Square root of x;

X must be greater than zero.

tan(x) Tangent of x.
tanh(x) Hyperbolic tangent of Xx.
transpose(M) Matrix transpose of matrix M. If M is an AxB matrix, the

transpose of M is a BXA matrix whose first column is
the first row of M, whose second column is the second
row of M, whose third column is the third row of M, and
SO on.

808-00504-0000-006 37
NVIDIA

Cg Language Toolkit

Geometric Functions

Table 2. “Geometric Functions” presents the geometric functions that are
provided in the Cg Standard Library.

Table 2. Geometric Functions

Geometric Functions

Function

Description

distance(ptl, pt2)

Euclidean distance between points ptl and pt2.

faceforward(N, I, Ng)

N if dot(Ng, 1) <O0;
otherwise, —N.

length(v)

Euclidean length of a vector.

normalize(v)

Returns a vector of length 1 that points in the same
direction as vector v.

reflect(i, n)

Computes reflection vector from entering ray
direction i and surface normal n.

Only valid for 3-component vectors.

refract(i, n, eta)

Given entering ray direction i, surface normal n,
and relative index of refraction eta, computes
refraction vector. If the angle between i and n is
too large for a given eta, returns (0O, 0, 0).

Only valid for 3-component vectors.

Texture Map Functions

Table 3. “Texture Map Functions” presents the texture functions that are
provided in the Cg Standard Library. These texture functions are fully
supported by the ps_2, arbfp1l, fp30, and fp40 profiles. The two-
dimensional variants of these functions are supported by the vp40 profile.
All of the functions in the table return a float4 value.

Because of the limited pixel programmability of older hardware, the ps_1
and fp20 profiles use a different set of texture-mapping functions. See
“Language Profiles” on page 255 for more information.

38

808-00504-0000-006
NVIDIA

Cg Standard Library Functions

Table 3. Texture Map Functions

Texture Map Functions

Function | Description

tex1D(samplerlD tex, float s)

| 1D nonprojective

texlD(samplerlD tex, float s, float dsdx, float dsdy)

| 1D nonprojective with derivatives

tex1D(samplerlD tex, float2 sz)

| 1D nonprojective depth compare

tex1D(samplerlD tex, float2 sz, float dsdx, float dsdy)

| 1D nonprojective depth compare with derivatives

tex1Dproj(samplerlD tex, float2 sq)
| 1D projective

tex1Dproj(samplerlD tex, float3 szq)

| 1D projective depth compare

tex2D(sampler2D tex, float2 s)
| 2D nonprojective

tex2D(sampler2D tex, float2 s, float2 dsdx, float2 dsdy)

|2D nonprojective with derivatives

tex2D(sampler2D tex, float3 sz)

| 2D nonprojective depth compare

tex2D(sampler2D tex, float3 sz, float2 dsdx, float2 dsdy)

| 2D nonprojective depth compare with derivatives

tex2Dproj(sampler2D tex, float3 sq)
| 2D projective

tex2Dproj(sampler2D tex, float4 szq)

|2D projective depth compare

808-00504-0000-006 39
NVIDIA

Cg Language Toolkit

40

Table 3. Texture Map Functions (continued)

Texture Map Functions

Function | Description

texRECT(samplerRECT tex, float2 s)
| 2D RECT nonprojective

texRECT(samplerRECT tex, float2 s, float2 dsdx, float2 dsdy)

| 2D RECT nonprojective with derivatives

texRECT(samplerRECT tex, float3 sz)
| 2D RECT nonprojective depth compare

texRECT(samplerRECT tex, float3 sz, float2 dsdx, float2 dsdy)

| 2D RECT nonprojective depth compare with derivatives

texRECTproj (samplerRECT tex, float3 sq)
| 2D RECT projective

texRECTproj (samplerRECT tex, float3 szq)
| 2D RECT projective depth compare

tex3D(sampler3D tex, float3 s)

| 3D nonprojective

tex3D(sampler3D tex, float3 s, float3 dsdx, float3 dsdy)

|3D nonprojective with derivatives

tex3Dproj(sampler3D tex, float4 szq)

| 3D projective depth compare

texCUBE(samplerCUBE tex, float3 s)

| Cubemap nonprojective

texCUBE(samplerCUBE tex, float3 s, float3 dsdx, float3 dsdy)

|Cubemap nonprojective with derivatives

texCUBEproj (samplerCUBE tex, float4 sq)

| Cubemap projective

808-00504-0000-006
NVIDIA

Cg Standard Library Functions

In the table, the name of the second argument to each function indicates how
its values are used when performing the texture lookup: s indicates a 1-, 2-,
or 3-component texture coordinate; z indicates a depth comparison value for
shadowmap lookups; g indicates a perspective value and is used to divide
the texture coordinate, s, before the texture lookup is performed.

For convenience, the standard library also defines versions of the texture
functions prefixed with h4, such as h4tex2D(), that return hal f4 values and
prefixed with x4, such as x4tex2D(), that return fixed4 values.

When the texture functions that allow specifying a depth comparison value
are used, the associated texture unit must be configured for depth compare
texturing. Otherwise, no depth comparison is actually performed.

Derivative Functions

Table 4. “Derivative Functions” presents the derivative functions that are
supported by the Cg Standard Library. Vertex profiles are not required to
support these functions.

Table 4. Derivative Functions

Derivative Functions

Function Description

ddx(a) Approximate partial derivative of a with respect to
screen-space X coordinate.

ddy(a) Approximate partial derivative of a with respect to
screen-space y coordinate.

Debugging Function

Table 5. “Debugging Function” presents the debugging function that is
supported by the Cg Standard Library. Vertex profiles are not required to
support this function.

808-00504-0000-006 41
NVIDIA

Cg Language Toolkit

Table 5. Debugging Function

Debugging Function

Function Description

void debug(float4 x) If the compiler's DEBUG option is specified, calling
this function causes the value x to be copied to the
COLOR output of the program, and execution of the
program is terminated.

If the compiler's DEBUG option is not specified, this
function does nothing.

The debug function is intended to allow a program to be compiled twice—
once with the DEBUG option and once without. By executing both programs,
you can obtain one frame buffer containing the final output of the program
and a second containing an intermediate value to be examined for
debugging.

Predefined Fragment Program Output Structures

A number of Jejper structure types for use in fragment programs are
predefined in the standard library. Variables of these types can be used to
hold the outputs of a fragment program. Their use is strictly optional.

For the ps_1 and fp20 profiles, the fragout structure is defined as follows:

struct fragout {
float4 col : COLOR;

}:
The ps_2, arbfpl, and fp30 profiles have two fragment output types
defined:
struct fragout {
half4 col > COLOR;
float depth : DEPTH;
}:
struct fragout float {
float4 col : COLOR;
float depth : DEPTH;
}:
42 808-00504-0000-006

NVIDIA

Introduction to the
Cg Runtime Library

This chapter introduces the Cg Runtime Library. It assumes that you have
some basic knowledge of the Cg language, as well as the OpenGL or
Direct3D APIs, depending on which one you use in your applications.

The first section “Introducing the Cg Runtime” on page 43 describes the
benefits of using the Cg Runtime Library and gives a brief overview of how it
is used in an application to create and manage Cg programs. The next two
sections, “Core Cg Runtime” on page 49 and “API-Specific Cg Runtimes” on
page 72, describe the APIs composing the Cg Runtime.

This chapter is primarily focused on using the Cg runtime to directly create
and manage Cg programs. The following chapter, “Introduction to CgFX”
describes how the runtime may also be used to create and manage Cg-based
shader effects.

Introducing the Cg Runtime

Cg programs are lines of code that describe shading, but they need the
support of applications to create images. To interface Cg programs with
applications, you must do two things:

1. Compile the programs for the correct profile. In other words, compile the
programs into a form that is compatible with the 3D API used by the
application and the underlying hardware.

2. Link the programs to the application program. This allows the
application to feed varying and uniform data to the programs.

You have two choices as to when to perform these operations. You can
perform them at compile time, when the application program is compiled
into an executable, or you can perform them at run time, when the
application is actually executed. The Cg runtime is an application
programming interface that allows an application to compile and link Cg
programs at run time.

808-00504-0000-006 43
NVIDIA

Cg Language Toolkit

Benefits of the Cg Runtime

44

Future Compatibility

Most applications need to run on a range of profiles. If an application
precompiles its Cg programs (the compile-time choice), it must store a
compiled version of each program for each profile. This is reasonable for one
program, but is cumbersome for an application that uses many programs.
What's worse, the application is frozen in time. It supports only the profiles
that existed when it was compiled; it cannot take advantage of the
optimizations that future compilers could offer.

In contrast, programs compiled by applications at run time
O Benefit from future compiler optimizations for the existing profiles

O Run on future profiles corresponding to new 3D APIs or to hardware
that did not exist at the time the Cg programs were written

No Dependency Limitations

If you link a Cg program to the application when it is compiled, the
application is too dependent on the result of the compilation. The application
program has to refer to the Cg program input parameters by using the
hardware register names that are output by the Cg compiler. This approach
is awkward for two reasons:

QO The register names can't be easily matched to the corresponding
meaningful names in the Cg program without looking at the compiler
output.

O Register allocations can change each time the Cg program, the Cg
compiler, or the compilation profile changes. This means you have the
inconvenience of updating the application each time as well.

In contrast, linking a Cg program to the application program at run time
removes the dependency on the Cg compiler. With the runtime, you need to
alter the application code only when you add, delete, or modify Cg input
parameters.

Input Parameter Management

The Cg runtime also offers additional facilities to manage the input
parameters of the Cg program. In particular, it makes data types such as
arrays and matrices easier to deal with. These additional functions also
encompass the necessary 3D API calls to minimize code length and reduce
programmer errors.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

Overview of the Cg Runtime
The Cg runtime API consists of three parts (Fig. 2.):

O A core set of functions and structures that encapsulates the entire
functionality of the runtime

O A set of functions specific to OpenGL built on top of the core set
O A setof functions specific to Direct3D built on top of the core set

To make it easier for application writers, the OpenGL and Direct3D runtime
libraries adopt the philosophy and data structure style of their respective
API.

Application

Fig. 2. The Parts of the Cg Runtime API

The rest of the section provides instructions for using the Cg runtime in the
framework of an application. Each step includes source code for OpenGL
and Direct3D programming.

Functions that involve only pure Cg resource management belong to the core
runtime and have a cg prefix. In these cases, the same code is used for
OpenGL and Direct3D.

When functions from the OpenGL or Direct3D Cg runtimes are used, notice
that the API name is indicated by the function name. Functions belonging to
the OpenGL Cg runtime library have a cgGL prefix, and functions in the
Direct3D Cg runtime library have a cgD3D prefix.

There are actually two Direct3D Cg runtime libraries: One for Direct3D 8 and
one for Direct3D 9. Functions belonging to the Direct3D 8 Cg runtime have a

808-00504-0000-006 45
NVIDIA

Cg Language Toolkit

46

cgD3D8 prefix, and functions belonging to the Direct3D 9 Cg runtime have a
cgD3D9 prefix. Because most of the functions are identical between the two
runtimes, we describe the Direct3D 9 Cg runtime with the understanding
that the description applies to the Direct3D 8 Cg runtime as well, unless
otherwise indicated.

The same prefix convention used for the function names is also used for the
type names, macro names and enumerant values.

Header Files

Here is how to include the core Cg runtime API into your C or C++ program:
#include <Cg/cg-h>

Here is how to include the OpenGL Cg runtime API:
#include <Cg/cgGL.h>

Here is how to include the Direct3D 9 Cg runtime API:
#include <Cg/cgD3D9.h>

And, here is how to include the Direct3D 8 Cg runtime API:
#include <Cg/cgb3D8.h>

Creating a Context

A context is a container for multiple Cg programs. It holds the Cg programs,
as well as their shared data.

Here’s how to create a context:
CGcontext context = cgCreateContext();

Compiling a Program

Compile a Cg program by adding it to a context with cgCreateProgram():
CGprogram program = cgCreateProgram(context,
CG_SOURCE, myVertexProgramString,
CG_PROFILE_ARBVP1, "main', args);

CG_SOURCE indicates that myVertexProgramString, a string argument,
contains Cg source code, not precompiled object code. Indeed, the Cg
runtime also lets you create a program from precompiled object code, if you
want to.

CG_PROFILE_ARBVP1 is the profile the program is to be compiled to. The
“main” parameter gives the name of the function to use as the main entry

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

point when the program is executed. Lastly, args is a null-terminated list of
null-terminated strings that is passed as an argument to the compiler.

Loading a Program

After you compile a program, you need to pass the resulting object code to
the 3D API that you're using. For this, you need to invoke the Cg runtime’s
API-specific functions.

The Direct3D-specific functions require the Direct3D device structure in
order to make the necessary Direct3D calls. The application passes it to the
runtime using the following call:

cgbD3D9SetDevice(Device);

You must do this every time a new Direct3D device is created, typically only
at the beginning of the application.

You can then load a Cg program in this way for the Direct3D 9 Cg runtime:
cgb3D9LoadProgram(program, CG_FALSE, 0);

or this way for the Direct3D 8 Cg runtime:
cgb3D8LoadProgram(program, CG_FALSE, 0, 0, vertexDeclaration);

The parameter vertexDeclaration is the Direct3D 8 vertex declaration
array that describes where to find the necessary vertex attributes in the
vertex streams. (See “Expanded Interface Program Execution” on page 103
for the details on the arguments to cgD3D8LoadProgram()and
cgb3D9LoadProgram()).

In OpenGL, the equivalent call is
cgGLLoadProgram(program) ;

Modifying Program Parameters

The runtime gives you the option of modifying the values of your program
parameters. The first step is to get a handle to the parameter:

CGparameter myParameter = cgGetNamedParameter (
program, “myParameter');

The variable myParameter is the name of the parameter as it appears in the
program source code.

The second step is to set the parameter value. The function used depends on
the parameter type.

Here is an example in OpenGL:
cgGLSetParameter4fv(myParameter, value);

808-00504-0000-006 47
NVIDIA

Cg Language Toolkit

48

Here is the same example in Direct3D:
cgb3D9SetUni form(myParameter, value);

Numeric parameters may also be set using core Cg runtime calls, such as:
cgSetParameterValuefr(myParameter, 4, value);

These function calls assign the four floating-point values contained in the
array value to the parameter myParameter, which is assumed to be of type
float4.

In both APIs, there are variants of these calls to set matrices, arrays, textures,
and texture states. The core Cg runtime provides variants of these calls to set
the value of numeric parameters, including scalars, vectors, arrays, and
structures. The graphics API-specific runtimes must be used to set API-
specific values, such as sampler handles.

Executing a Program

Before you can execute a program in OpenGL, you must enable its
corresponding profile:
cgGLEnableProfile(CG_PROFILE_ARBVP1);

In Direct3D, nothing explicitly needs to be done to enable a specific profile.

Next, you bind the program to the current state. This means that in
subsequent drawing calls the program is executed for every vertex in the
case of a vertex program and for every fragment in the case of a fragment
program.

Here’s how to bind a program in OpenGL:
cgGLBindProgram(program) ;

Here’s how to bind a program in Direct3D:
cgb3D9BindProgram(program) ;

You can only bind one vertex and one fragment program at a time for a
particular profile. Therefore, the same vertex program is executed until
another vertex program is bound. Similarly, the same fragment program is
executed as long as no other fragment program is bound.

In OpenGL, you disable profiles by the following call:
cgGLDisableProfile(CG_PROFILE_ARBVP1);

Disabling a profile also disables the execution of the corresponding vertex or
fragment program.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

Releasing Resources

When your application is ready to close, it is good programming practice to
free resources that you've acquired.

Because the Direct3D runtime keeps an internal reference to the Direct3D
device, you must tell it to release this reference when you are done using the
runtime. This is done with the following call:

cgD3D9SetDevice(0);

To free resources allocated for a program, call this function:
cgDestroyProgram(program) ;

To free resources allocated for a context, use this function:
cgDestroyContext(context);

Note that destroying a context destroys all the programs it contains as well.

Core Cg Runtime

The core Cg runtime provides all the functions necessary to manage Cg
programs from within the application. It makes no assumption about which
3D API the applications uses, so that any application could easily ignore the
API-specific Cg runtime libraries and content itself with the core Cg runtime.

The core Cg runtime is built around three main concepts: context, program,
and parameter, which are represented by the CGcontext, CGprogram, and
CGparameter object types. Those concepts are hierarchically related one to
each other: a program has several parameters, a context contains several
programs and shared parameters, and the application can define several
contexts.

The next sections describe these three basic object types and the runtime
entry points that operate on them. The three object types have some points in
common:

Q The use of CGbool, which is an integer type equal to either CG_TRUE or
CG_FALSE

Q The use of CGenum, which is an enumerate type used to specify various
enumerate values that are not necessarily related

O The convention that functions that return a value of type CGcontext,
CGprogram, CGparameter, or const char™* indicate failure by returning
Zero

808-00504-0000-006 49
NVIDIA

Cg Language Toolkit

Core Cg Context

The Cg runtime provides functions for creating, destroying, and querying
contexts.

Context Creation and Destruction

Programs can only be created as part of a context that acts as a program
container. A context is created by calling cgCreateContext():

CGcontext cgCreateContext();

A context is destroyed by cgDestroyContext():
void cgDestroyContext(CGcontext context);

cgDestroyContext() deletes all data associated with the context, including
all programs it contains. cgDestroyContext() should be called before
destroying any associated OpenGL context or Direct3D device.

Context Query

To check whether a context handle references a valid context or not, use
cglsContext():
CGbool cglsContext(CGcontext context);

Core Cg Program

50

There are Cg functions for creating, destroying, iterating over, and querying
programs.

Program Creation and Destruction

A program is created by calling either cgCreateProgram():

CGprogram cgCreateProgram(CGcontext context,
CGenum programType,
const char* program,
CGprofile profile,
const char* entry,
const char** args);

or cgCreateProgramFromFile():

CGprogram cgCreateProgramFromFile(CGcontext context,
CGenum programType,
const char* program,
CGprofile profile,
const char* entry,
const char** args);

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

These functions create a program object, add it to the specified context and
compile the associated source code. For both of them,

QO contextis a valid context handle.

O profileis an enumerant specifying the profile to which the program
must be compiled.

Q entry is the name of the function that must be considered as the main
entry point by the compiler. If the value is zero, the name main is used.

QO argsis a pointer to a null-terminated array of null-terminated strings
that are passed as arguments to the compiler. The pointer may itself be
null.

The only difference between the two functions is how programis interpreted.
For cgCreateProgramFromFile(), programis a string containing the name
of a file containing source code; for cgCreateProgram(), program directly
contains source code. If the enumerant programType is equal to CG_SOURCE,
the source code is Cg source code; if it is equal to CG_OBJECT, the source code
is precompiled object code and does not require any further compilation.

The CGprogram handle returned by cgCreateProgramFromFile() is valid if
it is different from zero, which means that the program has been successfully
created and compiled. The program is destroyed by passing its handle to
cgDestroyProgram():

void cgDestroyProgram(CGprogram program) ;

The Cg runtime allows for either automatic or manual compilation of
programs. Compilation of a program is required before the program may be
used when drawing. As such, program compilation is necessary sometime
after the program is first created, or whenever it enters an uncompiled state.
A program may enter an uncompiled state for a variety of reasons, including

O Changing variability of parameters
Parameters may be changed from uniform variability to literal variability
(compile time constant). See the cgSetParameterVariabi l ity manual
page for more information.

0 Changing value of literal parameters
Changing the value of a literal parameter will require recompilation
since the value is used at compile time. See the cgSetParameter and
cgSetMatrixParameter manual pages for more information.

O Resizing unsized arrays
Changing the length of a parameter array may require recompilation
depending on the capabilities of the program profile. See the

808-00504-0000-006 51
NVIDIA

Cg Language Toolkit

cgSetArraySize and cgSetMul tiDimArraySize manual pages for more
information.

Connecting structures to interface parameters

Structure parameters can be connected to interface program parameters
to control the behavior of the program. Changing these connections
requires recompilation on all current profiles. See the
cgConnectParameter manual page and the Interfaces section of this
document for more details.

When a program enters an uncompiled state, it is automatically unloaded
and unbound. In order to be used again, the program must be recompiled
(either automatically or manually —see the following), and then reloaded

and rebound.

Compilation can be performed manually by the application via
cgCompi leProgram(CGprogram program) ;

or automatically by the runtime.

Compilation behavior is controlled via
void cgSetAutoCompile(CGcontext ctx, CGenum flag);

Here, flag may be one of the following enumerants:

a

52

CG_COMPILE_MANUAL

In this mode, the application is responsible for manually compiling a
program. The application may check to see if a program requires
recompilation with the entry point cglsProgramCompi led. The program
may then be compiled via cgCompi leProgram(). This mode provides
the application with the most control over how and when program
recompilation occurs.

CG_COMPILE_IMMEDIATE

In this mode, the Cg runtime will force compilation automatically and
immediately when a program enters an uncompiled state, or when the
program is first created. This is the default mode.

CG_COMPILE_LAZY

This mode is similar to CG_COMPILE_IMMEDIATE, but will delay program
compilation until the program object code is needed. The advantage of
this method is the reduction of extraneous recompilations. The
disadvantage is that compile time errors will not be encountered when
the program enters an uncompiled state, but will instead be encountered
at some later time (most likely when the program is loaded or bound).

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

A call to cglsProgramCompiled() determines whether a program needs to
be recompiled:

CGbool cglsProgramCompiled(CGprogram program);

To recompile a program, use cgCompi leProgram():
cgCompi leProgram(CGprogram program) ;

Program lIteration

The programs within a context are sequentially ordered and can be iterated
over by using cgGetFirstProgram() and cgGetNextProgram():

CGprogram cgGetFirstProgram(CGcontext context);
CGprogram cgGetNextProgram(CGprogram program) ;

The first program of the sequence is retrieved by cgGetFirstProgram(). If
the context is invalid or does not contain any program, the function returns
zero. Given a program, cgGetNextProgram() returns the program
immediately next in the sequence, or zero if there is none. Here is how those
two functions would typically be used given a valid context named context:
CGprogram program = cgGetFirstProgram(context);
while (program != 0) {

/* Here is the code that handles the program */

program = cgGetNextProgram(program) ;

}

Nothing is guaranteed regarding the order of the programs in the sequence
or how cgGetFirstProgram() and cgGetNextProgram() behave when
programs are created or destroyed during iteration.

Program Query

Program queries encompass validity, compilation results, and attributes.

Program Validity

Use cglsProgram() to check whether a program handle references a valid
program:
CGbool cglsProgram(CGprogram program);

Compilation Result

You can query the result of the compilation resulting from the last call to
cgCreateProgram() for a given context by using cgGetLastListing():
const char* cgGetLastListing(CGcontext context);

808-00504-0000-006 53
NVIDIA

Cg Language Toolkit

If no call to cgCreateProgram() has been made for the context,
cgGetLastListing() returns zero. Otherwise, it returns a string containing
the output you would typically get from the command-line version of the
compiler.

Program Attributes

To retrieve the context the program belongs to, use
cgGetProgramContext():

CGcontext cgGetProgramContext(CGprogram program);

Retrieving the profile the program has been compiled to is done with
cgGetProgramProfile():
CGprofile cgGetProgramProfile(CGprogram program);

The function pair cgGetProfile() and cgGetProfileString() allows you
to find the correspondence between a profile enumerant and its
corresponding string:

CGprofile cgGetProfile(const char* profileString);

const char* cgGetProfileString(CGprofile profile);

If the string passed to cgGetProfile() does not correspond to any profile,
CG_PROFILE_UNKNOWN is returned.

The function cgGetProgramString() retrieves various strings related to the
program depending on the value of the enumerant stringType:

const char* cgGetProgramString(CGprogram program,
CGenum stringType);

The variable stringType can have any of these values:
O CG_PROGRAM_SOURCE: The original Cg source program is returned.

O CG_PROGRAM_ENTRY: The main entry point of the Cg source program is
returned.

O CG_PROGRAM_PROFILE: The profile string is returned.
O CG_COMPILED_PROGRAM: The resulting compiled program is returned.

Core Cg Parameters

54

Cg parameters fall into three broad categories: program parameters, effect
parameters, and shared parameters.

Program parameters are associated with Cg programs. A parameter that is
declared as part of the program’s entry point belongs to the program’s

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

namespace. A parameter that is declared globally in the file scope of the Cg
program belongs to the program’s global namespace.

Effect parameters are associated with Cg Effects. See the Introduction to CgFX
chapter for more information on managing effect parameters.

Shared parameters are associated with Cg contexts. See “Shared Parameters”
on page 59, for more details.

Cg functions exist for retrieving, creating, and querying program
parameters.

Program Parameter Retrieval

Parameters associated with Cg programs may be retrieved iteratively or
directly.

Iteration

A program has a sequence of parameters that can be iterated over by using
cgGetFirstParameter() and cgGetNextParameter():
CGparameter cgGetFirstParameter(CGprogram program,
CGenum namespace) ;
CGparameter cgGetNextParameter(CGparameter parameter);

A call to cgGetFirstParameter() returns the first parameter of the
sequence. If the program is invalid or does not contain any parameter, the
call returns zero. Given a parameter, cgGetNextParameter () returns the
parameter immediately next in the sequence or zero if there is none. The
namespace argument of cgGetFirstParameter() specifies the name space
of the parameters returned by this function and subsequent calls to
cgGetNextParameter(). Every parameter belongs to a particular name
space that defines its scope. When CG_GLOBAL is specified, the program’s
global parameters (i.e., those parameters that are in the file scope of the
program’s entry point), are iterated over. When CG_PROGRAM is specified, the
parameters specified in the program’s entry point declaration are iterated
over.

Here is how those two functions would typically be used given a valid
program called program:
CGparameter parameter = cgGetFirstParameter(program,
CG_PROGRAM) ;
while (parameter '= 0) {
/* Here is the code that handles the parameter */
parameter = cgGetNextParameter(parameter);

}

808-00504-0000-006 55
NVIDIA

Cg Language Toolkit

These functions don’t provide access to the fields of a structure parameter
(type CG_STRUCT) or the elements of an array parameter (type CG_ARRAY). In
other words, if a struct or array parameter is declared, these entry points
return will return a handle to the struct or array itself.

One way to access the fields of a structure is to use
cgGetFirstStructParameter() along with cgGetNextParameter():

CGparameter cgGetFirstStructParameter(CGparameter parameter);

If parameter is not of type CG_STRUCT, cgGetFirstStructParameter()
returns zero.

Similarly, to get access to the elements of an array, you can use
cgGetArrayDimension(), cgGetArraySize(), cgGetArrayParameter(),
and cgGetNextParameter():
int cgGetArrayDimension(CGparameter parameter);
int cgGetArraySize(CGparameter parameter, int dimension);
CGparameter cgGetArrayParameter(CGparameter parameter,

int index);

These three functions return 0 if parameter is not of type CG_ARRAY.
Function cgGetArrayDimension() gives the dimension of the array. It
returns 1 for float4 array[10], 2 for float4 array[10][100], and so on.
Next, cgGetArraySize() gives the size of every dimension. For example, for
float4 array[10][100], cgGetArraySize(array,0) returns 10 and
cgGetArraySize(array,1) returns 100. An array, anArray, has
cgGetArraySize(anArray,0) elements. If its dimension is greater than one,
those elements are themselves arrays.

Here is how these iteration functions could be used given a valid program
named program:

void lterateProgramParameters(CGprogram program) {
RecurseProgramParameters(cgGetFirstParameter(program,
CG_PROGRAM)) ;

}

void RecurseProgramParameters(CGparameter parameter) {
if (parameter == 0)
return;
do {
switch(cgGetParameterType(parameter)) {
case CG_STRUCT:
RecurseProgramParameters(
cgGetFirstStructParameter(parameter));
break;

56 808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

case CG_ARRAY:
int arraySize = cgGetArraySize(parameter, 0);
for (int i = 0; 1 < arraySize; ++i)
RecurseProgramParameters(
cgGetArrayParameter(parameter, i1));
break;
default:
/* Here is the code that handles the parameter */
break;

} while((parameter = cgGetNextParameter(parameter))!= 0);

In practice, it is usually simpler to iterate over all of the “leaf” parameters
(that is, non-aggregate parameters) directly using
cgGetNextLeafParameter():
CGparameter cgGetFirstLeafParameter(CGprogram program,

CGenum namespace) ;
CGparameter cgGetNextlLeafParameter(CGparameter parameter);

These functions iterate through all the simple parameters, including
structure fields and array elements that serve as inputs to the program.
Nothing is guaranteed regarding the order of the parameters in the
sequence.

Direct Retrieval

Any parameter of a program can also be retrieved directly by using its name
with cgGetNamedParameter():
CGparameter cgGetNamedProgramParameter(CGprogram program,
CGenum namespace,
const char* name);

Here, namespace may be either CG_GLOBAL or CG_PROGRAM, as above. If the
program has no parameter corresponding to name, cgGetNamedParameter()
returns zero.

The Cg syntax is used to retrieve structure fields or array elements. Let’s take
the following code snippet as an example:

struct FooStruct {
float4 A;
float4 B;

}:

struct BarStruct {
FooStruct Foo[2];

I

808-00504-0000-006 57
NVIDIA

Cg Language Toolkit

58

void main(BarStruct Bar[3]) {
// ...

}

The following are valid names for retrieving the corresponding parameter:
“Bar”

“Bar[1]”

“Bar[1] -Foo”

“Bar[1] .Foo[0]”

“Bar[1] -Foo[0] -B”

Parameter Values

The core Cg runtime provides a number of entry points for setting and
retrieving parameter values. In addition, the graphics-API-specific Cg
runtimes provide additional entry points for managing parameter values.

When managing numeric parameters, choosing which set of entry points to
use is largely a matter of programmer preference. In some circumstances, it
may be slightly more efficient to use the core Cg runtime entry points.
However, parameters that hold graphics-API-specific quantities, such as
sampler handles, must be set using the API-specific entry points. The API-
specific entry points must be used because the core Cg runtime, which is
graphics-API-agnostic, provides no such entry points.

The most often-used parameter value routines are used to set and get a
parameter’s current values. A parameter’s current value is initialized to any
default value assigned in the Cg source, or 0 otherwise. The current value of
a numeric parameter can be queried using the family of entry points:
int cgGetParameterValue{i,f,d}{r,c}(CGparameter param,

int nvals, type *v);

The given parameter must be a scalar, vector, matrix, or an (possibly-
multidimensional) array of scalars, vectors, or matrices. There are versions of
each function to retrieve the values into an int, float, or double buffer; these
are signified by the i, f, and d in the entry point name, respectively.
Similarly, there are versions of each function that retrieve any matrices in the
given parameter in row-major or column-major order. These are specified
using r or c, respectively. At most, nvals values will be copied into the given
array, v. The total number of values copied into v is returned.

For example, cgGetParameterValueic() retrieves the values of the given
parameter into the supplied array of integer data, and copies matrix data in
column-major order. The total number of values associated with a given

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

parameter, and hence the required length of the given array, can be
computed using the core Cg runtime:

int nrows = cgGetParameterRows(param);
int ncols = cgGetParameterColumns(param);
int asize = cgGetArrayTotalSize(param);
int ntotal = nrows*ncols;

if (asize > 0) ntotal *= asize;

A similar family of entry points exist for setting a parameter’s values:

void cgSetParameterValue{i,f,d}{r,c}(CGCparameter param,
int nvals, type *v);

The entry points in this family are identical to those of the
cgGetParameterValue family. The total number of values in a parameter
may be computed as above. If nvals is less than the total size of the
parameter, an error is generated.

The core Cg runtime also allows the application to query a parameter’s
default values:
const double* cgGetParameterValues(CGparameter parameter,
CGenum valueType,
int* numberOfValuesReturned);

This entry point retrieves the parameter’s default value if valueType is equal
to CG_DEFAULT. The components of the value are returned in row-major
order as a pointer to an array containing type double elements. The number
of components available in the array is returned in
numberOfValuesReturned. Function cgGetParameterValues() can also be
used to retrieve a parameter’s constant values, but this functionality is rarely
used; see the corresponding manual page for more details.

Shared Parameters

The core Cg runtime supports the creation of instances of any type of
concrete parameter (e.g., built-in types, user-defined structures) within a Cg
context. A parameter instance may be connected to any number of
compatible parameters, including any program or effect parameter within
the context.

When an instance is connected to another parameter, the second parameter
will inherit its values from the instance. Furthermore, if the variability of the
second parameter has not been explicitly set by a call to
cgSetParameterVariability(), its variability will also be inherited from
the instance.

808-00504-0000-006 59
NVIDIA

Cg Language Toolkit

60

The ability to create and easily manage shared, context-global parameters
provides a powerful means for creating parameter trees, and for sharing data
and user-defined objects between multiple Cg programs or effects.

Shared Parameter Creation

Shared parameters are associated with a CGcontext. They may be created
with the following entry points:

CGparameter cgCreateParameter(CGcontext ctx, CGtype type);
CGparameter cgCreateParameterArray(CGtype type, int length);
CGparameter cgCreateParameterMultiDimArray(CGtype type,

int dim, Int *lengths);

Only parameters of concrete types may be created. In particular, parameters
of abstract interface types may not be created. By default, a created
parameter has uniform variability and undefined values.

Shared Parameter Deletion

Shared parameters may be deleted using
Void cgDeleteParameter(CGparameter param);

When a shared parameter is deleted, all parameters connected to it are
disconnected, and vice-versa.

Connecting Parameters

Once created, a shared parameter may be connected to any number of
program, effect, or shared parameters using

void cgConnectParamteer(CGparameter source, CGparameter sink);

where source is the shared parameter, and sink is the target parameter that
will inherit the shared parameter’s values.

Once a parameter has had a source connected to it, its value should no
longer be set directly. Instead, its value can be set indirectly by setting the
value of the associated sink.

A parameter that has been connected to a shared source parameter may be
disconnected using
Void cgDisconnectParameter(param) ;

Shared Parameters and Interfaces

Using Cg, it is possible to create families of code “modules” that share a
common interface, each member of which has a different implementation.
This ability makes it easy for applications to construct material trees on the

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

fly, to change the number or type of texture maps applied to an object at
application runtime, and so on.

Specifying which particular implementation of an interface to use is
accomplished through “connecting” parameters. In particular, a shared
instance of a struct that implements the interface is created by the
application. This shared instance is then connected to the interface
parameter. The act of connecting the parameters causes the interface
parameter to inherit the shared parameter’s implementation of the interface.
This process can be thought of as implementing compile-time
polymorphism.

It is legal to connect a shared parameter of a user-defined structure type to an
interface parameter, as long as the structure type implements that interface
type. At runtime, the entry point’s cglsParentType, coupled with
cgGetParameterNamedType, can be used to determine type parenthood.

When a structure parameter is connected to an interface parameter, copies of
any child (that is, member) variables associated with the source structure
parameter are automatically created as children of the sink parameter.
Under most circumstances, these member variable copies can be ignored by
the application, since their values and variability are automatically set by the
Cg runtime. However, in some situations it may be useful to query a “sink-
side” member parameter for its underlying resource, for example.

A shared instance of a structure whose type in defined in one Cg program or
effect may be connected to parameters of other programs or effects, provided
that the entities involved define the source structure types and destination
interface types equivalently. See “Parameter Type Equivalency” on page 65
or more details. If the types are not equivalent, cgConnectParameter()
generates a runtime error.

The following example illustrates structure-to-interface connection by
creating three programs, all of which define a type named Foo, with one
program’s definition differing from the others:
interface Mylnterface {
float Val(float x);
};
struct MyStruct : Mylnterface {
float Scale;
float Val(float x) { return(Scale * x);
}:
float4 main(Mylnterface foo) : COLOR {
return(foo.Val (-2) .xxxx) ;

}

808-00504-0000-006 61
NVIDIA

Cg Language Toolkit

62

Listing 1: Cg Program 1
interface Mylnterface {
float Val(float x);
};
struct MyStruct : Mylnterface {
float Scale;
float Val(float x) { return(Scale * x);
};
float4 main(Mylnterface foo) : COLOR {
return(foo.Val (-3) .xxxx);

}

Listing 2: Cg Program 2
interface Mylnterface {
half Val(half x);
};
struct MyStruct : Mylnterface {
float Scale;
half Val(half x) { return(Scale * x);
};
float4d main(Mylnterface foo) : COLOR {
return(foo.Val (.5) . xxxx);

}
Listing 3: Cg Program 3

Notice that both Cg Program 1 and Cg Program 2 define the Val () method
of the My Interface and MyStruct types using the float type, whereas Cg
Program 3 does so using the half type. As a result, the My Interface and
MyStruct types defined in Cg Program Three are not equivalent to types in
the other two programs, even though the types have the same names.

The following C program creates all three of the above Cg programs and
connects shared parameter instances to their input parameters:

static CGprogram CreateProgram(const char *program_str) {
return cgCreateProgram(Context, CG_SOURCE,
program_str, CG_PROFILE_ARBFP1,
“main', NULL);
}
int main(int argc, char *argv[]) {
CGContext Context;
CGprogram Programl, Program2, Program3;
CGparameter msl, ms3;
// Disable automatic compilation, since the
// programs cannot be compiled until concrete structs
// are connected to each program®s interface parameters.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

Context = cgCreateContext();

cgSetAutoCompile(Context, CG_COMPILE_MANUAL);

// Create the programs

Programl CreateProgram(ProgramlString);

Program2 CreateProgram(Program2String);

Program3 = CreateProgram(Program3String);

// Create two shared parameters,

// one of the MyStruct type from Programl, and

// one of the MyStruct type from Program3.

msl = cgCreateParameter(cgGetNamedUserType(Programl,
"MyStruct'™));

ms3 = cgCreateParameter (cgGetNamedUserType(Program3,
"MyStruct'™));

/* Connect the same shared parameter to Programl and
Program2 */

cgConnectParameter(Fool, cgGetNamedParameter(Programl,
“f00"));

cgConnectParameter(Fool, cgGetNamedParameter(Program2,
"f00")) ;

// The following would generate an error because the type
// of the Fool parameter is not equivalent to type

// "MyStruct" from Program3.

// cgConnectParameter(msli,

// cgGetNamedParameter(Program3, "foo'));
cgConnectParameter(ms3, cgGetNamedParameter(Program3,
“foo™));

// Now we can compile all three programs.
cgCompi leProgram(Programl) ;

cgCompi leProgram(Program?2) ;

cgCompi leProgram(Program3) ;

// .. and so on ..

808-00504-0000-006 63
NVIDIA

Cg Language Toolkit

64

Parameter Properties

Parameter properties encompass validity, references, size, and other
attributes.

Parameter Type

The Cg language defines a number of built-in parameter types, such as
float4, int3x3, and so on. In addition, user-defined types may be specified
in a program when declaring structure and interface types. For example, if
the following Cg code is included in the source to a CGprogram created via
cgCreateProgram(), the types My Interface and MyStruct will be added to
the resulting CGprogram.
interface Mylnterface {

float SomeMethod(float x);
}:
struct MyStruct : Mylnterface {

float Scale;

SomeMethod(float x) {

return(Scale * x);

}
};
In order to obtain the unique enumerant associated with a parameter’s type,
the following entry point should be used
CGtype cgGetParameterNamedType(CGparameter param);

The CGtype associated with a named user-defined type in a program can be
retrieved using
CGtype cgGetNamedUserType(CGhandle handle, const char *name);

Here, handle can be either a CGprogram or a CGeffect.

The struct types can implement a given interface. In such a case, the
indicated interface is known as a parent type of the struct type. In the
example above, MyStruct has a single parent type, My Interface. The parent
types of a given named type may be obtained with the following entry
points:

int cgGetNumParentTypes(CGtype type);

CGtype cgGetParentType(CGtype type, int index);

Note that the Cg language specification currently makes it impossible for a
struct type to have more than a single parent type.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

All of the user-defined types associated with a program may be obtained
with the following entry points:

int cgGetNumUserTypes(CGprogram program) ;
CGtype cgGetUserType(CGprogram program, int index);

Note that the runtime treats interface program parameters as if they were
structure parameters with no concrete data or function members.

In older applications that use the Cg runtime, you may encounter the
deprecated entry point:

CGtype cgGetParameterType(CGparameter parameter);

This entry point differs from cgGetNamedUserType() in that it always
returns CG_STRUCT for any struct parameter, rather than returning the
enumerant associated with the user-defined type of the struct.

The name associated with a given type enumerant can be queried using
const char* cgGetTypeString(CGtype type);

If the string passed to cgGetType() does not correspond to any type,
CG_UNKNOWN_TYPE is returned.

Function cgGetParameterBaseType() returns the basic type of vector
matrix and matrix parameters. For example, given a float4x4 parameter,
cgGetParameterBaseType() returns the CG_FLOAT type. Similarly, given a
multidimensional array of float4x4s, it also returns CG_FLOAT.

It is also possible to determine the general class of the type of a parameter:
CGparameterclass cgGetParameterClass(CGparameter param);

It returns one of the following enumerated values:
CG_PARAMETERCLASS_UNKNOWN CG_PARAMETERCLASS_SCALAR
CG_PARAMETERCLASS_VECTOR CG_PARAMETERCLASS_OBJECT
CG_PARAMETERCLASS_MATRIX CG_PARAMETERCLASS_STRUCT
CG_PARAMETERCLASS_ARRAY

Parameter Type Equivalency

If a program containing a user-defined type is created in a context that
already contains another program or effect that defines a user type with the
same name, the two type definitions are compared. If both type definitions
are found to be equivalent, the CGtype enumerant associated with the user
type in the new program will be identical to that of the identical user type in
the existing program or effect. If the types are not equivalent, the new type
will be assigned a unique CGtype. In this way, type equivalency of

808-00504-0000-006 65
NVIDIA

Cg Language Toolkit

66

parameters shared between multiple programs and effects can be assured
simply by comparing CGtype enumerants.

In order for two types to be considered equivalent, they must meet the
following requirements:

O The type names must match.
Both types must have the exact same name.

O The parent types, if any, must match.
If the type is a structure, both must either not implement an interface, or
both implement interfaces that are type-equivalent.

O The member variables and methods must match.
They must both have the exact same member variables and methods.
The order and name of the variables must match exactly, and the order
and name of the methods must match. The signature of the methods,
including argument and return types, must be identical.

Type equivalency is useful when using shared parameters instances with
multiple programs by connecting them with cgConnectParameter().

Parameter Validity

The function cglsParameter() allows you to check whether a parameter
handle references a valid parameter or not:

CGbool cglsParameter(CGparameter parameter);

A parameter handle becomes invalid when the program or the context of the
program it corresponds to is destroyed.

Parameter References

A parameter that is referenced by the original Cg source code may be
optimized out of the compiled program by the compiler, in which case the
application can simply ignore it and not set its value. Calling
cglsParameterReferenced() allows you to check whether a parameter is
potentially used by the final compiled program:

CGbool cglsParameterReferenced(CGparameter parameter);

Note that the value returned by this entry point is conservative, but not
always exact, particularly if the program has not yet been compiled. Also,
note that no error is generated if you set the value of a parameter that is not
referenced.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

Parameter Size

A number of core Cg runtime entry points are provided for querying and
setting parameter size and length.

The number of rows or columns associated with a parameter can be retrieved
using

int cgGetParameterRows(CGparameter param);

int cgGetParameterColumns(CGparameter param);

A scalar parameter is considered to have a single row and a single column,
while a vector parameter has a single row and columns equal to the length of
the vector. If param is a matrix parameter, the values returned correspond to
those of the matrix. If param is an array, the number of rows or columns
associated with each element of the array is returned. If param is not a
numeric type, 0 is returned by either entry point.

The dimensionality of an array is queried using
int cgGetArrayDimension(CGparameter param);

Dimensions are enumerated starting at 0 (zero). The length of a particular
dimension of an array can be retrieved by calling
int cgGetArraySize(CGparameter param, int dimension);

The total number of elements in an array may be queried using
int cgGetArrayTotalSize(CGparameter param);

Here, param may be an array of any dimension; the returned value is the
total number of elements across all dimensions of the array.

The type of each element of an array can be queried using
CGtype cgGetArrayType(CGparameter param);

For example, if a parameter were declared
float4 array[2][3]:

cgGetArrayType() would return CG_FLOATA4. If it were declared
mystruct array[3];

cgGetArrayType() would return the enumerant corresponding to the user-
defined mystruct type.

Unsized Array Length

Unsized arrays can be assigned concrete sizes via the runtime. Under many
profiles, setting the size of unsized arrays associated with a Cg program is
required before the program can be compiled.

808-00504-0000-006 67
NVIDIA

Cg Language Toolkit

68

The length of one-dimensional unsized arrays can be set using
void cgSetArraySize(CGparameter param, int size);

The size of multidimensional arrays may be set using
void cgSetMultiDimArraySize(CGparameter param, Int *sizes);

Note that arrays with completely determined lengths may not have their size
changed using either entry point. Only unsized arrays may be modified
using these entry points.

Parameter Attributes

A parameter's general class can be queried using
CGparameterclass cgGetParameterClass(CGparameter param);

The returned CGparameterclass value enumerates the high-level parameter
classes:
Q CG_PARAMETERCLASS_SCALAR

A scalar type, such as CG_INT or CG_FLOAT
QO CG_PARAMETERCLASS_VECTOR

A vector type, such as CG_INT1 or CG_FLOAT4
Q CG_PARAMETERCLASS_MATRIX

A matrix type, such as CG_INT1X2 or CG_FLOAT4X4
Q CG_PARAMETERCLASS_STRUCT

A struct or interface
Q CG_PARAMETERCLASS_SAMPLER

A sampler type, such as samplerlD or samplerCUBE
Q CG_PARAMETERCLASS_OBJECT

A texture, string, or program

The program that the parameter corresponds to is found using
cgGetParameterProgram():
CGprogram cgGetParameterProgram(CGparameter parameter);

To determine whether the parameter is varying, uniform, or constant,
cgGetParameterVariability() is used:
CGenum cgGetParameterVariability(CGparameter parameter);

The call returns CG_VARY ING if the parameter is a varying parameter,
CG_UNIFORM if the parameter is a uniform parameter, or CG_CONSTANT if the
parameter is a constant parameter. A constant parameter is a parameter whose
value never changes for the life of a compiled program, so that changing its

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

value requires recompiling the program. For some profiles, the compiler has
to add some that correspond to literal constant values in the code.

A parameter's variability can also be modified via the core Cg runtime using

void cgSetParameterVariability(CGparameter parameter,
CGenum vary);

Here, vary may be one of:

O CG_UNIFORM
The parameter is set to uniform variability.

Q CG_LITERAL
The parameter is marked as a literal, whose value can be assumed to be a
compile-time constant compilation. This feature can be used to “bake”
parameter values into the compiled Cg program, which often produces
much more efficient compiled code.

Q CG_DEFAULT
The parameter reverts to its default variability as specified in the
program text, or is made to inherit its variability from any source it has
been connected to.

Note that parameters may not currently be set to CG_VARY ING variability.

To obtain the parameter direction, use cgGetParameterDirection():
CGenum cgGetParameterDirection(CGparameter parameter);

It returns CG_IN if the parameter is an input parameter, CG_OUT if the
parameter is an output parameter, or CG_INOUT if the parameter is both an
input and an output parameter.

The entry point cgGetParameterType() retrieves the parameter name:
const char* cgGetParameterName(CGparameter parameter);

Use cgGetParameterSemantic() to retrieve the parameter semantic string:
const char* cgGetParameterSemantic(CGparameter parameter);

If the parameter does not have any semantic, an empty string is returned.

There is a one-to-one correspondence between a set of predefined semantics
(POSITION, COLOR, and so on) and hardware resources (registers, texture
units, and so on). In the Cg runtime, a hardware resource is represented by
the type CGresource and cgGetParameterResource() retrieves the
resource assigned to a parameter:

CGresource cgGetParameterResource(CGparameter parameter);

808-00504-0000-006 69
NVIDIA

Cg Language Toolkit

70

If the parameter does not have any associated resource,
cgGetParameterResource() returns CG_UNDEFINED.

The two functions cgGetResource() and cgGetResourceString() allow
you to determine the correspondence between a resource enumerant and its
corresponding string:

CGresource cgGetResource(const char* resourceString);

const char* cgGetResourceString(CGresource resource);

If the string passed to cgGetResource() does not correspond to any
resource, CG_UNDEFINED is returned.

Using cgGetParameterBaseResource() allows you to retrieve the base
resource for a parameter in a Cg program:

CGresource cgGetParameterBaseResource(
CGparameter parameter);

The base resource is the first resource in a set of sequential resources. For
example, if a given parameter has a resource equal to CG_TEXCOORD7, its base
resource is CG_TEXCOORDO. Only parameters with resources whose name
ends with a number have a base resource. All other parameters return
CG_UNDEFINED when cgGetParameterBaseResource() is called.

Function cgGetParameterResourcelndex() retrieves the numerical portion
of the resource:

unsigned long cgGetParameterResourcelndex(
CGparameter parameter);

For example, if the resource for a given parameter is CG_TEXCOORD7,
cgGetParameterResourcelndex() returns 7.

The cgGetParameterValues() function retrieves the default or constant
value of a uniform parameter:

const double* cgGetParameterValues(CGparameter parameter,
CGenum valueType, Int* numberOfValuesReturned);

It retrieves the default value if valueType is equal to CG_DEFAULT and the
constant value if valueType is equal to CG_CONSTANT. The components of the
value are returned in row-major order as a pointer to an array containing
type double elements. After cgGetParameterValues() is called, the number
of components available in the array is pointed to by
numberOfValuesReturned.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

Core Cg Error Reporting

An error code is associated with each type of runtime error that can be
generated. The runtime caches both the most recently generated error, as
well as the error that was first generated since the error code was last
checked by the application. Applications can query the cached error codes, as
well as the error message corresponding to either, using

CGerror error = cgGetError();

CGerror error = cgGetFirstEror();

const char* errorString = cgGetErrorString(error);

An error code of 0 indicates no error. When either error-fetching entry point
is called, its cached error value is reset to 0.

More comprehensive error checking and handling can be achieved using

Cg's error handler callback mechanism. Each time an error occurs, the core

Cg runtime calls an error handler callback function, optionally provided by

the application. The application registers the error handler using

typedef void (*CGerrorHandlerFunc)(CGcontext ctx, CGerror err,
void *appdata);

void cgSetErrorHandler(CGerrorHandlerFunc func, void *data);

When an error occurs, the Cg runtime calls the specified function, passing
the CGcontext in which the error occurred, the code associated with the
triggering error, and a copy of the data pointer registered by the application.
A typical implementation of the error handler might look like this:

void HandleCgError(CGcontext ctx, CGerror err, void *appdata)

{
fprintf(stderr, "Cg error: %s\n", cgGetErrorString(err));

const char *listing = cgGetlLastListing(ctx);
if (listing !'= NULL)
fprintf(stderr, " last listing: %s\n", listing);
}

Here is a list of some of the CGerror codes specific to the core Cg runtime:
O CG_NO_ERROR: Returned when no error has occurred.

O CG_COMPILER_ERROR: Returned when the compiler generated an error. A
call to cgGetLastListing() should be made to get more details on the
actual compiler error.

O CG_INVALID_PARAMETER_ERROR: Returned when the parameter used is
invalid.

O CG_INVALID_PROFILE_ERROR: Returned when the profile is not
supported.

808-00504-0000-006 71
NVIDIA

Cg Language Toolkit

Q@ CG_INVALID_VALUE_TYPE_ERROR: Returned when an unknown value
type is assigned to a parameter.

O CG_NOT_MATRIX_PARAM_ERROR: Returned when the parameter is not of a
matrix type.

QO CG_INVALID_ENUMERANT_ERROR: Returned when the enumerant
parameter has an invalid value.

O CG_NOT_4x4_MATRIX_ERROR: Returned when the parameter must be a
4x4 matrix type.

CG_FILE_READ_ERROR: Returned when the file cannot be read.
CG_FILE_WRITE_ERROR: Returned when the file cannot be written.
CG_MEMORY_ALLOC_ERROR: Returned when a memory allocation fails.

CG_INVALID_CONTEXT_HANDLE_ERROR: Returned when an invalid
context handle is used.

0O 0O 0O O

QO CG_INVALID_PROGRAM_HANDLE_ERROR: Returned when an invalid
program handle is used.

O CG_INVALID_PARAM_HANDLE_ERROR: Returned when an invalid
parameter handle is used.

O CG_UNKNOWN_PROFILE_ERROR: Returned when the specified profile is
unknown.

O CG_VAR_ARG_ERROR: Returned when the variable arguments are specified
incorrectly.

Q@ CG_INVALID_DIMENSION_ERROR: Returned when the dimension value is
invalid.

O CG_ARRAY_PARAM_ERROR: Returned when the parameter must be an
array.

O CG_OUT_OF_ARRAY_BOUNDS_ERROR: Returned when the index into an
array is out of bounds.

API1-Specific Cg Runtimes

Each API-specific Cg runtimes provides an additional set of functions on top
of the core Cg runtime to ease the integration of Cg to an application based
on this API. They essentially interface between the core runtime data
structures and the API data structures to provide the following facilities:

72 808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

O Setting the parameter values: A distinction is made between texture,
matrix, array, vector and scalar values as those various types are handled
differently by each API and have different data structures.

O Executing the program: Program execution is divided into program
loading (passing the result of the Cg compiler to the API) and program
binding (setting the program as the one to execute for any subsequent
draw calls). This is because those two operations are usually done at a
different time: A program is loaded each time it is recompiled and it is
bound each time it needs to be executed for a particular draw call.

Parameter Shadowing

When the value of a uniform parameter is set by some function of the
OpenGL Cg runtime, it is actually stored internally (or shadowed) by either
the Cg or the OpenGL runtime so that it does not need to be reset every time
the program is about to be executed. This behavior is referred to as parameter
shadowing.

If the Direct3D Cg runtime expanded interface (described in “Direct3D
Expanded Interface” on page 98) is used, parameter shadowing can be
turned on or off on a per-program basis. When parameter shadowing is
turned off for a given program and the value of any of its uniform
parameters is set by some function of the Direct3D Cg runtime, it is
immediately downloaded to the GPU constant memory (the memory
containing the values of all the uniform parameters). When parameter
shadowing is turned on, the value is shadowed instead and no Direct3D call
is made at the time it is set; only when the program is bound are all of its
parameters actually downloaded to the constant memory. This means that a
parameter value set after binding the program is not used during the
execution of the program until the next time the program is bound.
Parameter shadowing applies to all parameter settings including texture
state stage and texture mode.

Disabling parameter shadowing allows the runtime to consume less
memory, but forces the application to do the work of making sure that the
constant memory contains all the right values every time it activates a
program.

OpenGL Cg Runtime

This section discusses setting parameters and program execution for the
OpenGL Cg runtime.

808-00504-0000-006 73
NVIDIA

Cg Language Toolkit

74

Note: Before any OpenGL Cg runtime functions can be executed, an OpenGL context must
be created with either wglCreateContext() or glXCreateContext().

Setting Parameters in OpenGL

In accordance with the OpenGL convention, many of the functions described
below come in two versions: a version operating on float values, marked
with an f, and a version operating on double values, marked with a d.

Setting Uniform Scalar and Uniform Vector Parameters

To set the values of scalar parameters or vector parameters, use the
cgGLSetParameter functions:

void cgGLSetParameterlf(CGparameter parameter, float x);
void cgGLSetParameterlfv(CGparameter parameter,

const float* array);
void cgGLSetParameterld(CGparameter parameter, double x);
void cgGLSetParameterldv(CGparameter parameter,

const double* array);

void cgGLSetParameter2f(CGparameter parameter, float x,
float y);
void cgGLSetParameter2fv(CGparameter parameter,
const float* array);
void cgGLSetParameter2d(CGparameter parameter, double Xx,
double y);
void cgGLSetParameter2dv(CGparameter parameter,
const double* array);

void cgGLSetParameter3f(CGparameter parameter, float x,
float y, float z);
void cgGLSetParameter3fv(CGparameter parameter,
const float* array);
void cgGLSetParameter3d(CGparameter parameter, double Xx,
double y, double z);
void cgGLSetParameter3dv(CGparameter parameter,
const double* array);

void cgGLSetParameter4f(CGparameter parameter, float x,
float y, float z, float w);
void cgGLSetParameter4fv(CGparameter parameter,
const float* array);

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

void cgGLSetParameter4d(CGparameter parameter, double Xx,
double y, double z, double w);
void cgGLSetParameter4dv(CGparameter parameter,
const double* array);

The digit in the name of those functions indicates how many scalar values
are set by the function. The v suffix is for functions that operate on an array
of values as opposed to individual arguments.

If more values are set than the parameter requires, the extra values are
ignored. If less values are set than the parameter requires, the last value is
smeared. The cgGLSetParameter functions may be called for either uniform
or varying parameters. When called for a varying parameter, the appropriate
immediate mode OpenGL entry point is called.

The corresponding parameter value retrieval functions are as follows:

cgGLGetParameterlf(CGparameter parameter, float* array);
cgGLGetParameterld(CGparameter parameter, double* array);
cgGLGetParameter2f(CGparameter parameter, float* array);
cgGLGetParameter2d(CGparameter parameter, double* array);
cgGLGetParameter3f(CGparameter parameter, float* array);
cgGLGetParameter3d(CGparameter parameter, double* array);
cgGLGetParameter4f(CGparameter parameter, double* array);
cgGLGetParameter4d(CGparameter parameter, type* array);

Setting Uniform Matrix Parameters

The cgGLSetMatrixParameter functions are used to set any matrix:

void cgGLSetMatrixParameterfr(CGparameter parameter,
const float* matrix);
void cgGLSetMatrixParameterfc(CGparameter parameter,
const float* matrix);
void cgGLSetMatrixParameterdr(CGparameter parameter,
const double* matrix);
void cgGLSetMatrixParameterdc(CGparameter parameter,
const double* matrix);

The matrix is passed as an array of floating point values whose size matches
the number of coefficients of the matrix. The r suffix is for functions that
assume the matrix is laid out in row order, and the c suffix is for functions
that assume the matrix is laid out in column order.

The corresponding parameter value retrieval functions are

void cgGLGetMatrixParameterfr(CGparameter parameter,
float* matrix);

void cgGLGetMatrixParameterfc(CGparameter parameter,
float* matrix);

808-00504-0000-006 75
NVIDIA

Cg Language Toolkit

void cgGLGetMatrixParameterdr(CGparameter parameter,
double* matrix);

void cgGLGetMatrixParameterdc(CGparameter parameter,
double* matrix);

Use cgGLSetStateMatrixParameter() to set a OpenGL 4x4 state matrix:

void cgGLSetStateMatrixParameter(CGparameter parameter,
GLenum stateMatrixType, GLenum transform);

The variable stateMatrixType is an enumerate type specifying the state
matrix to be used to set the parameter:

O CG_GL_MODELVIEW_MATRIX for the current model-view matrix
O CG_GL_PROJECTION_MATRIX for the current projection matrix

QO CG_GL_TEXTURE_MATRIX for the current texture matrix
a

CG_GL_MODELVIEW_PROJECTION_MATRIX for the concatenated model-
view and projection matrices

The variable transform is an enumerate type specifying a transformation
applied to the state matrix before it is used to set the parameter value:

O CG_GL_MATRIX_IDENTITY for applying no transformation at all
O CG_GL_MATRIX_TRANSPOSE for transposing the matrix

O CG_GL_MATRIX_INVERSE for inverting the matrix
a

CG_GL_MATRIX_INVERSE_TRANSPOSE for inverting and transposing the
matrix

Setting Uniform Arrays of Scalar, Vector, and Matrix Parameters

To set the values of arrays of uniform scalar or vector parameters, use the
cgGLSetParameterArray functions:

void cgGLSetParameterArraylf(CGparameter parameter,
long startlndex, long numberOfElements,
const float* array);

void cgGLSetParameterArrayld(CGparameter parameter,
long startindex, long numberOfElements,
const double* array);

void cgGLSetParameterArray2f(CGparameter parameter,
long startlndex, long numberOfElements,
const float* array);

void cgGLSetParameterArray2d(CGparameter parameter,
long startindex, long numberOfElements,
const double* array);

76 808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

cgGLSetParameterArray3f(CGparameter parameter,
long startindex, long numberOfElements,
const float* array);

cgGLSetParameterArray3d(CGparameter parameter,
long startindex, long numberOfElements,
const double* array);

cgGLSetParameterArray4f(CGparameter parameter,
long startindex, long numberOfElements,
const float* array);

cgGLSetParameterArray4d(CGparameter parameter,
long startindex, long numberOfElements,
const double* array);

The digit in the name of those functions indicates the type of the parameter
array elements: 1 for arrays of floatl, 2 for arrays of float2, and so on. The
variables startindex and numberOfElements specify which elements of the
array parameter are set: They are the numberOfElements elements of the
indices that range from startlndex to startindex+numberOfElements-1.
Passing a value of 0 for numberOfElements tells the functions to set all the
values starting at index startindex up to the last valid index of the array,
namely cgGetArraySize(parameter,0)-1. This is equivalent to setting
numberOfElements to cgGetArraySize(parameter,0)-startindex. The
parameter array is an array of scalar values. It must have
numberOfElements for the cgGLSetParameterArrayl functions,
2*numberOfElements for the cgGLSetParameterArray?2 functions, and so

on.

The corresponding parameter value retrieval functions are as follows:

void

808-00504-0000-006

cgGLGetParameterArraylf(CGparameter parameter,

long startindex, long numberOfElements, float* array);
cgGLGetParameterArrayld(CGparameter parameter,

long startindex, long numberOfElements, double* array);
cgGLGetParameterArray2f(CGparameter parameter,

long startindex, long numberOfElements, float* array);
cgGLGetParameterArray2d(CGparameter parameter,

long startindex, long numberOfElements, double* array);
cgGLGetParameterArray3f(CGparameter parameter,

long startindex, long numberOfElements, float* array);
cgGLGetParameterArray3d(CGparameter parameter,

long startindex, long numberOfElements, double* array);
cgGLGetParameterArray4f(CGparameter parameter,

long startindex, long numberOfElements, float* array);
cgGLGetParameterArray4d(CGparameter parameter,

long startindex, long numberOfElements, double* array);

77
NVIDIA

Cg Language Toolkit

Similar functions exist to set the values of arrays of uniform matrix
parameters:

void cgGLSetMatrixParameterArrayfr(CGparameter parameter,
long startlndex, long numberOfElements,
const float* array);

void cgGLSetMatrixParameterArrayfc(CGparameter parameter,
long startindex, long numberOfElements,
const float* array);

void cgGLSetMatrixParameterArraydc(CGparameter parameter,
long startlndex, long numberOfElements,
const double* array);

void cgGLSetMatrixParameterArraydc(CGparameter parameter,
long startindex, long numberOfElements,
const double* array);

and to query those values:

void cgGLGetMatrixParameterArrayfr(CGparameter parameter,
long startindex, long numberOfElements, float* array);

void cgGLGetMatrixParameterArrayfc(CGparameter parameter,
long startindex, long numberOfElements, float* array);

void cgGLGetMatrixParameterArraydc(CGparameter parameter,
long startindex, long numberOfElements, double* array);

void cgGLGetMatrixParameterArraydc(CGparameter parameter,
long startindex, long numberOfElements, double* array);

The c and r suffixes have the same meaning as they do for the
cgGLSetMatrixParameter functions.

Setting Varying Parameters

The values of fragment program varying parameters are set as the result of
the interpolation across the triangles performed by the GPU, so only the
values of vertex program varying parameters are set by the application.

Setting a vertex varying parameter requires two steps.

The first step consists in passing a pointer to an array containing the values
for each vertex. This is done using cgGLSetParameterPointer():
void cgGLSetParameterPointer(CGparameter parameter,

GLint size, GLenum type, GLsizei stride,

GLvoid* array);

The variable size indicates the number of values per vertex that are stored in
array. Itis equal to 1, 2, 3, or 4. If fewer values are set than the parameter
requires, the non-specified values default to 0 for X, y, and z, and 1 for w.

78 808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

The enumerate type type specifies the data type of the values stored in
array: GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE.

The parameter stride is the byte offset between any two consecutive
vertices. Passing a value of zero for stride is equivalent to passing a byte
offset equal to size multiplied by the size of type in bytes; in other words, it
means that there is no gap between two consecutive vertex values. Note that
the minimum size for array is implicitly defined by the biggest vertex index
specified in the triangles drawn.

The second step consists in enabling the varying parameter for a specific
drawing call:
void cgGLEnableClientState(CGparameter parameter);

The equivalent disabling function is
void cgGLDisableClientState(CGparameter parameter);

Another way to set the vertex varying parameter is to use the
cgGLSetParameter functions. When a cgGLSetParameter function is called
for a varying parameter, the appropriate immediate-mode OpenGL entry
point is called. The cgGLGetParameter functions do not apply to varying
parameters.

Setting Sampler Parameters

Setting a sampler parameter requires two steps. First, an OpenGL texture
object handle must be assigned to the sampler parameter. Next, the texture
unit associated with the sampler must be enabled prior to drawing. The first
step must be done explicitly by the application. The second step may also be
performed explicitly by the application, or the OpenGL Cg runtime can be
instructed to automatically manage texture units itself.

The first step consists in assigning an OpenGL texture object to the sampler
parameter using

void cgGLSetTextureParameter(CGparameter parameter,
GLuint textureName);

where textureName is the OpenGL texture name. Note that when your
application makes OpenGL calls to initialize the texture environment for a
given sampler, it is important to remember to set the active texture unit to
that associated with the sampler before doing so. The sampler’s texture unit
can be retrieved by calling cgGLGetTextureEnum(); see the following
discussion.

The second step consists of enabling the texture unit associated with the
sampler parameter for a specific drawing call. It is strongly recommended

808-00504-0000-006 79
NVIDIA

Cg Language Toolkit

80

that applications allow the Cg OpenGL runtime library to perform this
second step itself. This is accomplished by calling:

void cgGLSetManageTextureParameters(CGcontext context,
CGbool enable);

with enable set to a non-zero value after the Cg context has been created.
When automatic texture parameter management is in effect, the Cg OpenGL
runtime will automatically enable all appropriate texture units when a
CGprogram is bound.

If, despite the above, you wish to manage texture parameters yourself, you
can use the helper function

void cgGLEnableTextureParameter(CGparameter parameter);

which must be called after cgGLSetTextureParameter() and before the
actual drawing call.

The equivalent disabling function is:
void cgGLDisableTextureParameter(CGparameter parameter);

You can retrieve the texture object assigned to a sampler parameter using
GLuint cgGLGetTextureParameter(CGparameter parameter);

You can retrieve the OpenGL enumerant for the texture unit associated with
a sampler parameter using

GLenum cgGLGetTextureEnum(CGparameter parameter);

The returned enumerant has the form GL_TEXTURE#_ARB where # is the
texture unit index.

OpenGL Profile Support

A convenient function is provided that gives the best available profile for
vertex or fragment programs depending on the available OpenGL
extensions.

CGprofile cgGLGetLatestProfile(CGGLenum profileType);

Parameter profileType is equal to CG_GL_VERTEX or CG_GL_FRAGMENT.
Function cgGLGetLatestProfile() may be used in conjunction with
cgCreateProgram() or cgCreateProgramFromFile() to ensure that the best
available vertex and fragment profiles are used for compilation. This allows
you to make your application future-ready, because the Cg programs are
automatically compiled for the best profiles that are available at runtime,
even if these profiles did not exist at the time the application was written.
Another function that allows you optimal compilation is
cgGLSetOptimalOptions(). It sets implicit compiler arguments that are

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

appended to the argument list passed to cgCreateProgram() or
cgCreateProgramFromFile().
void cgGLSetOptimalOptions(CGprofile profile);

OpenGL Program Execution

All programs must be loaded before they can be bound. To load a program
use cgGLLoadProgram():

void cgGLLoadProgram(CGprogram program) ;

Binding a program only works if its profile is enabled. This is done by calling
cgGLEnableProfile() with the program profile:
void cgGLEnableProfile(CGprofile profile);

The binding itself is done using cgGLBindProgram():
void cgGLBindProgram(CGprogram program) ;

Only one vertex program and one fragment program can be bound at any
given time, so binding a program implicitly unbinds any other program of
that type.

Profiles are disabled using cgGLDisableProfile():

void cgGLDisableProfile(CGprofile profile);

Some profiles may not be supported on some systems. For example, a given
profile is not supported if the OpenGL extensions it requires are not
available. You can check if a profile is supported by using
cgGLIsProfileSupported():

CGbool cgGLIsProfileSupported(CGprofile profile);

It returns CG_TRUE if profi le is supported and CG_FALSE otherwise.

OpenGL Program Examples

This section presents code that illustrates how to use functions from the
OpenGL Cg interface to make Cg programs work with OpenGL. The vertex
and fragment programs below are used in “OpenGL Application” on

page 82.

OpenGL Vertex Program

The following Cg code is assumed to be in a file called VertexProgram.cg.
void VertexProgram(

in float4 position - POSITION,
in float4 color : COLORO,
in float4 texCoord : TEXCOORDO,
808-00504-0000-006 81

NVIDIA

Cg Language Toolkit

82

out float4 positionO : POSITION,
out float4 colorO : COLORO,
out float4 texCoordO : TEXCOORDO,

const uniform float4x4 ModelViewMatrix)

position0 = mul(position, ModelViewMatrix);

color0 = color;
texCoordO = texCoord;

he
OpenGL Fragment Program

The following Cg code is assumed to be in a file called FragmentProgram.cg.

void FragmentProgram(
in float4 color : COLORO,
in float4 texCoord : TEXCOORDO,
out float4 colorO : COLORO,
const uniform sampler2D BaseTexture,
const uniform float4 SomeColor)

{

colorO = color * tex2D(BaseTexture, texCoord) + SomeColor;

he
OpenGL Application

This C code links the previous vertex and fragment programs to the

application.

#include <cg/cg-h>
#include <cg/cgGL.h>

float* vertexPositions; // Initialized
float* vertexColors; // Initialized
float* vertexTexCoords; // Initialized
GLuint texture; // lInitialized
float constantColor[]; // Initialized

CGcontext context;

somewhere
somewhere
somewhere
somewhere
somewhere

CGprogram vertexProgram, fragmentProgram;
CGprofile vertexProfile, fragmentProfile;
CGparameter position, color, texCoord, baseTexture, someColor,

modelViewMatrix;

// Called at initialization
void CgGLInit()

{

// Create context
context = cgCreateContext();

NVIDIA

else
else
else
else
else

808-00504-0000-006

Introduction to the Cg Runtime Library

// Initialize profiles and compiler options
vertexProfile = cgGLGetLatestProfile(CG_GL_VERTEX);
cgGLSetOptimalOptions(vertexProfile);

fragmentProfile = cgGLGetLatestProfile(CG_GL_FRAGMENT);
cgGLSetOptimalOptions(fragmentProfile);

// Create the vertex program

vertexProgram = cgCreateProgramFromFile(
context, CG_SOURCE, "VertexProgram.cg",
vertexProfile, "VertexProgram', 0);

// Load the program
cgGLLoadProgram(vertexProgram) ;

// Create the fragment program

fragmentProgram = cgCreateProgramFromFile(
context, CG_SOURCE, "FragmentProgram.cg",
fragmentProfile, "FragmentProgram', 0);

// Load the program
cgGLLoadProgram(fragmentProgram) ;

// Grab some parameters.
position = cgGetNamedParameter(vertexProgram, '‘position'™);
color = cgGetNamedParameter(vertexProgram, "color™);
texCoord = cgGetNamedParameter(vertexProgram, "“‘texCoord™);
modelViewMatrix = cgGetNamedParameter(vertexProgram,
“"ModelViewMatrix'™);
baseTexture = cgGetNamedParameter(fragmentProgram,
"BaseTexture');
someColor = cgGetNamedParameter(fragmentProgram,
"*SomeColor™);

// Set parameters that don"t change:

// They can be set only once because of parameter shadowing.
cgGLSetTextureParameter(baseTexture, texture);
cgGLSetParameter4fv(someColor, constantColor);

}

// Called to render the scene
void Display(Q)
{
// Set the varying parameters
cgGLEnableClientState(position);

808-00504-0000-006 83
NVIDIA

Cg Language Toolkit

}

cgGLSetParameterPointer(position, 3, GL_FLOAT, O,
vertexPositions);
cgGLEnableClientState(color);
cgGLSetParameterPointer(color, 1, GL_FLOAT, O,
vertexColors);
cgGLEnableClientState(texCoord);
cgGLSetParameterPointer(texCoord, 2, GL_FLOAT, O,
vertexTexCoords);

// Set the uniform parameters that change every frame

cgGLSetStateMatrixParameter(modelViewMatrix,
CG_GL_MODELVIEW_PROJECTION_MATRIX,
CG_GL_MATRIX_IDENTITY);

// Enable the profiles
cgGLEnableProfile(vertexProfile);
cgGLEnableProfile(fragmentProfile);

// Bind the programs
cgGLBindProgram(vertexProgram) ;
cgGLBindProgram(fragmentProgram) ;

// Enable texture
cgGLEnableTextureParameter(baseTexture);

// Draw scene
// ...

// Disable texture
cgGLDisableTextureParameter(baseTexture);

// Disable the profiles
cgGLDisableProfile(vertexProfile);
cgGLDisableProfile(fragmentProfile);

// Set the varying parameters
cgGLDisableClientState(position);
cgGLDisableClientState(color);
cgGLDisableClientState(texCoord) ;

// Called before application shuts down
void CgShutdown()

{

84

// This frees any runtime resource.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

cgDestroyContext(context);
3

OpenGL Error Reporting
Here is the list of the CGerror errors specific to the OpenGL Cg runtime:

0O CG_PROGRAM_LOAD_ERROR: Returned when the program could not be
loaded.

0O CG_PROGRAM_BIND_ERROR: Returned when the program could not be
bound.

O CG_PROGRAM_NOT_LOADED_ERROR: Returned when the program must be
loaded before the operation may be used.

O CG_UNSUPPORTED_GL_EXTENSION_ERROR: Returned when an
unsupported Open GL extension is required to perform the operation.

Any OpenGL Cg runtime function can generate an OpenGL error in addition
to the Cg-specific error. These errors are checked in Cg, as in any OpenGL
application, by using glGetError().

Direct3D Cg Runtime

The Direct3D Cg runtime is composed of two interfaces:

Q Minimal interface: This interface makes no Direct3D calls itself and should
be used when you prefer to keep the Direct3D code in the application
itself.

Q Expanded interface: This interface makes the Direct3D calls necessary to
provide enhanced program and parameter management and should be
used when you prefer to let the Cg runtime manage the Direct3D
shaders.

Direct3D Minimal Interface

The minimal interface simply supplies convenient functions to convert some
information provided by the core runtime to information specific to
Direct3D.

Vertex Declaration

In Direct3D, you have to supply a vertex declaration that establishes a
mapping between the vertex shader input registers and the data provided by
the application as data streams. In Direct3D 9, this vertex declaration is
bound to the current state the same way the vertex shader is (see the

808-00504-0000-006 85
NVIDIA

Cg Language Toolkit

86

Direct3D 9 documentation on

IDirect3DDevice9: :CreateVertexDeclaration() and
IDirect3DDevice9: :SetVertexDeclaration() for a detailed explanation).
In Direct3D 8, the vertex declaration is required at the time you create the
vertex shader (for more information, see the Direct3D 8 documentation on
IDirect3DDevice8: :CreateVertexShader()).

A data stream is basically an array of data structures. Each of those structures
is of a particular type called the vertex format of the stream. Here is an
example of a vertex declaration for Direct3D 9:

const D3DVERTEXELEMENT9 declaration[] = {
{ 0, 0 * sizeof(float),
D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, O }, // Position
{ 0, 3 * sizeof(float),
D3DDECLTYPE_FLOAT3, D3DDECLMETHOD DEFAULT,
D3DDECLUSAGE_NORMAL, O }, // Normal
{ 0, 8 * sizeof(float),
D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, O }, // Base texture
{1, 0 * sizeof(float),
D3DDECLTYPE_FLOAT3, D3DDECLMETHOD DEFAULT,
D3DDECLUSAGE_TEXCOORD, 1 }, // Tangent
D3DD3CL_ENDQO

};

Here is an example of a vertex declaration for Direct3D 8:

const DWORD declaration[] = {
D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3), // Position
D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT_FLOAT3), // Normal
D3DVSD_SKIP(2), // Skip the diffuse and specular color
D3DVSD_REG(D3DVSDE_TEXCOORDO,

D3DVSDT_FLOAT2), // Base texture
D3DVSD_STREAM(1), // Tangent basis stream
D3DVSD_REG(D3DVSDE_TEXCOORD1, D3DVSDT_FLOAT3),// Tangent
D3DVSD_ENDQ)

};

Both declarations tell the Direct3D runtime to find (1) the positions of the
vertices in stream O as the first three floating point values of the vertex
format, (2) the normals as the next three floating point values following the
three floating point values in stream 0, and (3) the texture coordinates as the
two floating point values located at an offset equal to twice the size of a
DWORD from the end of the normal data in stream 0. The tangents are

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

provided in stream 1 as a second texture coordinate set that is found as the
first three floating point values of the vertex format.

To get a vertex declaration from a Cg vertex program for the Direct3D 9 Cg
runtime use cgD3D9GetVertexDeclaration():

CGbool cgbD3D9GetVertexDeclaration(CGprogram program,
D3DVERTEXELEMENTY declaration[MAXD3DDECLLENGTH]);

MAXD3DDECLLENGTH is a Direct3D 9 constant that gives the maximum length
of a Direct3D 9 declaration. If no declaration can be derived from the
program, cgD3D9GetVertexDeclaration() fails and returns CG_FALSE.

To get a vertex declaration from a Cg vertex program for the Direct3D 8 Cg
runtime use cgD3D8GetVertexDeclaration():

CGbool cgb3D8GetVertexDeclaration(CGprogram program,
DWORD declaration[MAX_FVF_DECL_SIZE]);

MAX_FVF_DECL_SIZE is a Direct3D constant that gives the maximum length
of a Direct3D declaration. If no declaration can be derived from the program,
cgb3D8GetVertexDeclaration() fails and returns CG_FALSE.

The declaration returned by cgD3D9GetVertexDeclaration() or
cgD3D8GetVertexDeclaration() is for a single stream, so that for the
following program:

void main(in float4 position : POSITION,
in TfTloat4 color : COLORO,
in Tloat4 texCoord : TEXCOORDO,
out float4 hpos : POSITION)

{3}

it is equivalent to:

const D3DVERTEXELEMENT9 declaration[] = {

{ 0, 0 * sizeof(float),
D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, O 3},

{ 0, 4 * sizeof(float),
D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, O 1},

{ 0, 8 * sizeof(float),
D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, O 3},

D3DD3CL_ENDQO)

};
for the Direct3D 9 Cg runtime, and it is equivalent to:
const DWORD declaration[] = {

808-00504-0000-006 87
NVIDIA

Cg Language Toolkit

88

D3DVSD_STREAM(O),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT4),
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_FLOAT4),
D3DVSD_REG(D3DVSDE_TEXCOORDO, D3DVSDT_FLOAT4),
D3DVSD_ENDQ)

};

for the Direct3D 8 Cg runtime.

Usually though, you want to apply a vertex program to geometric data that
come in multiple streams or with specific vertex formats. In this case, the
vertex declaration is based on the vertex formats rather than the program. To
see if it is compatible with the program, use
cgb3D9ValidateVertexDeclaration():
CGbool cgD3D9ValidateVertexDeclaration(CGprogram program,

const D3DVERTEXELEMENT9* declaration);

for the Direct3D 9 Cg runtime or cgD3D8Val idateVertexDeclaration().
Use cgD3D8Val idateVertexDeclaration():

CGbool cgb3D8ValidateVertexDeclaration(CGprogram program,
const DWORD* declaration);

for the Direct3D 8 Cg runtime.

A call to cgb3D9Val idateVertexDeclaration() or
cgb3D8Val idateVertexDeclaration() returns CG_TRUE if the vertex
declaration is compatible with the program. A Direct3D 9 declaration is
compatible with the program if the declaration has an entry matching every
varying input parameter used by the program. A Direct3D 8 declaration is
compatible with the program if the declaration has a D3DVSD_REG() macro
call matching every varying input parameter used by the program. For the
program
void main(float4 position : POSITION,

float4 color : COLORO,

float4 texCoord : TEXCOORDO)
{1}

the following Direct3D 9 vertex declaration is valid:

const D3DVERTEXELEMENT9 declaration[] = {

{ 0, 0 * sizeof(float),
D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, O },

{ 0, 3 * sizeof(float),
D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, O 1},

{1, 4 * sizeof(float),

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, O },
D3DD3CL_END(Q)
};
and the following Direct3D 8 vertex declaration is valid:

DWORD declaration[] = {
D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
D3DVSD_STREAM(1),
D3DVSD_SKIP(4),
D3DVSD_REG(D3DVSDE_TEXCOORDO, D3DVSDT_FLOAT2),
D3DVSD_ENDQ)

I

This is true because D3DDECLUSAGE_POSITION and D3DVSDE_POSITION match
the hardware register associated with the predefined semantic POSITION,
D3DDECLUSAGE_DIFFUSE and D3DVSDE_DIFFUSE match the register
associated with COLORO, and D3DDECLUSAGE_TEXCOORDO and
D3DVSDE_TEXCOORDO match the register associated with TEXCOORDO.

The above declarations can also be written the following way using
cgb3D9ResourceToDeclUsage() or cgD3D8ResourceTolnputRegister():

const D3DVERTEXELEMENT9 declaration[] = {
{ 0, 0 * sizeof(float),
D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
cgD3D9ResourceToDeclUsage(CG_POSITION), O },
{ 0, 3 * sizeof(float),
D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_ DEFAULT,
cgbD3D9ResourceToDeclUsage(CG_COLORO), O },
{1, 4 * sizeof(float),
D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
cgD3D9ResourceToDeclUsage(CG_TEXCOORDO), O },
D3DD3CL_ENDQO)
}:
DWORD declaration[] = {
D3DVSD_STREAM(0),
D3DVSD_REG(cgbD3D8ResourceTolnputRegister(CG_POSITION),
D3DVSDT_FLOAT3),
D3DVSD_REG(cgD3D8ResourceTolnputRegister(CG_COLORO),
D3DVSDT_D3DCOLOR),
D3DVSD_STREAM(1),
D3DVSD_SKIP(4),
D3DVSD_REG(cgb3D8ResourceTolnputRegister (CG_TEXCOORDO),

808-00504-0000-006 89
NVIDIA

Cg Language Toolkit

90

D3DVSDT_FLOAT2),
D3DVSD_ENDQ)

}:

If it is possible to do so, the functions cgD3D9ResourceToDeclUsage() and
cgD3D8ResourceTolnputRegister() convert a CGresource enumerated
type into a Direct3D vertex shader input register:

BYTE cgD3D9ResourceToDeclUsage(CGresource resource);
DWORD cgD3D8ResourceTolnputRegister(CGresource resource);

If the resource is not a vertex shader input resource, the call to
cgD3D9ResourceToDeclUsage() returns CGD3D9_INVALID_REG and the call
to cgD3D8ResourceTolnputRegister () returns CGD3D8_INVALID_REG.

To write the vertex declarations described above based on the program
parameters, which eliminates the reference to any semantic, use
cgD3D9ResourceToDeclUsage() or cgD3D8ResourceTolnputRegister():

CGparameter position =

cgGetNamedParameter(program, ‘‘position™);
CGparameter color =

cgGetNamedParameter(program, '‘color'™);
CGparameter texCoord =

cgGetNamedParameter(program, '“texCoord™);

const D3DVERTEXELEMENT9 declaration[] = {
{ 0, 0 * sizeof(float),
D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
cgD3D9ResourceToDeclUsage(
cgGetParameterResource(position)),
cgGetParameterResourcelndex(position) 1},
{ 0, 3 * sizeof(float),
D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_ DEFAULT,
cgbD3D9ResourceToDeclUsage(cgGetParameterResource(color)),
cgGetParameterResourcelndex(color) 1},
{1, 4 * sizeof(float),
D3DDECLTYPE_FLOAT2, D3DDECLMETHOD DEFAULT,
cgD3D9ResourceToDeclUsage(
cgGetParameterResource(texCoord)),
cgGetParameterResourcelndex(texCoord) 1},
D3DD3CL_ENDQO
}:
DWORD declaration[] = {
D3DVSD_STREAM(0),
D3DVSD_REG(cgD3D8ResourceTolnputRegister(
cgGetParameterResource(position)), D3DVSDT_FLOAT3),
D3DVSD_REG(cgbD3D8ResourceTolnputRegister(

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

cgGetParameterResource(color)), D3DVSDT_D3DCOLOR),
D3DVSD_STREAM(1),
D3DVSD_SKIP(4),
D3DVSD_REG(cgD3D8ResourceTolnputRegister(
cgGetParameterResource(texCoord)), D3DVSDT FLOAT2),
D3DVSD_ENDQ)
};
The size specified as the second argument of the D3DVSD_REG() macro call of
a Direct3D 8 declaration does not need to match the size of the
corresponding parameter for the vertex declaration to be valid. Those sizes
are specified to describe how the data is laid out in the streams, not to
perform any type checking with the shader code. The data referred to by a
D3DVSD_REG() macro call is expanded to the four floating point values of the
corresponding hardware register, and the missing values are set to 0 for X, y,
and z, and to 1 for w.

Minimal Interface Type Retrieval

Use cgD3D9TypeToSize() to retrieve the size of a CGtype enumerated type
in terms of floating-point numbers:

DWORD cgD3D9TypeToSize(CGtype type);

More precisely, it is the number of floating-point values required to store a
parameter of type type. This function does not apply to some types, like the
sampler types, in which case it returns zero. It is useful because applications
can determine how many floating-point values they have to provide to set
the value of a given parameter.

Minimal Interface Program Examples

In this section we provide some code samples that illustrate how and when
to use functions from the minimal interface to make Cg programs work with
Direct3D. To enhance clarity, the examples do very little error checking, but a
production application should check the return values of all Cg functions.
The vertex and fragment programs below are referenced in “Direct3D 9
Application” on page 92 and “Direct3D 8 Application” on page 95.

Vertex Program

The following Cg code is assumed to be in a file called VertexProgram.cg.
void VertexProgram(

in float4 position : POSITION,
in float4 color : COLORO,
in float4 texCoord : TEXCOORDO,
out float4 positionO : POSITION,
808-00504-0000-006 91

NVIDIA

Cg Language Toolkit

out float4 colorO : COLORO,
out float4 texCoordO : TEXCOORDO,
const uniform float4x4 ModelViewMatrix)

position0 = mul(position, ModelViewMatrix);
color0 = color;
texCoordO = texCoord;

}

Fragment Program

The following Cg code is assumed to be in a file called FragmentProgram.cg.

void FragmentProgram(
in TfTloat4 color COLORO,
in TfTloat4 texCoord TEXCOORDO,
out float4 colorO : COLORO,
const uniform sampler2D BaseTexture,
const uniform float4 SomeColor)

{

colorO = color * tex2D(BaseTexture, texCoord) + SomeColor;

}
Direct3D 9 Application

The following C code links the previous vertex and fragment programs to
the Direct3D 9 application.

#include <cg/cg-h>

#include <cg/cgD3D9.h>

IDirect3DDevice9* device; // Initialized somewhere else
IDirect3DTexture9* texture; // Initialized somewhere else
D3DXMATRIX matrix; // Initialized somewhere else
D3DXCOLOR constantColor; // Initialized somewhere else
CGcontext context;

CGprogram vertexProgram, fragmentProgram;
IDirect3DVertexDeclaration9* vertexDeclaration;
IDirect3DVertexShader9* vertexShader;
IDirect3DPixelShader9* pixelShader;

CGparameter baseTexture, someColor, modelViewMatrix;

// Called at application startup
void OnStartup(Q)
{

// Create context

context = cgCreateContext();

}

92 808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

// Called whenever the Direct3D device needs to be created
void OnCreateDevice()
{
// Create the vertex shader
vertexProgram = cgCreateProgramFromFile(context, CG_SOURCE,
"VertexProgram.cg', CG_PROFILE_VS 2 0, "VertexProgram'”, 0);
CComPtr<ID3DXBuffer> byteCode;
const char* progSrc = cgGetProgramString(vertexProgram,
CG_COMPILED_PROGRAM) ;
D3DXAssembleShader(progSrc, strlen(progSrc), 0, 0, O,
&byteCode, 0);
// If your program uses explicit binding semantics (like
// this one), you can create a vertex declaration
// using those semantics.
const D3DVERTEXELEMENT9 declaration[] = {
{ 0, 0 * sizeof(float),
D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, O 3},
{ 0, 3 * sizeof(float),
D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_ DEFAULT,
D3DDECLUSAGE_COLOR, 0 1},
{ 0, 4 * sizeof(float),
D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, O 3},
D3DD3CL_ENDQO)
}:
// Make sure the resulting declaration is compatible with
// the shader. This is really just a sanity check.
assert(cgb3D9Val idateVertexDeclaration(vertexProgram,
declaration));
device->CreateVertexDeclaration(
declaration, &vertexDeclaration);
device->CreateVertexShader(
byteCode->GetBufferPointer(), &vertexShader);

// Create the pixel shader.

fragmentProgram = cgCreateProgramFromFile(context,
CG_SOURCE, '"FragmentProgram.cg",
CG_PROFILE_PS_2 0, *FragmentProgram™, 0);

CComPtr<ID3DXBuffer> byteCode;

const char* progSrc = cgGetProgramString(fragmentProgram,
CG_COMPILED_PROGRAM) ;

D3DXAssembleShader(progSrc, strlen(progSrc), 0, 0, O,

808-00504-0000-006 93
NVIDIA

Cg Language Toolkit

&byteCode, 0);
device->CreatePixelShader(byteCode->GetBufferPointer(),
&pixelShader)

// Grab some parameters.
modelViewMatrix = cgGetNamedParameter(vertexProgram,
“"ModelViewMatrix');
baseTexture = cgGetNamedParameter (fragmentProgram,
“"BaseTexture');
someColor = cgGetNamedParameter(fragmentProgram,
"SomeColor™™);

// Sanity check that parameters have the expected size
assert(cgbD3D9TypeToSize(cgGetParameterType(
modelViewMatrix)) == 16);
assert(cgb3D9TypeToSize(cgGetParameterType(someColor))
== 4);

// Called to render the scene
void OnRender()
{
// Get the Direct3D resource locations for parameters
// This can be done earlier and saved
DWORD modelViewMatrixRegister =
cgGetParameterResourcelndex(modelViewMatrix);
DWORD baseTextureUnit =
cgGetParameterResourcelndex(baseTexture);
DWORD someColorRegister =
cgGetParameterResourcelndex(someColor);

// Set the Direct3D state.
device->SetVertexShaderConstantF(modelViewMatrixRegister,
&matrix, 4);
device->SetPixelShaderConstantF(someColorRegister,
&constantColor, 1);
device->SetVertexDeclaration(vertexDeclaration);
device->SetTexture(baseTextureUnit, texture);
device->SetVertexShader (vertexShader) ;
device->SetPixelShader(pixelShader);

// Draw scene.
// ...

94 808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

// Called before the device changes or is destroyed
void OnDestroyDevice() {
vertexShader->Release();
pixelShader->Release();
vertexDeclaration->Release();

}

// Called before application shuts down

void OnShutdown() {
// This frees any core runtime resources.
// The minimal interface has no dynamic storage to free.
cgDestroyContext(context);

}

Direct3D 8 Application

The following C code links the previous vertex and fragment programs to
the Direct3D 8 application.

#include <cg/cg-h>

#include <cg/cgD3D8.h>

IDirect3DDevice8* device; // Initialized somewhere else
IDirect3DTexture8* texture; // Initialized somewhere else
D3DXMATRIX matrix; // Initialized somewhere else
D3DXCOLOR constantColor; // Initialized somewhere else
CGcontext context;

CGprogram vertexProgram, fragmentProgram;

DWORD vertexShader, pixelShader;

CGparameter baseTexture, someColor, modelViewMatrix;

// Called at application startup
void OnStartup()
{

// Create context

context = cgCreateContext();

}

// Called whenever the Direct3D device needs to be created
void OnCreateDevice()
{
// Create the vertex shader
vertexProgram = cgCreateProgramFromFile(context, CG_SOURCE,
"VertexProgram.cg™, CG_PROFILE VS 1 1, "VertexProgram'”, 0);
CComPtr<ID3DXBuffer> byteCode;
const char* progSrc = cgGetProgramString(vertexProgram,

808-00504-0000-006 95
NVIDIA

Cg Language Toolkit

96

CG_COMPILED_PROGRAM) ;
// Normally, you also grab the constants and prepend them
// to your vertex declaration. Not shown here for brevity.
D3DXAssembleShader(progSrc, strlen(progSrc), 0, 0, O,
&byteCode, 0);
// If your program uses explicit binding semantics (like
// this one), you can create a vertex declaration
// using those semantics.
DWORD declaration[] = {
D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
D3DVSD_REG(D3DVSDE_TEXCOORDO, D3DVSDT_FLOAT2),
D3DVSD_ENDQ)
}
// Make sure the resulting declaration is compatible with
// the shader. This is really just a sanity check.
assert(cgb3D8Val idateVertexDeclaration(vertexProgram,
declaration));
// Create the shader handle using the declaration.
device->CreateVertexShader(declaration,
byteCode->GetBufferPointer(), &vertexShader, 0);

// Create the pixel shader.

fragmentProgram = cgCreateProgramFromFile(context,
CG_SOURCE, '"FragmentProgram.cg",
CG_PROFILE_PS_1 1, *FragmentProgram™, 0);

CComPtr<ID3DXBuffer> byteCode;
const char* progSrc = cgGetProgramString(fragmentProgram,
CG_COMPILED_PROGRAM) ;
D3DXAssembleShader(progSrc, strlen(progSrc), 0, 0, O,
&byteCode, 0);
device->CreatePixelShader(byteCode->GetBufferPointer(),
&pixelShader);

// Grab some parameters.
modelViewMatrix = cgGetNamedParameter(vertexProgram,
“ModelViewMatrix'™);
baseTexture = cgGetNamedParameter(fragmentProgram,
"BaseTexture');
someColor = cgGetNamedParameter(fragmentProgram,
"*SomeColor™);

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

// Sanity check that parameters have the expected size
assert(cgbD3D8TypeToSize(cgGetParameterType(
modelViewMatrix)) == 16);
assert(cgb3D8TypeToSize(cgGetParameterType(someColor))
== 4);
}

// Called to render the scene
void OnRender()
{
// Get the Direct3D resource locations for parameters
// This can be done earlier and saved
DWORD modelViewMatrixRegister =
cgGetParameterResourcelndex(modelViewMatrix);
DWORD baseTextureUnit =
cgGetParameterResourcelndex(baseTexture);
DWORD someColorRegister =
cgGetParameterResourcelndex(someColor);

// Set the Direct3D state.
device->SetVertexShaderConstant(modelViewMatrixRegister,
&matrix, 4);
device->SetPixelShaderConstant(someColorRegister,
&constantColor, 1);
device->SetTexture(baseTextureUnit, texture);
device->SetVertexShader (vertexShader) ;
device->SetPixelShader(pixelShader);

// Draw scene.
// ...

}

// Called before the device changes or is destroyed

void OnDestroyDevice() {
device->DeleteVertexShader(vertexShader);
device->DeletePixelShader(pixelShader);

}

// Called before application shuts down

void OnShutdown() {
// This frees any core runtime resources.
// The minimal interface has no dynamic storage to free.
cgDestroyContext(context);

bs

808-00504-0000-006 97
NVIDIA

Cg Language Toolkit

98

Direct3D Expanded Interface

If you use the expanded interface for a program, in order to avoid any
unfortunate inconsistencies it is advisable to stick with the expanded
interface for all shader-related operations that can be performed through its
functions, such as shader setting, shader activation, and parameter setting—
including setting texture stage states.

Setting the Direct3D Device

The expanded interface encapsulates more functionality than the minimal
interface to ease program and parameter management. It does this by
making the appropriate Direct3D calls at the appropriate times. Because
some of these calls require the Direct3D device, it must be communicated to
the Cg runtime:

HRESULT cgD3D9SetDevice(IDirect3DDevice9* device);

You can get the Direct3D device currently associated with the runtime using
cgb3D9GetDevice():
IDirect3DDevice9* cgD3D9GetDevice();

When cgD3D9SetDevice() is called with zero as an input, all Direct3D
resources used by the expanded interface are released. Since a Direct3D
device is destroyed only when all references to it are removed, the
application should call cgd3D9SetDevice() with zero as an input when it is
done with a Direct3D device so that it gets destroyed when the application
shuts down. Otherwise, Direct3D does not shut down properly and reports
memory leaks to the debug console.

Note that calling cgD3D9SetDevice() with zero as an input does not affect
the Cg core runtime resources in any way: all the related core runtime
handles (of type CGprogram, CGparameter, and so on) remain valid.

If you call cgD3D9SetDevice() a second time with a different device, all
programs managed by the old device are rebuilt using the new device.

Responding to Lost Direct3D Devices

The expanded interface may hold references to Direct3D resources that need
to be recreated in response to a lost device. In particular, certain sampler
parameters might need to be released before a Direct3D device can be reset
from a lost state. The expanded interface is holding a reference to a texture
that needs to be reset in response to a lost device if both of the following are
true for a texture:

QO It was created in the D3DPOOL_DEFAULT pool.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

O It was bound to a sampler parameter (using cgD3D9SetTexture()) of a
program for which parameter shadowing is enabled.

In this case, the parameter must be set to zero (using cgd3D9SetTexture())
to remove the expanded interface’s reference to that texture so it can be
destroyed and the Direct3D device can be reset from a lost state. Later, after
resetting the Direct3D device and recreating the texture, it needs to be re-
bound to the sampler parameter. For example,

IDirect3DDevice9* device; // Initialized elsewhere
IDirect3DTexture9* myDefaultPoolTexture;
CGprogram program;

void OneTimeLoadScene()

{
// Load the program with cgD3D9LoadProgram and

// enable parameter shadowing

/> .../
cgb3D9LoadProgram(program, TRUE, 0, 0, 0);
VA 4

// Bind sampler parameter

GCparameter parameter;

parameter = cgGetParameterByName(program, *“*MySampler);
cgbD3D9SetTexture(parameter, myDefaultPoolTexture);

}

void OnLostDevice()

{
// First release all necessary resources
PrepareForReset();
// Next actually reset the Direct3D device

device->Reset(/* ... */);
// Finally recreate all those resource
OnReset();
s
void PrepareForReset()
{
= ace =/

// Release expanded interface reference
cgbD3D9SetTexture(mySampler, 0);

// Release local reference

// and any other references to the texture
myDefaultPoolTexture->Release();

/* .. */

808-00504-0000-006 99
NVIDIA

Cg Language Toolkit

100

void OnReset()
{
// Recreate myDefaultPoolTexture in D3DPOOL_DEFAULT
/* ..
// Since the texture was just recreated,
// it must be re-bound to the parameter
GCparameter parameter;
parameter = cgGetParameterByName(prog, “MySampler™);
cgbD3D9SetTexture(mySampler, myDefaultPoolTexture);
/* ..
}
See the Direct3D documentation for a full explanation of lost devices and
how to properly handle them.

Setting Expanded Interface Parameters

This section discusses setting the various types of parameters of the
expanded interface, including uniform scalar, uniform vector, uniform
matrix, uniform arrays of the three previous types, and sampler.

Setting Uniform Scalar, Vector, and Matrix Parameters

The function cgD3D9SetUniform() sets floating-point parameters like
float3 and float4x3:

HRESULT cgD3D9SetUniform(CGparameter parameter,
const void* value);

The amount of data required depends on the type of parameter, but is
always specified as an array of one or more floating point values. The type is
void* so a user-defined structure that is compatible can be passed in without
type casting. Here is some code illustrating the use of cgD3D9SetUniform()
for setting a vectorParam of type float3, matrixParam of type float2x3,
and arrayParam of type float2x2[3]:
D3DXVECTOR3 vectorData(1,2,3);
float matrixData[2][3] = {{1, 2, 3}, {4, 5, 6}};
float arrayData[3]1[2][2] =

{{{1, 2}, {3, 43}.{{5, 6}.{7.8}}, {{9, 10}, {11, 12}}}:
cgb3D9SetUni form(vectorParam, &vectorData);
cgbD3D9SetUniform(matrixParam, matrixData);
cgb3D9SetUniform(arrayParam, arrayData);

As mentioned previously, cgD3D9TypeToSize() can be used to determine
how many values are required for setting a parameter of a particular type.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

For convenience, there is also a function to set a parameter from a 4x4 matrix
of type D3DMATRIX:

HRESULT cgD3D9SetUniformMatrix(CGparameter parameter,
const D3DMATRIX* matrix);

The upper-left portion of the matrix is extracted to fit the size of the input
parameter, so that you could set matrixParam this way as well:
D3DXMATRIX matrix(

1, 1, 1, O,
1,
0,
0

., 1,0
., 0, 0,
0, O

[oNeN

);

cgb3D9SetUni formMatrix(matrixParam, &matrix);
In the example above, every element of matrixParam is set to 1.

Setting Uniform Arrays of Scalar, Vector, and Matrix Parameters

To set an array parameter, use cgD3D9SetUniformArray():

HRESULT cgD3D9SetUniformArray(CGparameter parameter,
DWORD startlndex, DWORD numberOfElements,
const void* array);

The parameters startindex and numberOfElements specify which elements
of the array parameter are set: Those are the numberOfElements elements of
indices ranging from startindex to startindex + numberOfElements-1.1t
is assumed that array contains enough values to set all those elements. As
with cgD3D9SetUniform(), cgD3D9TypeToSize() can be used to determine
how many values are required, and the type is void* so a compatible user-
defined structure can be passed in without type casting.

There is a convenience function equivalent to cgD3D9SetUniformMatrix():

HRESULT cgD3D9SetUniformMatrixArray(CGparameter parameter,
DWORD startlndex, DWORD numberOfElements,
const D3DMATRIX* matrices);

The parameters startindex and numberOfElements have the same
meanings as for cgD3D9SetUniformMatrix().

The upper-left portion of each matrix of the array matrices is extracted to fit
the size of the element of the array parameter parameter. Array matrices is
assumed to have numberOfElements elements.

808-00504-0000-006 101
NVIDIA

Cg Language Toolkit

102

Setting Sampler Parameters

You assign a Direct3D texture to a sampler parameter using

HRESULT cgD3D9SetTexture(CGparameter parameter,
IDirect3DBaseTexture9* texture);

To set the sampler state in the Direct3D 9 Cg runtime, use

HRESULT cgD3D9SetSamplerState(CGparameter parameter,
D3DSAMPLERSTATETYPE type, DWORD value);

Parameter type is any of the D3DSAMPLERSTATETYPE enumerants and
parameter value is a value appropriate for the corresponding type. Here is
an example of how to use this function:

cgb3D9SetSamplerState(parameter, D3DSAMP_MAGFILTER,
D3DTEXF_LINEAR) ;

To set the texture stage state in the Direct3D 8 Cg runtime, use:

HRESULT cgD3D8SetTextureStageState(CGparameter parameter,
D3DTEXTURESTAGESTATETYPE type, DWORD value);

Parameter type must be one of the following values:

D3DTSS_ADDRESSU D3DTSS_ADDRESSV
D3DTSS_ADDRESSW D3DTSS_BORDERCOLOR
D3DTSS_MAGFILTER D3DTSS_MINFILTER
D3DTSS_MIPFILTER D3DTSS_MIPMAPLODBIAS

D3DTSS_MAXMIPLEVEL D3DTSS_MAXANISOTROPY

Parameter value is a value appropriate for the corresponding type. Here is
an example of how to use this function:

cgb3D8SetTextureStageState(parameter, D3DTSS MAGFILTER,
D3DTEXF_LINEAR) ;

The texture wrap mode is set using

HRESULT cgD3D9SetTextureWrapMode(CGparameter parameter,
DWORD value);

The input value is either zero or a combination of D3DWRAP_U, D3DWRAP_Y,
and D3DWRAP_W. Here is an example of how to use this function:
cgD3D9SetTextureWrapMode(parameter, D3DWRAP_U | D3DWRAP_V);
Parameter Shadowing

Parameter shadowing can be enabled or disabled on a per-program basis:

O When loading the program (see “Expanded Interface Program
Execution” on page 103)

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

0O Atany time using

HRESULT cgD3D9EnableParameterShadowing(
CGprogram program, CGbool enable);

for which enable should be set to CG_TRUE to enable parameter
shadowing and to CG_FALSE to disable it.

To know if parameter shadowing is enabled for a given program, use:
CGbool cgD3D9IlsParameterShadowingEnabled(CGprogam program) ;

This function returns CG_TRUE if parameter shadowing is enabled for
program.

Expanded Interface Program Execution

To load a program in Direct3D 9 use cgD3D9LoadProgram():
HRESULT cgD3D9LoadProgram(CGprogram program,
CG_BOOL parameterShadowingEnabled,
DWORD assembleFlags);

This function assembles the result of the compilation of program using
D3DXAssembleShader () with assembleFlags as the D3DXASM flags.
Depending on the program’s profile, it then either uses
IDirect3DDevice9: :CreateVertexShader() to create a Direct3D 9 vertex
shader, or uses IDirect3DDevice9: :CreatePixelShader() to create a
Direct3D 9 pixel shader.

Here is a typical use of the function:

HRESULT hresult = cgbD3D9LoadProgram(vertexProgram, TRUE,
D3DXASM_DEBUG) ;

HRESULT hresult = cgD3D9LoadProgram(fragmentProgram, TRUE, 0);

To load a program in Direct3D 8 use cgD3D8LoadProgram():

HRESULT cgD3D8LoadProgram(CGprogram program,
BOOL parameterShadowingEnabled, DWORD assembleFlags,
DWORD vertexShaderUsage, const DWORD* declaration);

This function assembles the result of the compilation of program using
D3DXAssembleShader () with assembleFlags as the D3DXASM flags.
Depending on the program’s profile, it then either uses

IDirect3DDevice8: :CreateVertexShader () to create a Direct3D vertex
shader with declaration as the vertex declaration and vertexShaderUsage
as the usage control, or uses IDirect3DDevice8: :CreatePixelShader() to
create a Direct3D pixel shader.

808-00504-0000-006 103
NVIDIA

Cg Language Toolkit

104

The value of parameterShadowingEnabled should be set to TRUE to enable
parameter shadowing for the program. This behavior can be changed after
the program is created by calling cgD3DEnableParameterShadowing().
Here is a typical use of the function:

HRESULT hresult = cgbD3D8LoadProgram(vertexProgram, TRUE,
D3DXASM_DEBUG, D3DUSAGE_SOFTWAREVERTEXPROCESSING,
declaration);

HRESULT hresult = cgD3D8LoadProgram(fragmentProgram, TRUE,

0, 0, 0);

If you want to apply the same vertex program to several sets of geometric
data, each having a different layout, you need to load the program with
different vertex declarations in Direct3D 8. To do so, you need to make a
duplicate of the program, using cgCopyProgram(), for each of these
declarations. Here is a code sample illustrating this operation:
CGprogam programl, program2;
programl = cgCreateProgramFromFile(context, CG_SOURCE,
"“VertexProgram.cg™, CG_PROFILE VS 1 1, 0, 0);
const DWORD declarationl =
cgb3D8GetVertexDeclaration(programl);
cgb3D8LoadProgram(programl, TRUE, 0, O, declarationl);
program2 = cgCopyProgram(programl);
const DWORD declaration2[] = {
// ... Custom declaration ...
};
if (cgb3D8ValidateVertexDeclaration(program2, declaration2))
cgb3D8LoadProgram(program2, TRUE, 0, O, declaration2);

Only the loading functions differ between Direct3D 9 and Direct3D §; the
unloading and binding functions are the same.

To release the Direct3D resources allocated by cgD3D9LoadProgram(), such
as the Direct3D shader object and any shadowed parameter, use
HRESULT cgD3D9UnloadProgam(CGprogram program);

Note that cgdD3D9UnloadProgam() does not free any core runtime resources,
such as program and any of its parameter handles. On the other hand,
destroying a program with cgDestroyProgram() or cgDestroyContext()
releases any Direct3D resources by indirectly calling
cgb3D9UnloadProgam().

Function cgD3D91sProgramLoaded() returns CG_TRUE if a program is
loaded:

CGbool cgD3D9lsProgramLoaded(CGprogram program) ;

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

All programs must be loaded before they can be bound. Binding a program
is done by calling cgd3D9BindProgram():
HRESULT cgD3D9BindProgram(CGprogram program);

This function basically activates the Direct3D shader corresponding to
program by calling IDirect3DDevice9: :SetVertexShader() or
IDirect3DDevice9: :SetPixelShader() depending on the program’s
profile. If parameter shadowing is enabled for program, it also sets all the
shadowed parameters and their associated Direct3D states (such as texture
stage states for the sampler parameters). No value or state tracking is
performed by the runtime so that this setting is done regardless of what the
current values of these parameters or of their states are. If a shadowed
parameter has not been set by the time cgD3D9BindProgram() is called, no
Direct3D call of any sort is issued for this parameter.

Only one vertex program and one fragment program can be bound at any
given time, so binding a program of a given type implicitly unbinds any
other program of the same type.

Expanded Interface Profile Support

Two convenient functions are provided that give the highest vertex and pixel
shader versions supported by the device:

CGprofile cgD3D9GetLatestVertexProfile();
CGprofile cgD3D9GetLatestPixelProfile();

This allows you to make your application future-ready, because the Cg
programs are automatically compiled for the best profiles that are available
at runtime, even if these profiles did not exist at the time the application was
written. Another function that allows you optimal compilation is
cgD3D9GetOptimalOptions(). It returns a string representing the optimal
set of compiler options for a given profile:

char const* cgD3D9GetOptimalOptions(CGprofile profile);

This string is meant to be used as part of the argument parameter to
cgCreateProgram(). It does not need to be destroyed by the application.
However, its content could change if cgD3D9GetOptimalOptions() is called
again for the same profile but for a different Direct3D device.

Expanded Interface Program Examples

In this section we provide programs that illustrates how and when to use
functions from the expanded interface to make Cg programs work with
Direct3D. For the sake of clarity, the examples do very little error checking,
but a production application should check the return values of all Cg

808-00504-0000-006 105
NVIDIA

Cg Language Toolkit

106

functions. The vertex and fragment programs that follow are referenced in
“Expanded Interface DirectD3D 9 Application” on page 106 and “Expanded
Interface DirectD3D 8 Application” on page 109.

Expanded Interface Vertex Program

The following Cg code is assumed to be in a file called VertexProgram.cg.
void VertexProgram(

in float4 position : POSITION,
in Tfloat4 color : COLORO,
in Tloat4 texCoord : TEXCOORDO,
out float4 positionO : POSITION,
out float4 color0O : COLORO,

out float4 texCoordO : TEXCOORDO,
const uniform float4x4 ModelViewMatrix)
{
position0 = mul(position, ModelViewMatrix);
colorO = color;
texCoord0 = texCoord; }

Expanded Interface Fragment Program

The following Cg code is assumed to be in a file called FragmentProgram.cg.

void FragmentProgram(
in Tloat4 color COLORO,
in float4 texCoord : TEXCOORDO,
out float4 colorO : COLORO,
const uniform sampler2D BaseTexture,
const uniform float4 SomeColor)

{

colorO = color * tex2D(BaseTexture, texCoord) + SomeColor;

¥
Expanded Interface DirectD3D 9 Application

The following C code links the previous vertex and fragment programs to
the Direct3D 9 application.

#include <cg/cg-h>
#include <cg/cgbD3D9.h>

IDirect3DDevice9* device; // Initialized somewhere else
IDirect3DTexture9* texture; // Initialized somewhere else
D3DXCOLOR constantColor; // Initialized somewhere else
CGcontext context;

IDirect3DVertexDeclaration9* vertexDeclaration;

CGprogram vertexProgram, fragmentProgram;

CGparameter baseTexture, someColor, modelViewMatrix;

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

// Called at application startup
void OnStartup()
{

// Create context

context = cgCreateContext();

}

// Called whenever the Direct3D device needs to be created
void OnCreateDevice()
{
// Pass the Direct3D device to the expanded interface.
cgbD3D9SetDevice(device);

// Determine the best profiles to use
CGprofile vertexProfile = cgD3D9GetLatestVertexProfile();
CGprofile pixelProfile = cgD3D9GetLatestPixelProfile();

// Grab the optimal options for each profile.

const char* vertexOptions[] = {
cgD3D9GetOptimalOptions(vertexProfile), 0 };

const char* pixelOptions[] = {
cgD3D9GetOptimalOptions(pixelProfile), 0 };

// Create the vertex shader.
vertexProgram = cgCreateProgramFromFile(
context, CG_SOURCE, "VertexProgram.cg",
vertexProfile, "VertexProgram”, vertexOptions);
// If your program uses explicit binding semantics, you
// can create a vertex declaration using those semantics.
const D3DVERTEXELEMENT9 declaration[] = {
{ 0, 0 * sizeof(float),
D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_ DEFAULT,
D3DDECLUSAGE_POSITION, O },
{ 0, 3 * sizeof(float),
D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, O 1},
{ 0, 4 * sizeof(float),
D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_ DEFAULT,
D3DDECLUSAGE_TEXCOORD, O },
D3DD3CL_ENDQO)

};

// Ensure the resulting declaration is compatible with the
// shader. This is really just a sanity check.

808-00504-0000-006 107
NVIDIA

Cg Language Toolkit

assert(cgb3D9Val idateVertexDeclaration(vertexProgram,
declaration));
device->CreateVertexDeclaration(
declaration, &vertexDeclaration);
// Load the program with the expanded interface.
// Parameter shadowing is enabled (second parameter = TRUE).
cgbD3D9LoadProgram(vertexProgram, TRUE, 0);

// Create the pixel shader.

fragmentProgram = cgCreateProgramFromFile(
context, CG_SOURCE, "‘FragmentProgram.cg",
pixelProfile, "FragmentProgram', pixelOptions);

// Load the program with the expanded interface. Parameter
// shadowing is enabled (second parameter = TRUE). Ignore

// vertex shader specifc flags, such as declaration usage.
cgbD3D9LoadProgram(fragmentProgram, TRUE, 0);

// Grab some parameters.
modelViewMatrix = cgGetNamedParameter(vertexProgram,
“ModelViewMatrix'™);
baseTexture = cgGetNamedParameter(fragmentProgram,
"BaseTexture');
someColor = cgGetNamedParameter(fragmentProgram,
"SomeColor™™);

// Sanity check that parameters have the expected size
assert(cgbD3D9TypeToSize(cgGetParameterType(
modelViewMatrix)) == 16);
assert(cgbD3D9TypeToSize(cgGetParameterType(someColor))
== 4);

// Set parameters that don"t change. They can be set
// only once since parameter shadowing is enabled
cgbD3D9SetTexture(baseTexture, texture);
cgbD3D9SetUniform(someColor, &constantColor);

}

// Called to render the scene

void OnRender()

{
// Load model-view matrix.
D3DXMATRIX modelViewMatrix;
// ...

108 808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

// Set the parameters that change every frame
// This must be done before binding the programs
cgbD3D9SetUni formMatrix(modelViewMatrix, &modelViewMatrix);

// Set the vertex declaration
device->SetVertexDeclaration(vertexDeclaration);

// Bind the programs. This downloads any parameter values
// that have been previously set.
cgbD3D9BindProgram(vertexProgram) ;
cgbD3D9BindProgram(fragmentProgram) ;

// Draw scene.
// ...

}

// Called before the device changes or is destroyed

void OnDestroyDevice()

{
// Calling this function tells the expanded interface to
// release its internal reference to the Direct3D device
// and free its Direct3D resources.
cgb3D9SetDevice(0);

}

// Called before application shuts down
void OnShutdown()

// This frees any core runtime resource.
cgDestroyContext(context);
bs

Expanded Interface DirectD3D 8 Application

The following C code links the previous vertex and fragment programs to
the Direct3D 8 application.

#include <cg/cg-h>

#include <cg/cgbD3D8.h>

IDirect3DDevice8* device; // Initialized somewhere else
IDirect3DTexture8* texture; // Initialized somewhere else
D3DXCOLOR constantColor; // Initialized somewhere else
CGcontext context;

CGprogram vertexProgram, fragmentProgram;

CGparameter baseTexture, someColor, modelViewMatrix;

808-00504-0000-006 109
NVIDIA

Cg Language Toolkit

110

// Called at application startup
void OnStartup()
{

// Create context

context = cgCreateContext();

}

// Called whenever the Direct3D device needs to be created
void OnCreateDevice()
{
// Pass the Direct3D device to the expanded interface.
cgbD3D8SetDevice(device);

// Determine the best profiles to use
CGprofile vertexProfile = cgD3D8GetLatestVertexProfile();
CGprofile pixelProfile cgbD3D8GetLatestPixelProfile();

// Grab the optimal options for each profile.
const char* vertexOptions[] = {
cgbD3D8GetOptimalOptions(vertexProfile), 0 };
const char* pixelOptions[] = {
cgb3D8GetOptimalOptions(pixelProfile), 0 };

// Create the vertex shader.
vertexProgram = cgCreateProgramFromFile(
context, CG_SOURCE, "VertexProgram.cg',
vertexProfile, "VertexProgram”, vertexOptions);
// 1T your program uses explicit binding semantics (like
// this one), you can create a vertex declaration
// using those semantics.
DWORD declaration[] = {
D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
D3DVSD_REG(D3DVSDE_TEXCOORDO, D3DVSDT_FLOAT2),
D3DVSD_ENDQ)

}

// Ensure the resulting declaration is compatible with the

// shader. This is really just a sanity check.

assert(cgb3D8Val idateVertexDeclaration(vertexProgram,
declaration));

// Load the program with the expanded interface.
// Parameter shadowing is enabled (second parameter = TRUE).

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

cgb3D8LoadProgram(vertexProgram, TRUE, 0, 0, declaration);

// Create the pixel shader.

fragmentProgram = cgCreateProgramFromFile(
context, CG_SOURCE, "‘FragmentProgram.cg",
pixelProfile, "FragmentProgram', pixelOptions);

// Load the program with the expanded interface.

// Parameter shadowing is enabled (second parameter = TRUE).
// lgnore vertex shader specifc flags, like declaration and
// usage.

cgb3D8LoadProgram(fragmentProgram, TRUE, 0, 0, 0);

// Grab some parameters.
modelViewMatrix = cgGetNamedParameter(vertexProgram,
“ModelViewMatrix'™);
baseTexture = cgGetNamedParameter(fragmentProgram,
"BaseTexture');
someColor = cgGetNamedParameter(fragmentProgram,
"*SomeColor™);

// Sanity check that parameters have the expected size
assert(cgb3D8TypeToSize(cgGetParameterType(
modelViewMatrix)) == 16);
assert(cgbD3D8TypeToSize(cgGetParameterType(someColor))
== 4);

// Set parameters that don"t change. They can be set
// only once since parameter shadowing is enabled
cgD3D8SetTexture(baseTexture, texture);
cgbD3D8SetUniform(someColor, &constantColor);

}

// Called to render the scene

void OnRender()

{
// Load model-view matrix.
D3DXMATRIX modelViewMatrix;
// ...

// Set the parameters that change every frame
// This must be done before binding the programs
cgbD3D8SetUni formMatrix(modelViewMatrix, &modelViewMatrix);

// Bind the programs. This downloads any parameter values

808-00504-0000-006 111
NVIDIA

Cg Language Toolkit

// that have been previously set.
cgb3D8BindProgram(vertexProgram) ;
cgb3D8BindProgram(fragmentProgram) ;

// Draw scene.
// ...

}

// Called before the device changes or is destroyed
void OnDestroyDevice()

// Calling this function tells the expanded interface to
// release its internal reference to the Direct3D device
// and free its Direct3D resources.

cgb3D8SetDevice(0);

}

// Called before application shuts down
void OnShutdown()

{

// This frees any core runtime resource.
cgDestroyContext(context);

¥
Direct3D Debugging Mode

In addition to the error reporting mechanisms described in “Direct3D Error
Reporting” on page 114, a debug version of the Direct3D 9 or Direct3D 8 Cg
runtime DLL is provided to assist you with the development of applications
using the Direct3D 9 or Direct3D 8 Cg runtime. This version does not have
debug symbols, but when used in place of the regular version, it uses the
Win32 function OutputDebugString() to output many helpful messages
and traces to the debug output console. Examples of information the debug
DLL outputs are the following:

O Any Direct3D or Cg core runtime errors

O Debugging information about parameters that are managed by the
expanded interface

O Potential performance warnings

Here is a sample trace:

cgD3D(TRACE): Creating vertex shader for program 3
cgD3D(TRACE): Discovering parameters for vertex program 3

cgD3D(TRACE): Discovered uniform parameter “ModelViewProj*
of type float4x4

112 808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

cgD3D(TRACE): Finished discovering parameters for vertex
program 3

cgD3D(TRACE): Creating pixel shader for program 24
cgD3D(TRACE): Discovering parameters for pixel program 24
cgD3D(TRACE): Discovered sampler parameter "BaseTexture®

cgD3D(TRACE): Discovered uniform parameter "SomeColor® of
type float4

cgD3D(TRACE): Finished discovering parameters for pixel
program 24

cgD3D(TRACE): Shadowing state for sampler parameter
BaseTexture

cgD3D(TRACE): Shadowing sampler state D3DTSS_MAGFILTER for
sampler parameter "BaseTexture®

cgD3D(TRACE): Shadowing sampler state D3DTSS_MINFILTER for
sampler parameter "BaseTexture-

cgD3D(TRACE): Shadowing sampler state D3DTSS_MIPFILTER for
sampler parameter "BaseTexture®

cgD3D(TRACE): Shadowing 16 values for uniform parameter
"ModelViewProj* of type float4x4

cgD3D(TRACE): Activating vertex shader for program 3
cgD3D(TRACE): Setting shadowed parameters for program 3

cgD3D(TRACE): Setting registers for uniform parameter
"ModelViewProj* of type float4x4

cgD3D(TRACE): Setting constant registers [0 - 3] for
parameter “ModelViewProj® of type float4x4

cgD3D(TRACE): Activating pixel shader for program 24
cgD3D(TRACE): Setting shadowed parameters for program 24

cgD3D(TRACE): Setting texture for sampler parameter
"BaseTexture*®

cgD3D(TRACE): Setting SamplerState[0].D3DTSS_MAGFILTER for
sampler parameter "BaseTexture-

cgD3D(TRACE): Setting SamplerState[0]-D3DTSS_MINFILTER for
sampler parameter "BaseTexture®

cgD3D(TRACE): Setting SamplerState[0].D3DTSS_MIPFILTER for
sampler parameter "BaseTexture-

cgD3D(TRACE): Deleting vertex shader for program 3
cgD3D(TRACE): Deleting pixel shader for program 24

To use the debug DLL:

1. Link your application against cgD3D9d. l'ib (or cgD3D8d. I ib) instead of
cgD3D9. lib (or cgD3D8.lib).

2. Make sure that the application can find cgd3D9d.dl I (or cgd3D8d.dIl).

808-00504-0000-006 113
NVIDIA

Cg Language Toolkit

114

3. Turn on and turn off tracing of portions of your code using
cgD3D9EnableDebugTracing():

void cgD3D9EnableDebugTracing(CGbool enable);

Here is how you would enable debug tracing for part of the application code:

cgD3D9EnableDebugTracing(CG_TRUE) ;
// ...

// Application code that is traced
// .
cgD3D9EnableDebugTracing(CG_FALSE) ;

Note that each debug trace output sets an error equal to cgD3D9DebugTrace.
So, if an error callback has been registered with the core runtime using
cgSetErrorCal lback(), each debug trace output triggers a call to this error
callback (see “Using Error Callbacks” on page 116).

Direct3D Error Reporting

Error reporting in Cg includes defined error types, functions that allow
testing for errors, and support for error callbacks.

Direct3D Error Types

The Direct3D runtime generates errors of type CGerror, reported by the Cg
core runtime and of type HRESULT, reported by the Direct3D runtime. In
addition, it returns the errors listed in the next two groups that are specific to
the Direct3D Cg runtime.

Q CGerror

% cgD3D9Failed: Set when a Direct3D runtime function makes a
Direct3D call that returns an error.

% cgD3D9DebugTrace: Set when a debug message is output to the
debug console when using the debug DLL (see “Direct3D
Debugging Mode” on page 112).

O HRESULT

% CGD3D9ERR_INVAL IDPARAM: Returned when a parameter value
cannot be set.

% CGD3D9ERR_INVALIDPROFILE: Returned when a program with an
unexpected profile is passed to a function.

% CGD3D9ERR_INVAL IDSAMPLERSTATE: Returned when a parameter of
type D3DTEXTURESTAGESTATETYPE, which is not a valid sampler
state, is passed to a sampler state function.

808-00504-0000-006
NVIDIA

Introduction to the Cg Runtime Library

% CGD3D9ERR_INVAL IDVEREXDECL: Returned when a program is
loaded with the expanded interface, but the given declaration is
incompatible.

% CGD3D9ERR_NODEVICE: Returned when a required Direct3D device is
0. This typically occurs when an expanded interface function is
called and a Direct3D device has not been set with
cgb3D9SetDevice().

% CGD3D9ERR_NOTMATRIX: Returned when a parameter that is not a
matrix type is passed to a function that expects one.

% CGD3D9ERR_NOTLOADED: Returned when a parameter has not been
loaded with the expanded interface by cgd3D9LoadProgram().

% CGD3D9ERR_NOTSAMPLER: Returned when a parameter that is not a
sampler parameter is passed to a function that expects one.

% CGD3D9ERR_NOTUNIFORM: Returned when a parameter that is not
uniform is passed to a function that expects one.

% CGD3D9ERR_NULLVALUE: Returned when a value of zero is passed to a
function that requires a non-zero value.

% CGD3D9ERR_OUTOFRANGE: Returned when an array range specified to
a function is out of range.

% CGD3D9_INVALID_REG: Returned when a register number is
requested for an invalid parameter type. This error is specific to the
minimal interface functions and does not trigger an error callback.

Testing for Errors

When a Direct3D runtime function is called that returns an error of type
HRESULT, the proper method of testing for success or failure is to use the
Win32 macros FAILED() and SUCCEEDED(). Simply testing the error against
zero or D3D_OK is not sufficient, because there could be more than one
success value.

As an added convenience, and for uniformity with the core runtime, the
Direct3D runtime also supplies cgD3D9GetLastError(), which is analogous
to cgGetLastError() but returns the last Direct3D runtime error of type
HRESULT for which the FAILED() macro returns TRUE:

HRESULT cgD3D9GetLastError();

The last error is always cleared immediately after the call.

808-00504-0000-006 115
NVIDIA

Cg Language Toolkit

The function cgD3D9TranslateHRESULT() converts an error of type HRESULT
into a string:
const char* cgD3D9TranslateHRESULT(HRESULT hr);

This function should be called instead of DXGetErrorDescription9()
because it also translates errors that the Cg Direct3D runtime generates.

Using Error Callbacks

Here is an example of a possible error callback that sorts out debug trace
errors from core runtime errors and from Direct3D runtime errors:

void MyErrorCallback() {
CGerror error = cgGetError();
it (error == cgD3D9DebugTrace) {
// This is a debug trace output.
// A breakpoint could be set here to step from one
// debug output to the other.
return;

¥
char buffer[1024];
if (error == cgD3D9Failed)
sprintf(buffer, "A Direct3D error occurred: %s®"\n",
cgD3D9TranslateHRESULT (cgD3D9GetLastError()));
else
sprintf(buffer, "A Cg error occurred: "%s"\n",
cgbD3D9TranslateCGerror(error));
OutputDebugString(buffer);

}
cgSetErrorCal lback(MyErrorCal Iback) ;

116 808-00504-0000-006
NVIDIA

Introduction to CgFX

CgFX Overview

CgFXis an extended file format for Cg. In addition to Cg programs, CgFX
files can also represent both fixed-function graphics state and meta-
information about shader parameters. The CgFX API makes it possible to
load CgFX effects files, traverse the data in them, set the associated graphics
state, and so on. This chapter introduces this new API and the ideas behind it
and is intended to make it easy to get started using CgFX.

This chapter assumes that the OpenGL state manager, implemented as part
of the CgGL runtime, is being used. Because CgFX allows for extensible,
custom state managers, alternate state managers that accept different state
syntax may also be available. For example, a Direct3D state manager might
accept Direct3D-style state names, while a Direct3D Under OpenGL state
manager might accept Direct3D-style state names, but allow for rendering
using OpenGL.

Key Concepts

Effect

An ¢ffect file contains a collection of shader source code, parameters, and
rendering techniques. An effect encapsulates one or more different methods
to render a particular visual effect. For example, the effect might provide one
approach intended for use on fixed-function hardware, and a different
approach on more modern, programmable hardware.

Technique

Each effect contains one or more Zechnigues. A technique is intended to
encapsulate the information needed to produce a visual effect—graphics
state, shaders, and at least one rendering pass.

Pass

Each technique contains one or more rendering passes. Passes store graphics
state, possibly including fixed-function state settings and vertex and

808-00504-0000-006 117

NVIDIA

Cg Language Toolkit

fragment shaders. The passes are generally processed in order: CgFX sets the
graphics state for a pass, the application draws the scene geometry, the state
for the next pass is set, geometry is drawn again, and so on.

State assignment

Passes hold state assignments that describe the graphics state for the pass.

Annotation

Annotations make it possible to associate meta-data with parameters,
techniques, passes, and so on. For example, a parameter like
lightIntensity might have annotations indicating the minimum and
maximum valid values for the parameter.

Effect parameter

Parameters declared in the global scope of the effect file are ¢ffect parameters.
Effect parameter values may be set and queried using the Cg runtime APL
Effect parameters may be referenced on the right-hand side of state
assignments and also as global parameters within Cg functions and
programs defined within the effect.

Getting

118

Started

We expect that the reader is generally familiar with the Cg runtime. See
“Introduction to the Cg Runtime Library” on page 43 for more details.

Consider the following effect:

float3 DiffuseColor<

string type = "color";

float3 minvValue = float3(0,0,0);
float3 maxValue = float3(10,10,10);
>=4{1,1,1%}%;

technique FixedFunctionLighting {

pass {
LightingEnable = true;
LightEnable[0] = true;

LightPosition[0] = float4(-10, 10, 10, 1);
LightAmbient[0] float4(.1,.1,.1,.1);
LightDiffuse[0] (float4(2*DiffuseColor, 1));
LightSpecular[0] = float4(1,1,1,1);

MaterialShininess = 10.F;
MaterialAmbient = float4(1,1,1,1);

808-00504-0000-006
NVIDIA

Introduction to CgFX

MaterialDiffuse = float4(.5, .5, .5, 1);
MaterialSpecular = float4(.5, .5, .5, 1);
}
}

The effect defines a single effect parameter, DiffuseColor, with three
associated annotations: a string named type and two float3s named
minValue and maxValue. These annotations exist purely for the use of the
application using the effect file; the Cg runtime does not interpret the
annotation names or values in any way. The effect parameter is initialized to
the value [1,1,1].

The effect also defines a single technique, named FixedFunctionLighting,
which in turn contains a single rendering pass. The rendering pass sets the
appropriate OpenGL state to perform per-vertex lighting using the built-in
fixed-function material model of OpenGL. The complete set of supported
OpenGL states is listed in the section “OpenGL State ” on page 129.

Note that the LightDiffuse[0] state value, corresponding to the fixed-
function light's diffuse color, is set with an expression involving the
DiffuseColor effect parameter. If the value of this parameter is changed by
the application and the pass’s state is later set, the parameter’s new value is
used in the expression that sets the light’s diffuse color.

Note also that this expression is parenthesized. In general, CgFX requires
that most expressions, like this one, involving effect parameters be in
parenthesis. This is necessary so that CgFX can distinguish between effect
parameters and built-in enumerant values representing constants.

The code below demonstrates how to create an effect given the name of an
effect file. After creating a Cg context, cgGLRegisterStates() sets up the
state assignments that support the standard OpenGL state manager. Most
applications will want to do this immediately after creating the CGcontext.
Next, the effect is created and associated with the given context.

CGcontext context = cgCreateContext();
cgGLRegisterStates(context);
CGeffect effect = cgCreateEffectFromFile(context,
"simple.cgfx™, NULL);
if (leffect) {

fprintf(stderr, "Unable to create effect!\n");

const char *listing = cgGetlLastListing(context);

it (listing)

fprintf(stderr, "%s\n', listing);
exit(l);

808-00504-0000-006 119
NVIDIA

Cg Language Toolkit

Technique Validation

Before using any of the techniques in an effect, it’s important to validate the
techniques. Validation fails, for instance, if a techniques includes a “compile”
state assignment that references a profile that isn't supported on the current
graphics hardware. Similarly, validation fails if the technique includes a state
assignment that uses an unsupported OpenGL extension. Effects are
commonly written such that the application can iterate over the given
techniques in order and then choose the first technique that passes validation
to apply the effect. For this reason, techniques are usually given in order of
decreasing quality.

The code below iterates through the techniques in a CGeffect in turn,
attempting to validate each of them and printing an error for the ones that
fail.
CGtechnique technique = cgGetFirstTechnique(effect);
while (technique) {
if (cgvalidateTechnique(technique) == CG_FALSE)
fprintf(stderr,

"Technique %s did not validate. Skipping.\n",
cgGetTechniqueName(technique));

technique = cgGetNextTechnique(technique);
}

The function cglsTechniqueValidated() can be used to check if the given
technique has been validated.

Note that any Cg programs referenced in a technique are not compiled until
the technique is validated. This makes it possible to modify the uncompiled
program by connecting concrete shared structs to interface effect
parameters, marking uniforms as literals, changing the program’s profile,
and so on.

Passes and Pass State

120

The heart of CgFX is applying the state defined in the passes in a technique.
The loop below demonstrates the standard approach for looping over a
technique’s passes and applying their states in turn.

CGpass pass = cgGetFirstPass(technique);
while (pass) {

cgSetPassState(pass);

drawGeom() ;

cgResetPassState(pass);

pass = cgGetNextPass(pass);

808-00504-0000-006
NVIDIA

Introduction to CgFX

Each of the state assignments in a pass translates directly to an OpenGL API
call. For example, LightingEnable = true; translates to the call
glEnable(GL_LIGHTING), and LightPosition[0] = float4(-10, 10,
10, 1) translates to the call glLightfv(GL_LIGHTO, GL_POSITION, V)
where v is an array of four GLFloat values.

Before or after the call to cgSetPassState(), the application is of course free
to set other OpenGL state as desired. However, any state set before the call to
cgSetPassState() may be overridden by the pass.

Note that if the technique containing the indicated pass has not been
validated, calling cgSetStatePass() triggers an attempted validation of the
technique. If validation fails, a runtime error results.

After the geometry has been drawn, cgResetPassState() resets the state
that was set by the pass to the default values as specified by OpenGL. Note
that it does not reset state to its values before cgSetPassState() —an
application that desires this behavior should either push and pop OpenGL
state, or should manually examine the state assignments in the pass in order
to determine what state was changed, so that it can set it back to the desired
values. (The routines to manually traverse the state in a pass are explained in
“OpenGL State ” on page 129.)

Effect Parameters

Handles to effect parameters can be retrieved using
cgGetNamedEffectParameter (). Given such a handle, the name of the
parameter can be found with cgGetParameterName(), its value can be set
using the Cg runtime value-setting entry points, and so on.

CGparameter c = cgGetNamedEffectParameter(effect, "Color™);
cgSetParameter3fv(c, Color);

CGparameter mvp = cgGetNamedEffectParameter(effect,
"ModelViewProjection™™);

cgGLSetStateMatrixParameter(mvp,
CG_GL_MODELVIEW_PROJECTION_MATRIX,
CG_GL_MATRIX_IDENTITY);

Vertex and Fragment Programs

With the OpenGL state manager, vertex and fragment programs are defined
via assignments to the VertexProgram and FragmentProgram states,
respectively. Three different classes of expressions can be given on the right-
hand side of these state assignments:

O Compile statements

808-00504-0000-006 121
NVIDIA

Cg Language Toolkit

122

O In-line assembly
0 NULL

These three possibilities are demonstrated in the effect file below:
float4 main(uniform float foo, float4 uv : TEXCOORDO) : COLOR
{

return (foo > 0) ? uv : 2 * uv;

}

technique SimpleFrag {
pass {
VertexProgram = NULL;
FragmentProgram = compile arbfpl main(-2.f);

}
}
technique AsmFrag {
pass {
FragmentProgram = asm {
11FP1.0
TEX o[COLR], {0}.-x, TEX6, 2D;
END
}:

}

The most common of these three options for specifying programs is using
compile statements. The first argument following the compi le keyword is
the name of the profile to which the program is to be compiled (for example,
fp30, fp40, arbfpl, or vp20). The next argument gives the name of the
function in the effect file that serves as the program entry point, followed by
a list of expressions (for example, -2. F). These expressions have a one-to-one
correspondence with the uniform parameters of the program being
compiled —there must be exactly one for each uniform program parameter,
no more, and no less.

In the example above, the expression “-2.F” sets the value for the foo
parameter to main(). Because it is a literal value, CgFX is able to compile the
program to a particularly efficient version that just includes returning the uv
value.

It is also possible to include references to effect parameters in the expression
used in the compile statement; for example:

float4 main(uniform float foo, float4 uv : TEXCOORDO) : COLOR
{

return (foo > 0) ? uv : 2 * uv;

808-00504-0000-006
NVIDIA

Textures

Introduction to CgFX

}

float bar;

technique NewSimpleFrag {
pass {
VertexProgram = NULL;
FragmentProgram = compile arbfpl main(2 * bar);

}
+

Here, the value “2 * bar” is associated with the foo parameter of main().
When the value of bar is changed by the application, the value of foo in
main() is set appropriately.

The second class of program state assignment types is assembly code. In-line
assembly is indicated using the asm keyword, with the assembly language
code between braces, as in the example above. CgFX depends on having the
appropriate header at the start of the assembly — 1'1FP1.0 for fp30,
11ARBvp1.0 for arbvpl, and so on—to determine the profile for which the
code is given.

Finally, vertex or fragment programs may be assigned the value NULL in the
state assignment. This signifies that no such program should be used in this
pass.

and Samplers

CgFX also makes it possible to define state related to textures in the effect
file. The effect file below shows an example. The full set of supported
OpenGL texture state is listed in “OpenGL State ” on page 129.
sampler2D samp = sampler_state {

generateMipMap = true;

minFilter = LinearMipMapLinear;
magFilter = Linear;

I

float4d texsimple(uniform sampler2D sampler,
float2 uv : TEXCOORDO) : COLOR {
return tex2D(sampler, uv);

}

technique TextureSimple {

pass {
FragmentProgram = compile arbfpl texsimple(samp);

808-00504-0000-006 123

NVIDIA

Cg Language Toolkit

124

}
}

Given this effect file, the application must take an extra step or two when
setting up the texture in OpenGL. First, the application must indicate which
texture handle should be used for the sampler2D in the effect file. Secondly,
the application must use the Cg runtime to set the texture state given in the
sampler_state block at the appropriate time.

Under OpenGL, the easiest way to achieve these goals is to call
cgGLSetupSampler(param, texturelD). This entry points binds the given
texture, associates the texture handle with the given parameter, and
initializes the sampler state by calling cgSetSamplerState().

Alternately, an application can perform these steps itself. The code below
shows this in practice:

CGparameter p = cgGetNamedEffectParameter(effect, "samp™);

GLuint handle;
glGenTextures(1l, &handle);
glBindTexture(GL_TEXTURE_2D, handle);

cgGLSetTextureParameter(p, handle);
cgSetSamplerState(p);

glTexImage2D(GL_TEXTURE_2D, O, GL_RGBA, RES, RES, 0, GL_RGBA,
GL_FLOAT, data);

Note the calls to cgGLSetTextureParameter() and cgSetSamplerState().
The first call is the usual runtime call that needs to be made to tell the
runtime which OpenGL texture object is associated with a given parameter.

The cgSetSamplerState() call ends up making the gl TexParameter calls
that set up the texture state defined in the sampler_state block. It expects
that the appropriate texture object has been bound with gIBindTexture first.

After the sampler has been initialized in either of these manners, there are
two possibilities for how the texture parameters are managed. By far the
easiest method is to enable texture management in the context:
cgGLSetManageTextureParameters(context, CG_TRUE);

If this is done, then when the CGprogram is bound by a call to
cgSetPassState(), the texture parameters used are associated with the
appropriate hardware texture units automatically.

808-00504-0000-006
NVIDIA

Introduction to CgFX

Alternatively, the mapping of texture parameters to hardware units can be
handled explicitly by the application, using the routine
cgGLEnableTextureParameter():

CGparameter progParam = cgGetNamedParameter(prog, "'sampler');
cgGLEnableTextureParameter (progParam) ;

However, note that it is not possible to call cgGLEnableTextureParameter()
with a handle to an effect’s sampler parameter; the handle must be to an
actual program parameter.

In general, the first approach is to be preferred for its simplicity.

Interfaces and Unsized Arrays

CgFX also supports Cg’s interfaces and unsized arrays features. Given an
effect file with Cg programs that use these features, the compile statement
can be used in two different ways to resolve the interfaces and unsized
arrays so that the program can be compiled. The abstract types may be
resolved using Cg code itself, or they may be resolved using the Cg runtime.

Consider the following example: a Light interface has been defined with
SpotLight implementing the interface. The main() program takes an
unsized array of Light interface objects, loops over them, and returns the
sum of the values returned by their respective value() methods.
interface Light {

float4 value();
}:

struct SpotLight : Light {
float4d value() { return float4(1,2,3,4); }

=

float4d main(uniform Light I[]) : COLOR {
float4 v = float4(0,0,0,0);
for (int i = 0; 1 < l_length; ++1)
v += I[1]-value(Q;
return v;

}

Recall that all uniform parameters to the program must have expressions in
the parenthesized list in the compile statement, and therefore one expression
is necessary here for the I parameter.

808-00504-0000-006 125
NVIDIA

Cg Language Toolkit

126

Resolution using Cg

The first way that main() can be compiled is to provide the name of an effect
parameter that resolves both the actual size of the array as well as the
concrete type that implements the Light interface:

SpotLight spots[4];

technique {
pass {
FragmentProgram = compile arbfpl main(spots);
s
b

Resolution using the Cg runtime

Alternatively, the application can leave the resolution of the concrete types
and array size until later so that they may be set via Cg runtime calls from
the application, as one typically does for Cg programs that are not CgFX.

For this case, the expression passed to the compile statement should just be
an unsized array of the abstract interface type:
Light lights[];

technique {
pass {
FragmentProgram = compile arbfpl main(lights);

}
}

The application must then create a shared array of concrete light instances.
To do so, the application proceeds as it would when operating on a
CGprogram—by retrieving the CGtype corresponding to each type of concrete
instance to be created, and calling cgCreateParameter() or
cgCreateParameterArray() to create the shared parameter of the given
type. Lastly, the shared parameter is connected to the effect parameter.
This process is illustrated below:

CGtype spotType cgGetNamedUserType(effect, "SpotLight™);
CGparameter spots cgCreateParameterArray(context,
spotType, 4);
CGparameter lights = cgGetNamedEffectParameter(effect,
"lights™);

cgConnectParameter(spots, lights);

Note that cgGetNamedUserType() in this case is passed a CGeffect handle,
rather than a CGprogram handle.

808-00504-0000-006
NVIDIA

Introduction to CgFX

Later, when the associated technique is validated, any programs that make
use of the abstract effect parameters are compiled.

Note that abstract parameters may nof be used on the right-hand side of any
state assignments other than compi le state assignments. Doing so results in
an error at effect creation time.

Evaluating Cg Programs using the Virtual Machine

There are many situations where it is useful to execute Cg programs on the
CPU using the Cg runtime Virtual Machine (VM). Although running Cg
programs on the CPU doesn't offer the same performance as execution on the
GPU, it is sometimes useful, as in tabularizing complex functions into texture
maps.

Programs that are to run on the VM are declared as follows:

float foo = 4.F;
float4 func(float2 p : POSITION, float2 delta : PSIZE) : COLOR
{

return foo * p.xyxy;

}

The POSITION semantic denotes the parameter or parameters that are
initialized with the coordinates of each point at which the function is
evaluated. The value passed varies from zero to one in each of the
dimensions over which the function is being evaluated. The PS1ZE semantic
denotes the parameter that is initialized with the spacing between samples at
which the function is being evaluated. Lastly, the COLOR semantic denotes
which parameter (or function return value) holds the computed value. Thus,
the function above could have been written as a void function but with an
out float4 ret : COLOR parameter and an assignment to ret, instead of
using a return statement.

Given an effect file with such a program, a CGprogram handle to it can be
retrieved by creating a program using the CG_PROFILE_GENERIC profile:

CGprogram tp = cgCreateProgramFromEffect(effect,
CG_PROFILE_GENERIC,

“func', NULL);

Given such a program handle, cgEvaluateProgram evaluates the program
over the same one-, two-, or three-dimensional domain:
cgEvaluateProgram(Cgprogram prog, float *obuf, int ncomp,

int nx, int ny, int nz);

Where prog is the Cgprogram handle retrieved using
cgCreateProgramFromEffect(), obuf is the buffer to which output values

808-00504-0000-006 127
NVIDIA

Cg Language Toolkit

are to be written, ncomp is the number of components per pixel in the output
buffer (1, 2, 3, or 4), and nx, ny, and nz indicate the number of positions at
which the function should be evaluated in each of the X, y, and z dimensions.

The total size of the buffer should be equal to the product of the number of
positions in each of the dimensions and the number of components in the
buffer, as in the example below:

#define RES 256

#define NCOMPS 4

float *buf = new Float[NCOMPS*RES*RES];

cgEvaluateProgram(tp, buf, NCOMPS, RES, RES, 1);

// do something with buf

delete[] buf;

It is a error to pass a CGprogram that doesn't have the CG_PROFILE_GENERIC
profile to cgEvalauteProgram().

Annotations

128

Using annotations, it is possible to attach additional information to
parameters, techniques, programs, and passes in the effect file for use by the
application. An annotation is a list of variables and values denoted by angle
brackets immediately following a declaration, as in the effect below:

float3 LightDir < string Ultype = "direction™; >;

technique fancyHalo <
bool optional = true;
> {
pass < string geometry = "character";
string destination = "texture"; > {

CgFX does not interpret the meaning of annotations in any way; annotations
exist solely for the convenience of the application. The example above shows
a few common uses for annotations: the annotation of LightDir indicates
what sort of user interface widget would be appropriate to provide the user
for setting that parameter. The technique’s annotation might indicate that
applying the technique was optional when rendering the scene. In the
example above, the pass annotations indicates to the application which part
of the scene geometry to draw when rendering that pass, as well as where to
store the image from rendering the pass.

808-00504-0000-006
NVIDIA

Introduction to CgFX

Given a handle to a technique, pass, or parameter, there are API entry points
for iterating through the annotations in turn:

CGannotation cgGetFirstTechniqueAnnotation(CGtechnique);
CGannotation cgGetFirstPassAnnotation(CGpass);
CGannotation cgGetFirstParameterAnnotation(CGparameter);
CGannotation cgGetFirstProgramAnnotation(CGprogram) ;
CGannotation cgGetNextAnnotation(CGannotation);

In addition, there are entry points for retrieving annotations by name:

CGannotation cgGetNamedTechniqueAnnotation(CGtechnique,
const char *);
CGannotation cgGetNamedPassAnnotation(CGpass, const char *);
CGannotation cgGetNamedParameterAnnotation(CGparameter,
const char *);
CGannotation cgGetNamedProgramAnnotation(CGprogram,
const char *);

Given an annotation handle, its values may be retrieved through the use of
one of the cgGet*AnnotationValues() entry points:

const float *cgGetFloatAnnotationValues(CGannotation,
int *nvalues);
const int *cgGetlntAnnotationValues(CGannotation,
int *nvalues);
const char *cgGetStringAnnotationValue(CGannotation);
const int *cgGetBooleanAnnotationValues(CGannotation,
int *nvalues);

OpenGL State

When cgGLRegisterStates() is called, the CgFX OpenGL runtime
initializes state assignments that correspond to almost all appropriate or
useful OpenGL API calls. The set of states and state callbacks that are
registered by this call compose the CgFX OpenGL state manager.

There is a one-to-one mapping between the state assignments that are
provided by the OpenGL state manager and the corresponding OpenGL
calls. Given an OpenGL call of interest, it is intended to be simple to
determine which state assignment it corresponds to, and vice versa. For
example, the state assignment ClearColor = float4(0,1,0,1) leads to the
call glClearColor(0,1,0,1) when the state assignment is executed during
a call to cgSetPassState().

For calls that take enumerated values (for example, GL_DEST_COLOR for
glBlendFunc()), corresponding enumerants are defined by the CgFX

808-00504-0000-006 129
NVIDIA

Cg Language Toolkit

OpenGL state manager, again with a straightforward mapping:
GL_DEST_COLOR corresponds to DestColor, and so forth. When an OpenGL
call takes multiple parameters or multiple enumerants, a corresponding
vector type is used; for example, a call to glBlendFunc(GL_ZERO,
GL_DST_ALPHA) corresponds to the CgFX state assignment BlendFunc =
int2(Zero, DstAlpha).

When a state assignment depends on the presence of an OpenGL extension
(for example, BlendFuncSeparate requires either
EXT_blend_func_separate or the presence of OpenGL 1.4), it is possible to
successfully load an effect file that uses that extension in one of its
techniques, even if the OpenGL context doesn't support that extension.
However, validation of any technique that uses such an unsupported
extension in of its passes will fail.

The following table lists the names of the states supported by the CgFX
OpenGL state manager, their types, and valid enumerants. The “Requires”
column in the tables below indicates what OpenGL version or extension is
required for each state assignment.

Table 6. CgFX OpenGL State Manager States
State Name Type Valid Enumerants Requires
AlphaFunc float2 Never, Less, OpenGL 1.0
(enum, LEqual, Equal,
reference_ |Greater, NotEqual,
value) GEqual, Always
BlendFunc int2 (src_ |Zero, One, 1.0; 1.4 or
factor, DestColor, NV_blend_square for
dst_factor) |OneMinusDestColor, |SrcColor or
SrcAlpha, OneMinusSrcColor for
OneMinusSrcAlpha, src_factor, and
DstAlpha, DstColor or
OneMinusDstAlpha, |OneMinusDstColor for
SrcAlphaSaturate, dst_factor
SrcColor,
OneMinusSrcColor,
ConstantColor,
OneMinusConstantColor,
ConstantAlpha,
OneMinusConstantAlpha
130 808-00504-0000-006

NVIDIA

Introduction to CgFX

Table 6. CgFX OpenGL State Manager States (continued)
State Name Type Valid Enumerants Requires
BlendFuncSeparate int4 Zero, One, OpenGL 1.4 or
(rgb_src, DestColor, EXT_blend_func_separate;
rgb_dst, OneMinusDestColor, 1.4 or NV_blend_square
a_src, SrcAlpha, for SrcColor or
a_dst) OneMinusSrcAlpha, OneMinusSrcColor for
DstAlpha, rgb_src, and DstColor or
OneMinusDstAlpha, OneMinusDstColor for
SrcAlphaSaturate, rgb_dst
SrcColor,
OneMinusSrcColor,
ConstantColor,
OneMinusConstantColor,
ConstantAlpha,
OneMinusConstantAlpha
BlendEquation int FuncAdd, 1.4 or ARB_imaging; or
FuncSubtract, Min, |EXT_blend_subtract for
Max, LogicOp FuncSubtract or
FuncReverseSubtract;
or EXT_blend_minmax for
Min or Max; or
EXT_blend_logic_op for
LogicOp
BlendEquationSeparate |int2 (rgb, |FuncAdd, EXT_blend_equation_
alpha) FuncSubtract, Min, |separate; or 1.4,
Max, LogicOp ARB_imaging, or
EXT_blend_subtract for
FuncSubtract or
FuncReverseSubtract; or
1.4, ARB_imaging, or
EXT_blend_minmax for
Min or Max; or
EXT_blend_logic_op for
LogicOp
BlendColor float4 1.4, ARB_imaging, or
EXT_blend_color
ClearColor float4d 1.0
ClearStencil int 1.0
ClearDepth float 1.0

808-00504-0000-006

NVIDIA

131

Cg Language Toolkit

Table 6. CgFX OpenGL State Manager States (continued)
State Name Type Valid Enumerants Requires
ClipPlane[ndx] float4 OpenGL 1.0; ndx must be
greater than or equal to zero
and less than the value of
GL_MAX_CLIP_PLANES
ColorMask bool4 1.0
ColorMatrix floatdx4 ARB_imaging
ColorMaterial int2 Front, Back, 1.0
FrontAndBack,
Emission, Ambient,
Diffuse, Specular,
AmbientAndDiffuse
CullFace int Front, Back, 1.0
FrontAndBack
DepthBounds float2 EXT_depth_bounds_test
DepthFunc int Never, Less, 1.0
LEqual, Equal,
Greater, NotEqual,
GEqual, Always
DepthMask bool 1.0
DepthRange float2 1.0
FogMode int Linear, Exp, Exp2 |[1.0
FogDensity float 1.0
FogStart float 1.0
FogEnd float 1.0
FogColor float4 1.0
FragmentEnvParameter float4d ARB_fragment_program;
[ndx] ndx must be greater than or
equal to zero and less than
the value of
GL_MAX_PROGRAM_ENV_
PARAMETERS_ARB for the
GL_FRAGMENT_PROGRAM_
ARB target to
glGetProgramivARB
132 808-00504-0000-006

NVIDIA

Introduction to CgFX

Table 6. CgFX OpenGL State Manager States (continued)
State Name Type Valid Enumerants Requires
FragmentLocalParameter float4 ARB_fragment_program;
[ndx] ndx must be greater or
equal to zero and less than
the value of
GL_MAX_PROGRAM_LOCAL_
PARAMETERS_ARB for the
GL_FRAGMENT_PROGRAM_ARB
target to
glGetProgramivARB
FogCoordSrc int FragmentDepth, OpenGL 1.4 or
FogCoord EXT_fog_coord
FogDistanceMode int EyeRadial, NV_fog_distance
EyePlane,
EyePlaneAbsolute
FragmentProgram compile ARB_fragment_program
statement or NV_fragment_program
FrontFace int Cw, CCw 1.0
LightModelAmbient float4 1.0
LightAmbient[ndx] float4 1.0; ndx must be greater or
equal to 0 and less than the
value of GL_MAX_LIGHTS
LightConstantAttenuation float Same as LightAmbient
[ndx]
LightDiffuse[ndx] float4 Same as LightAmbient
LightLinearAttenuation float Same as LightAmbient
[ndx]
LightPosition[ndx] float4d Same as LightAmbient
LightQuadraticAttenuation[| Float Same as LightAmbient
ndx]
LightSpecular[ndx] float4d Same as LightAmbient
LightSpotCutoff[ndx] float Same as LightAmbient
LightSpotDirection[ndx] float3 Same as LightAmbient

808-00504-0000-006

NVIDIA

133

Cg Language Toolkit

Table 6. CgFX OpenGL State Manager States (continued)
State Name Type Valid Enumerants Requires
LightSpotExponent float Same as LightAmbient
[ndx]
LightModelColorControl int SingleColor, OpenGL 1.2 or
SeparateSpecular EXT_separate_
specular_color
LineStipple int2 1.0
LineWidth float 1.0
LogicOp int Clear, And, 1.0
AndReverse, Copy,
AndInverted, Noop,
Xor, Or, Nor,
Equiv, Invert,
OrReverse,
Copylnverted,
Nand, Set
MaterialAmbient float4d 1.0
MaterialDiffuse float4d 1.0
MaterialEmission float4 1.0
MaterialShininess float 1.0
MaterialSpecular float4 1.0
ModelViewMatrix floatdx4 1.0
PointDistanceAttenuation float3 1.4,
ARB_point_parameters,
or
EXT_point_parameters
PointFadeThresholdSize float 1.4,
ARB_point_parameters,
or
EXT_point_parameters
PointSize float 1.0
PointSizeMin float 1.4,
ARB_point_parameters,
or
EXT_point_parameters
134 808-00504-0000-006

NVIDIA

Introduction to CgFX

LEqual, Equal,
Greater, NotEqual,
GEqual, Always

Table 6. CgFX OpenGL State Manager States (continued)
State Name Type Valid Enumerants Requires
PointSizeMax float OpenGL 1.4,
ARB_point_parameters,
or
EXT_point_parameters
PointSpriteCoordOrigin | int LowerLeft, 2.0
UpperLeft
PointSpriteCoordReplace bool 2.0, ARB_point_sprite,
[ndx] or NV_point_sprite; ndx
must be greater than or
equal to zero and less than
the value of
GL_MAX_TEXTURE_COORDS
PointSpriteRMode int Zero, R, S NV_point_sprite
PolygonMode int2 Front, Back, 1.0
FrontAndBack,
Point, Line, Fill
PolygonOffset float2 1.1
ProjectionMatrix float4x4 1.0
Scissor int4 1.0
ShadeModel int Flat, Smooth 1.0
Stenci lFunc int3 Never, Less, 1.0
LEqual, Equal,
Greater, NotEqual,
GEqual, Always
Stenci IMask int 1.0
StencilOp int3 Keep, Zero, 1.0
Replace, Incr,
Decr, Invert,
IncrWrap, DecrWrap
StencilFuncSeparate int4 Front, Back, 2.0 or
FrontAndBack, EXT_stencil_two_side
Never, Less,

808-00504-0000-006

NVIDIA

135

Cg Language Toolkit

Table 6. CgFX OpenGL State Manager States (continued)
State Name Type Valid Enumerants Requires
Stenci IMaskSeparate int2 Front, Back, OpenGL 2.0 or
FrontAndBack EXT_stencil_two_side
StencilOpSeparate int4 Keep, Zero, 2.0 or
Replace, Incr, EXT_stencil_two_side
Decr, Invert,
IncrWrap, DecrWrap
TexGenSMode [ndx] int ObjectLinear, 1.0; or 1.3,
EyeLinear, ARB_texture_cube_map,
SphereMap, EXT_texture_cube_map, or
ReflectionMap, NV_texgen_reflection for
NormalMap ReflectionMap, or
NormalMap; ndx must be
greater or equal to zero and
less than the value of
GL_MAX_TEXTURE_COORDS
TexGenTMode[ndx] int Same as TexGenSMode
TexGenRMode[ndx] int ObjectLinear, 1.0; or 1.3,
EyeLinear, ARB_texture_cube_map,
ReflectionMap, EXT_texture_cube_map, or
NormalMap NV_texgen_reflection for
ReflectionMap or
NormalMap; ndx must be
greater or equal to zero and
less than the value of
GL_MAX_TEXTURE_COORDS
TexGenQMode [ndx] int ObjectLinear, 1.0; ndx must be greater or
EyeLinear equal to zero and less than
the value of
GL_MAX_TEXTURE_COORDS
TexGenSEyePlane[ndx] float4 1.0; ndx must be greater or
equal to zero and less than
the value of
GL_MAX_TEXTURE_COORDS
TexGenTEyePlane[ndx] float4 Same as
TexGenSEyePlane
TexGenREyePlane[ndx] float4 Same as
TexGenSEyePlane
136 808-00504-0000-006

NVIDIA

Introduction to CgFX

Table 6. CgFX OpenGL State Manager States (continued)
State Name Type Valid Enumerants Requires
TexGenQEyePlane[ndx] float4 Same as
TexGenSEyePlane
TexGenSObjectPlane float4d Same as
[ndx] TexGenSEyePlane
TexGenTObjectPlane float4d Same as
[ndx] TexGenSEyePlane
TexGenRObjectPlane float4 Same as
[ndx] TexGenSEyePlane
TexGenQObjectPlane float4d Same as
[ndx] TexGenSEyePlane
TexturelD[ndx] samplerl1D OpenGL 1.0; ndx must be
greater or equal to zero and
less than the value of
GL_MAX_TEXTURE_IMAGE_
UNITS
Texture2D[ndx] sampler2D Same as TexturelD
Texture3D[ndx] sampler3D 1.2 or EXT_texture3D;
ndx must be greater or
equal to zero and less than
the value of
GL_MAX_TEXTURE_IMAGE_
UNITS
TextureRectangle[ndx] |samplerRECT ARB_texture_rectangle,

EXT_texture_rectangle
(Apple), or
NV_texture_rectangle;
ndx must be greater or
equal to zero and less than
the value of
GL_MAX_TEXTURE_IMAGE_
UNITS

808-00504-0000-006

NVIDIA

137

Cg Language Toolkit

Table 6.

CgFX OpenGL State Manager States (continued)

State Name

Type

Valid Enumerants

Requires

TextureCubeMap[ndx]

samplerCUBE

1.3,
ARB_texture_cube_map,
or
EXT_texture_cube_map;
ndx must be greater or
equal to zero and less than
the value of
GL_MAX_TEXTURE_IMAGE_
UNITS

TextureEnvColor[ndx]

float4

OpenGL 1.0; ndx must be
greater or equal to zero and
less than the value of
GL_MAX_TEXTURE_UNITS

TextureEnvMode[ndx]

int

Modulate, Decal,
Blend, Replace,
Add

1.0; 1.3,
ARB_texture_env_add,or
EXT_texture_env_add for
Add; ndx must be greater or
equal to zero and less than
the value of
GL_MAX_TEXTURE_UNITS

VertexEnvParameter
[ndx]

float4

ARB_vertex_program;
ndx must be greater or
equal to zero and less than
the value of
GL_MAX_PROGRAM_LOCAL_
PARAMETERS_ARB for the
GL_VERTEX_PROGRAM_ARB
target to
glGetProgramivARB

VertexLocalParameter
[ndx]

float4

ARB_vertex_program;
ndx must be greater or
equal to zero and less than
the value of
GL_MAX_PROGRAM_LOCAL_
PARAMETERS_ARB for the
GL_VERTEX_PROGRAM_ARB
target to
glGetProgramivARB

VertexProgram

compile
statement

ARB_vertex_program or
NV_vertex_program

138

NVIDIA

808-00504-0000-006

Introduction to CgFX

Similarly, there is a simple algorithm for determining the relationship
between enumerants for glEnable() and for glDisable() and each of the
states in the table below: for example, the state assignment BlendEnable =
false corresponds to a call to glDisable(GL_BLEND).

Table 7. Enable/Disable States

Enable/Disable State Name Type Requires

AlphaTestEnable bool OpenGL 1.0

AutoNormalEnable bool 1.0

BlendEnable bool 1.0

ClipPlaneEnable[ndx] bool 1.0; ndx must be greater or equal to zero and less
than the value of GL_MAX_CLIP_PLANES

ColorLogicOpEnable bool 1.2

CullFaceEnable bool 1.0

DepthBoundsEnable bool EXT_depth_bounds

DepthClampEnable bool NV_depth_clamp

DepthTestEnable bool 1.0

DitherEnable bool 1.0

FogEnable bool 1.0

LightEnable[ndx] bool 1.0; ndx must be greater or equal to 0 and less than
the value of GL_MAX_ LIGHTS

LightingEnable bool 1.0

LightModelLocalViewerEnable bool 1.0

LightModel TwoSideEnable bool 1.0

LineSmoothEnable bool 1.0

LineStippleEnable bool 1.0

LogicOpEnable bool 1.0

MultisampleEnable bool 1.3 or ARB_multisample

NormalizeEnable bool 1.0

PointSmoothEnable bool 1.0

808-00504-0000-006

139

NVIDIA

Cg Language Toolkit

Table 7. Enable/Disable States (continued)

Enable/Disable State Name Type Requires

PointSpriteEnable bool 2.0, ARB_point_sprite, or NV_point_sprite

PolygonOffsetFillEnable bool OpenGL 1.1

PolygonOffsetLineEnable bool 1.1

PolygonOffsetPointEnable bool 1.1

PolygonSmoothEnable bool 1.0

PolygonStippleEnable bool 1.0

RescaleNormalEnable bool 1.2 or EXT_rescale_normal

SampleAlphaToCoverageEnable | bool 1.3 or ARB_multisample

SampleAlphaToOneEnable bool 1.3 or ARB_multisample

SampleCoverageEnable bool 1.3 or ARB_multisample

ScissorTestEnable bool 1.0

StencilTestEnable bool 1.0

TexGenSEnable[ndx] bool 1.0; ndx must be greater or equal to zero and less
than the value of GL_MAX_TEXTURE_COORDS

TexGenTEnable[ndx] bool Same as TexGenSEnable

TexGenREnable[ndx] bool Same as TexGenSEnable

TexGenQEnable[ndx] bool Same as TexGenSEnable

TexturelDEnable[ndx] bool 1.0; ndx must be greater or equal to zero and less
than the value of GL_MAX_TEXTURE_IMAGE_UNITS

Texture2DEnable[ndx] bool same as TexturelDEnable

Texture3DEnable[ndx] bool 1.2 or EXT_texture3D; ndx must be greater or
equal to zero and less than the value of
GL_MAX_TEXTURE_IMAGE_UNITS

140 808-00504-0000-006

NVIDIA

Table 7. Enable/Disable States (continued)

Introduction to CgFX

Enable/Disable State Name

Type Requires

TextureRectangleEnable[ndx]

bool ARB_texture_rectangle,
EXT_texture_rectangle (Apple), or
NV_texture_rectangle; ndx must be greater or
equal to zero and less than the value of
GL_MAX_TEXTURE_IMAGE_UNITS

TextureCubeMapEnable[ndx] bool OpenGL 1.3, ARB_texture_cube_map, or
EXT_texture_cube_map; ndx must be greater or
equal to zero and less than the value of
GL_MAX_TEXTURE_IMAGE_UNITS

OpenGL Sampler State

The following table lists the state assignments available in sampler_state
blocks when using the CgFX OpenGL state manager. Any state values given
are set when the cgSetSamplerState() routine is called with the
CGparameter handle for a particular sample.

Note that some of these states are defined in OpenGL extensions—for
example, MirrorClampToBorder is defined in the
EXT_texture_mirror_clamp extension. Any state used that is based on an
extension not supported by the current OpenGL context is ignored by the

CgFX runtime.

Table 8. sampler_state State Assignments

Name

Type

Valid Values

Requires

WrapS, WrapT,
WrapR

int

Repeat, Clamp,
ClampToEdge,
ClampToBorder,
MirroredRepeat,
MirrorClamp,
MirrorClampToEdge,
MirrorClampToBorder

OpenGL 1.2 or EXT_texture3D for
WrapR; 1.2 or
EXT_texture_edge_clamp for
ClampToEdge; 1.3 or
ARB_texture_border_clamp for
ClampToBorder; 1.4,
ARB_texture_mirrored_repeat, or
IBM_texture_mirrored_repeat for
MirroredRepeat;
EXT_texture_mirror_clamp or
ATI1_texture_mirror_once for
MirrorClamp or MirrorClampToEdge;
EXT_texture_mirror_clamp for
MirrorClampToBorder

808-00504-0000-006

NVIDIA

141

Cg Language Toolkit

Table 8. sampler_state State Assignments (continued)

Name Type Valid Values Requires

BorderColor float4 OpenGL 1.0

CompareMode int None, 1.4 or ARB_shadow
CompareRToTexture

CompareFunc int Never, Less, LEqual, |1.4 or ARB_shadow; 1.5 or
Equal, Greater, EXT_shadow_funcs for Never, Less,
NotEqual, GEqual, Equal, Greater, NotEqual, or Always
Always

DepthMode int Alpha, Intensity, 1.4 or ARB_depth_texture
Luminance

GenerateMipMa |bool 1.4 or SGIS_generate_mipmap

p

LODBias float 1.4

MinFilter int Nearest, Linear, 1.0
LinearMipMapNearest,
NearestMipMapNearest,
NearestMipMapLinear,
LinearMipMapLinear

MagFilter int Nearest, Linear 1.0

MaxMipLevel float 1.2 or EXT_texture_lod

MaxAnisotropy |float EXT_texture_filter_anisotropic

MinMipLevel float 1.2 or EXT_texture_lod

Texture texture | (Reference to texture

parameter)

OpenGL State Not Specifiable with State Assignments

By design, state assignments are limited to OpenGL state related to
rendering geometric primitives. OpenGL state that is not assignable using
the built-in OpenGL state manager includes the following:

QO DPixel path state (such as pixel transfer and convolution state)

O Per-vertex attributes (such as glColor or gINormal)

O Client-side state such as vertex arrays and pixel store modes

142

NVIDIA

808-00504-0000-006

Introduction to CgFX

O Vertex and pixel buffer object state

Q Miscellaneous state for evaluators, feedback, selection, or occlusion
queries

QO Texture environment GL_COMBINE state
Although related to rendering, it is complex and redundant with
fragment color operations better specified with Cg fragment programs.

Future enhancements may allow assignments for currently unassignable
OpenGL state.

808-00504-0000-006 143
NVIDIA

Cg Language Toolkit

144 808-00504-0000-006
NVIDIA

A Brief Tutorial

This section walks you through the sample Cg Microsoft Visual Studio

workspace we have provided, along with a simple Cg program that you can
use for experimentation.

Loading the Workspace

When you load the Cg_Simple file, your workspace should look like the
image in Fig. 3.

(B Ble Edt View Insert Project

d @ @ 2@
2l
@Wﬁrkspme ‘cg_simple” 1 proje
= EE cq_simple files
=14 Source Files
E]cgjhmhcm
E]qupdhcm
L—_!] objload cpp
|_] Header Files
=44 CG Programs
[#)simple.cq]

+-[_] Estemal Dependencies

< | »
™8 ClassView | Z] FiIeNI'isz

+ cg_simple - Microsoft Visual C++ - [C:\...\cg_simple\simple.cg]

Buld Took Window Help

F 2 ;| R G

define inputs from application
s=truct appin
floatd Position . POSITION:
floatd Hormal : NORMAL:

s define outputs from vertex shader
struct vertout

floatd
floatd

HFosition

: POSITION:
Colord

: COLORO:

vertout main{appin IN,

uniform floatdxd ModelViewProj,
uniform floatdzd ModelViewlT,
uniform floatd LightVec)

vertout OUT:

<7 transform vertex position into homogenous clip-space
OUT HPosition mul{HodelViewProj. IN.Position):

<4 transform normal from model-space to view—space
floatd normalVec = normalize(mul (ModelViewIT. IN Hormal) =yz):

~# store normalized light vector
float3d lightVec normalize{lightVec =xyz):

calculate half angle wector
floatd eyeVec = float3(0.0, 0.0, 1.0):
floatd halfVec = normalize(lightVec + eyeVec):

< calculate diffuse component
float diffuse = doti{normalVec. lightVec):

[« |

Fea

Ln1, Col1

Fig. 3.

808-00504-0000-006

The Cg_Simple Workspace

NVIDIA

145

Cg Language Toolkit

As usual, click the FileView tab to view the various files in the project.
What'’s different in this case, though, is that in addition to the usual Source
Files and Header Files folders, there is also a Cg Programs folder.

This Cg Programs folder should contain one Cg program, simple.cg, which
is what you can use for experimentation. Double-click simple.cg to open it
for editing. While you are editing simple.cg, you can press Control+F7 at
any time to compile it. Because of the way the project is set up, any errors in
your code will be shown just as when you compile a normal C or C++
program.

You can also double-click on an error, which takes you to the location in the
source code that caused the error.

Understanding simple.cg

146

The Cg_Simple application runs the shader defined in simple.cg on a torus.
The provided version of simple.cg calculates diffuse and specular lighting
for each vertex. A screenshot of the shader is shown in Fig. 4.

”~

Fig. 4. The simple.cg Shader

808-00504-0000-006
NVIDIA

A Brief Tutorial

Program Listing for simple.cg

The following is the program listing for simple.cg:

// Define inputs from application.
struct appin
{
float4 Position - POSITION;
float4 Normal : NORMAL;

I

// Define outputs from vertex shader.
struct vertout
{
float4 HPosition
float4 Color

I

POSITION;
COLOR;

vertout main(appin IN,
uniform float4x4 ModelViewProj,
uniform float4x4 ModelViewlT,
uniform float4 LightVec)

vertout OUT;

// Transform vertex position into homogenous clip-space.
OUT.HPosition = mul(ModelViewProj, IN.Position);

// Transform normal from model-space to view-space.
float3 normalVec = normalize(mul (ModelViewlT,
IN_Normal) .xyz);

// Store normalized light vector.
float3 lightVec = normalize(LightVec.xyz);

// Calculate half angle vector.
float3 eyeVec = float3(0.0, 0.0, 1.0);
float3 halfVec = normalize(lightVec + eyeVec);

// Calculate diffuse component.
float diffuse = dot(normalVec, lightVec);

// Calculate specular component.
float specular = dot(normalVec, halfVec);

// Use the lit function to compute lighting vector from

808-00504-0000-006 147
NVIDIA

Cg Language Toolkit

// diffuse and specular values.
float4 lighting = lit(diffuse, specular, 32);

// Blue diffuse material
float3 diffuseMaterial = float3(0.0, 0.0, 1.0);

// White specular material
float3 specularMaterial = float3(1.0, 1.0, 1.0);

// Combine diffuse and specular contributions and

// output final vertex color.

OUT.Color.rgb = lighting.y * diffuseMaterial +
lighting.z * specularMaterial;

OUT.Color.a = 1.0;

return OUT;
s

Definitions for Structures with Varying Data

The first thing to notice is the definitions of structures with binding
semantics for varying data.

Let’s take a look at the appin structure:

// define inputs from application
struct appin

{
float4 Position

float4 Normal
};

This structure contains only two members: Position and Normal. Because
this data varies per-vertex, the binding semantics POSITION and NORMAL tell
the compiler that the position information is associated with the predefined
attribute POSITION and that the normal information is associated with the
predefined attribute NORMAL.

POSITION;
NORMAL ;

The other structure that is defined in simple.cg is vertout, which connects
the vertex to the fragment:

// define outputs from vertex shader
struct vertout
{
float4 HPosition
float4 Color

POSITION;
COLOR;

148 808-00504-0000-006
NVIDIA

A Brief Tutorial

The vertout structure also contains only two members: Hposition, the
vertex position in homogeneous coordinates, and Color, the vertex color.
Again, binding semantics are used to specify register locations for the
variables. In this case, the homogeneous position information resides in the
hardware register corresponding to POSITION and that the color information
resides in the hardware register corresponding to COLOR.

Passing Arguments

Now let’s take a look at the body of the program, section by section, starting
with the declaration of main():

vertout main(appin IN,
uniform float4x4 ModelViewProj,
uniform fFloat4x4 ModelViewlT,
uniform float4 LightVec)

As required for a vertex program, main() takes an application-to-vertex
structure as input and returns a vertex-to-fragment structure. In this case, we
are using the two structure types we have already defined: appin and
vertout. Notice that main() takes in three uniform parameters: two
matrices and one vector. All three parameters are passed to simple.cg by
the application, using the run-time library.

The first matrix, Mode IViewProj, is the concatenation of the modelview and
projection matrices. Together, these matrices transform points from model
space to clip space. The second matrix, Mode IViewlT, is the inverse transpose
of the modelview matrix. The third parameter, LightVec, is a vector that
specifies the location of the light source.

Basic Transformations
Now we start the body of the vertex program:

vertout OUT;

OUT .HPosition = mul(ModelViewProj, IN.Position);

A vertex program is responsible for calculating the homogenous clip-space
position of the vertex (given the vertex’s model-space coordinates).
Therefore, the vertex’s model-space position (given by IN.Position) needs
to be transformed by the concatenation of the modelview and projection
matrices (called ModelIViewProj in this example). The transformed position
is assigned directly to OUT.HPosition. Note that you are not responsible for

808-00504-0000-006 149
NVIDIA

Cg Language Toolkit

the perspective division when using vertex programs. The hardware
automatically performs the division after executing the vertex program.

Since we want to do our lighting in eye space, we have to transform the
model space normal IN_Normal to eye space:

// transform normal from model-space to view-space
float3 normalVec = normalize(mul (ModelViewlT,
IN.Normal) .xyz);

Remember that when transforming normals, we need to multiply by the
inverse transpose of the modelview matrix. Then we normalize the eye space
normal vector and store it as normalVec.

Prepare for Lighting

150

The subsequent steps prepare for lighting:

// store normalized light vector
float3 lightVec = normalize(LightVec.xyz);

// calculate half angle vector
float3 eyeVec = float3(0.0, 0.0, 1.0);
float3 halfVec = normalize(lightVec + eyeVec);

At this point we have to ensure that all our vectors are normalized. We start
by normalizing LightVec!. Then, in preparation for specular lighting, we
have to define the “half-angle” vector hal fVec, which is the vector halfway
between the light and the eye vectors (that is, (I ightVec+eyeVec)/2). We
normalize halfVec, so we don’t need to bother with the division by two,
because it cancels out after normalization anyway. In this example, we
assume that the eye is at (0,0, 1), but an application would typically pass
the eye position also as a uniform parameter, since it would be unchanged
from vertex to vertex. We use Cg’s inline vector construction capability to
build a 3-component float vector that contains the eye position, and then
we assign this value to eyeVec.

1. Because LightVec is uniform, it is more efficient to normalize it once in the application

rather than on a per-vertex basis. It is done here for illustrative purposes.

808-00504-0000-006

NVIDIA

A Brief Tutorial

Calculating the Vertex Color

Now we have to calculate the vertex color to output.

Calculating the Diffuse and Specular Lighting Contributions

In this example, we're going to calculate just a simple combination of diffuse
and specular lighting:

// calculate diffuse component
float diffuse = dot(normalVec, lightVec);

// calculate specular component
float specular = dot(normalVec, halfVec);

// Use the lit function to compute lighting vector from
// diffuse and specular values
float4 lighting = lit(diffuse, specular, 32);

Here we use the Cg Standard Library to perform dot products (using dot()).
We also make use of the Standard Library’s lit() function to calculate a
Blinn-style lighting vector based on the previously computed dot products.
The returned vector holds the diffuse lighting contribution in the y-
coordinate, and the specular lighting contribution in the z-coordinate.

Remember to take advantage of the Standard Library to help speed up your
development cycle.

Modulating the Diffuse and Specular Lighting Contributions

Once the diffuse and specular lighting contributions lighting.y and
lighting.z have been calculated, we need to modulate them with the
object’s material properties:

// blue diffuse material
float3 diffuseMaterial = float3(0.0, 0.0, 1.0);

// white specular material
float3 specularMaterial = float3(1.0, 1.0, 1.0);

// combine diffuse and specular contributions and

// output final vertex color

OUT.Color.rgb = lighting.y * diffuseMaterial +
lighting.z * specularMaterial;

OUT.Color.a = 1.0;

return OUT;

808-00504-0000-006 151
NVIDIA

Cg Language Toolkit

We define the object’s diffuse material color as blue. We modulate the
lighting contributions with the material properties to get the final vertex
color, and we assign it to the output structure’s color field, OUT.Color.
Finally, we set the alpha channel of the final color to 1.0, so that our object
will be opaque, and return the computed position and color values stored in
the OUT structure.

Further Experimentation

Use simple.cg as a framework to try more advanced experiments, perhaps by
adding more parameters to the program or by performing more complex
calculations in the vertex program. Have fun experimenting!

152 808-00504-0000-006
NVIDIA

o T B M T
?%, = —
// Advanced Profile Sample Shaders

This chapter provides a set of advanced profile sample shaders written in Cg.
Each shader comes with an accompanying snapshot, description, and source
code.

Examples shown are
Improved Skinning
Improved Water
Melting Paint
MultiPaint
Ray-Traced Refraction
Skin

Thin Film Effect

Car Paint 9

0O 000 00 D

808-00504-0000-006 153
NVIDIA

Cg Language Toolkit

Improved Skinning

Description

This shader takes in a set of all the transformation matrices that can affect a
particular bone. Each bone also sends in a list of matrices that affect it. There
is then a simple loop that for each vertex goes through each bone that affects
that vertex and transforms it. This allows just one Cg program to do the
entire skinning for vertices affected by any number of bones, instead of
having one program for one bone, another program for two bones, and so on.

Fig. 5. Example of Improved Skinning

154 808-00504-0000-006
NVIDIA

Vertex Shader Source Code for

struct inputs

{
float4 position > POSITION;
float4 weights - BLENDWEIGHT;
float4 normal - NORMAL;
float4 matrixIndices : TESSFACTOR;
float4 numBones : SPECULAR;

};

struct outputs

{
float4 hPosition - POSITION;
float4 color : COLORO;

B

outputs main(inputs IN,

uniform float4x4 modelViewProj,

Advanced Profile Sample Shaders

Improved Skinning

uniform float3x4 boneMatrices[30],

uniform float4 color,
uniform float4 lightPos)

outputs OUT;

float4 index = IN.matrixIndices;
float4 weight = IN.weights;

float4 position;
float3 normal;

for (float 1 = 0; 1 < IN_numBones.x;
// transform the offset by bone i
position = position + weight.x *
float4(mul (boneMatrices[index.x],
1.0);

// transform normal by bone i
normal = normal + weight.x *

1 +=1) {

IN.position) .xyz,

mul ((Float3x3)boneMatrices[index.x],

IN.normal . xyz) .xyz;

// shift over the index/weight variables; this moves
// the index and weight for the current bone into
// the _x component of the index and weight variables

808-00504-0000-006

NVIDIA

155

Cg Language Toolkit

156

index = index.yzwx;
weight = weight.yzwx;
}

normal = normalize(normal);

OUT.hPosition = mul(modelViewProj, position);
OUT.color = dot(normal, lightPos.xyz) * color;

return OUT;

NVIDIA

808-00504-0000-006

Advanced Profile Sample Shaders

Improved Water

Description

This demo gives the appearance that the viewer is surrounded by a large grid
of vertices (because of the free rotation), but switching to wireframe or
increasing the frustum angle makes it apparent that the vertices are a static
mesh with the height, normal, and texture coordinates being calculated on-
the-fly based on the direction and height of the viewer. This technique allows
for very GPU-friendly water animations because the static mesh can be
precomputed. The vertices are displaced using sine waves, and in this
example a loop is used to sum five sine waves to achieve realistic effects.

Fig. 6. Example of Improved Water

808-00504-0000-006 157
NVIDIA

Cg Language Toolkit

Vertex Shader Source Code for Improved Water

struct app2vert

{
float4 Position : POSITION;

¥

struct vert2frag

{

float4 HPosition : POSITION;
float4 TexCoordO : TEXCOORDO;
float4 TexCoordl : TEXCOORD1;
float4 Color0O : COLORO;
float4 Colorl - COLOR1;

¥

void calcWave(out float disp, out float2 normal,
float dampening, float3 viewPosition,
float waveTime, float height,
float frequency, float2 waveDirection)

float distancel = dot(viewPosition.xy, waveDirection);
distancel = frequency * distancel + waveTime;

disp = height * sin(distancel) / dampening;
normal = -cos(distancel) * height * frequency *
(waveDirection.xy) / (-4*dampening);

}

vert2frag main(
app2vert 1IN,
uniform float4x4 ModelViewProj,
uniform float4x4 ModelView,
uniform float4x4 ModelViewlT,
uniform float4x4 TextureMat,
uniform float Time,
uniform float4 Wavel,
uniform float4 WavelOrigin,
uniform float4 Wave?2,
uniform float4 Wave20rigin,
const uniform float4 WaveData[5])

{
vert2frag OUT;

158 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

float4 position = float4(IN.Position.x, O,
IN.Position.y,1);
float4 normal = float4(0,1,0,0);
float dampening = 1 + dot(position.xyz, position.xyz)/1000;
float i, disp;
float2 norm;
for (i =0; i <5; i1 =1 +1)
{
float waveTime = Time.x * WaveDatal[i]-z;
float frequency = WaveData[i]-z;
float height = WaveData[i]-w;
float2 waveDir = WaveData[i]-xy;

calcWave(disp, norm, dampening, IN.Position.xyz,
waveTime, height, frequency, waveDir);

position.y = position.y + disp;

normal .xz = normal .xz + norm;

}

OUT.HPosition = mul(ModelViewProj, position);

// transfom normal into eye-space
normal = mul(ModelViewlT, normal);
normal .xyz = normalize(normal -xyz);

// get a vector from the vertex to the eye
float3 eyeToVert = mul(ModelView, position).xyz;
eyeToVert = normalize(eyeToVert);

// calculate the reflected vector for cubemap look-up
float4d reflected = mul(TextureMat,
reflect(eyeToVert, normal.xyz).xyzz);

// output two reflection vectors for the two
// environment cubemaps

OUT.TexCoord0 = reflected;

OUT.TexCoordl = reflected;

// Calculate a fresnel term (note that fO = 0)
float fres = l1l+dot(eyeToVert,normal .xyz);
fres = pow(fres, 5);

// set the two color coefficients (the magic constants
// are arbitrary), these two color coefficients are used

808-00504-0000-006 159
NVIDIA

Cg Language Toolkit

// to calculate the contribution from each of the two

// environment cubemaps (one bright, one dark)

OUT.Color0 = (fres*1.4 + min(reflected.y,0)) .xxxx +
float4(.2,.3,.3,0);

OUT.Colorl = (fres*1.26) .xXxxX;

return OUT;
s

Pixel Shader Source Code for Improved Water

float4 main(in float3 color0 : COLORO,
in float3 colorl : COLOR1,
in float3 reflectVec : TEXCOORDO,

in float3 reflectVecDark : TEXCOORD1,
uniform samplerCUBE environmentMaps[2]
) : COLOR

float3 reflectColor = texCUBE(environmentMaps[0],
reflectVec).rgb;

float3 reflectColorDark = texCUBE(environmentMaps[1],
reflectVecDark) .rgb;

float3 color = (reflectColor * color0) +
(reflectColorDark * colorl);
return float4(color, 1.0);

160 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

Melting Paint

Description

This shader uses an environment map with procedurally modified texture
lookups to create a melting effect on the surface texture (the NVIDIA logo in
this example). The reflection vector is shifted using a noise function, giving
the appearance of a bumpy surface. The surface texture’s texture coordinates
are shifted in a time-dependent manner, also based on a noise texture.

Fig. 7. Example of Melting Paint

Vertex Shader Source Code for Melting Paint

// define inputs from application
struct app2vert
{
float4 Position : POSITION;
float4 Normal : NORMAL;

808-00504-0000-006 161
NVIDIA

Cg Language Toolkit

float4 Color0O : COLORO;
float4 TexCoordO : TEXCOORDO;
};
struct vert2frag
{
float4 HPosition - POSITION;
float3 OPosition - TEXCOORD2;
float3 EPosition - TEXCOORD3;
float3 Normal - TEXCOORD1;
float3 TexCoordO - TEXCOORDO;
float4 Color0O : COLORO;
float3 LightPos = TEXCOORD4;
float3 ViewerPos - TEXCOORD5;
}s

vert2frag main(app2vert In,
uniform float4x4 ModelViewProj,
uniform float4x4 ModelView,
uniform float4x4 ModelViewl,
uniform float4 ViewerPos,
uniform float4 LightPos)

vert2frag Out;

// Vertex positions:

// In clip space

Out_HPosition = mul(ModelViewProj, In.Position);
// In object space

Out.OPosition = In.Position.xyz;

// In eye space

Out_EPosition = mul(ModelView, In.Position).xyz;

Out._Normal = normalize(In_Normal.xyz);
// Copy the texture coordinates
Out.TexCoord0 = In.TexCoord0.xyz;

// Generate a white color

Out.Color0 = LightPos;

Out.LightPos = mul(ModelViewl, LightPos).xyz;
Out.ViewerPos = mul(ModelViewl, float4(0,0,0,1)).xyz;

return Out;

162 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

Pixel Shader Source Code for Melting Paint

struct vert2frag

{

float4 HPosition : POSITION;
float3 OPosition : TEXCOORD2;
float3 EPosition : TEXCOORDS3;
float3 Normal - TEXCOORD1;
float3 TexCoordO0 : TEXCOORDO;
float4 ColorO : COLORO;

float3 LightPos = TEXCOORD4;
float3 ViewerPos : TEXCOORD5;

B

void calcLighting(out float diffuse, out float specular,
float3 normal, float3 fragPos, float3 lightPos,
float3 eyePos, float specularExp)

float3 light = lightPos - fragPos;
float len = length(light);
light = light 7 len;

float3 eye = normalize(eyePos - fragPos);
float3 halfVec = normalize(eyePos + light);

float attenuation = 1. / (.3 * len);

float4 lighting = lit(dot(light, normal),
dot(halfVec, normal), specularExp);

diffuse = lighting.y * attenuation;

specular = lighting.z * attenuation;

}

float4 main(vert2frag IN,
uniform float4 LightPos,
uniform sampler3D noise_map,
uniform sampler2D nv_map,
uniform samplerCUBE cube map,
uniform float4 interpolate
) - COLOR

{

float diffuse, specular;

float3 biVariate = Tfloat3(IN.OPosition.x-IN.OPosition.z,

808-00504-0000-006 163
NVIDIA

Cg Language Toolkit

IN.OPosition.y+IN.OPosition.z, 0);
float3 uniVariate = float3(IN.OPosition.x+IN.OPosition.z,
0, 0);

float3 normal = normalize(IN.Normal);
float3 noiseTex = float3((IN.OPosition.x+IN.OPosition.z)*6,
IN.OPosition.y/2, 0);
float3 noiseSum = tex3D(noise_map, biVariate/3).rgh/12 +
tex3D(noise_map, noiseTex).rgh/18 +
tex3D(noise_map, biVariate*6).rgh/18;
normal = normalize(normal + noiseSum);

calcLighting(diffuse, specular, normal, IN.OPosition,
IN.LightPos, IN.ViewerPos, 32);

float3 nvShift = tex3D(noise_map, uniVariate/3).rgb /7 2 +
tex3D(noise_map, uniVariate).rgb /7 4 +
tex3D(noise_map, biVariate*3).rgb / 16;

nvShift.x = nvShift.x*nvShift.x * interpolate.x * 3;

nvShift.y = 0;

biVariate = float3(IN.OPosition.x - IN.OPosition.z,
IN.OPosition.y, 0);
float2 texCoord = biVariate.xy/4 + float2(1.1, .5) +
nvShift.yx + float2(0, interpolate.x/8);
float3 nvDecal =
tex2D(nv_map, Float2(1-texCoord.x, texCoord.y)).rgb *
(1-interpolate.x * _7).XxX;

float3 eye = IN.ViewerPos - IN.OPosition;
float3 lightMetal = texCUBE(cube_map,
reflect(normal, eye)).rgb;
float3 darkMetal = (diffuse * float3(.5,.25,0) +
specular * float3(.7,-4,0));

float3 finalColor = lerp(lightMetal, darkMetal, nvDecal.x);
return float4(finalColor, 1);

164 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

MultiPaint

Description

MultiPaint presents a single-pass solution to a common production problem:
mixing multiple kinds of materials on a single polygonal surface. MultiPaint
provides a simple BRDF (bidirectional reflectance distribution function) that
is still complex enough to represent many common metallic and dielectric
surfaces, and controls all key factors of the variable BRDF through texturing.
This permits you to create multiple materials without switching shaders,
splitting your model, or resorting to multiple passes.

Uses for MultiPaint might include complex armor built of inlaid metals,
woods, and stones—all modeled on a single, simple poly mesh; buildings
composed of multiple types of stone, glass, and metal, expressed as simple
cubes; cloth with inlaid metallic threads; or as in this demo, metal partially
covered with peeling paint.

Using multiple BRDFs is common in the offline world, but rarely optimized;
instead, two different shaders may be evaluated and their results blended
using a mask texture or chained through 1f statements. For maximum real-
time performance, MultiPaint instead integrates all of the key parts of the
BRDFs as multiple painted textures so that only one pass through the shader
is required to create the mixed appearance. This permits a single-pass shader
containing diffuse, specular, and environmental lighting effects in a compact,
fast-executing package.

Fig. 8. Example of MultiPaint

808-00504-0000-006 165
NVIDIA

Cg Language Toolkit

Vertex Shader Source Code for MultiPaint

// define inputs from vertex buffer
struct appin

{
float4 Position : POSITION;
float4 UV = TEXCOORDO;
float4 Tangent : TEXCOORD1;
float4 Binormal - TEXCOORD2;
float4 Normal - TEXCOORD3;
¥s
// output -- same struct is the input to "cg _multipaint.cg"

struct MultiPaintV2F {
float4 HPosition
float4 TexCoords
float3 OPosition
float3 Normal
float3 VPosition

POSITION; // position (clip space)
TEXCOORDO; // base ST coordinates
TEXCOORD1; // position (obj space)
TEXCOORD2; // normal (eye space)
TEXCOORD3; // view pos (obj space)

float3 T TEXCOORD4; // tangent (obj space)

float3 B TEXCOORD5; // binormal (obj space)

float3 N TEXCOORD6; // normal (obj space)

float4 LightVecO TEXCOORD7; // light dir (obj space)
};

MultiPaintV2F main(appin IN,
uniform float4x4 ModelViewProj,
uniform float4x4 ModelViewlT,
uniform float4x4 ModelViewl,
uniform float4 TexRepeats,
uniform float4 LightVec) // (eye space)

MultiPaintV2F OUT;
OUT.HPosition = mul(ModelViewProj, IN.Position);

// pass through object-space position
OUT.OPosition = IN.Position.xyz;

// transform normal to eye space
OUT.Normal = normalize(mul(ModelViewlT, IN_Normal).xyz);

OUT.TexCoords = IN.UV * TexRepeats;

// pass through object-space normal, tangent, binormal.

166 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

OUT.-N = normalize(IN_.Normal .xyz);
OUT.T = IN.Tangent.xyz;
OUT.B = IN.Binormal .xyz;

// transform view pos (origin) to obj space
OUT.VPosition = mul(ModelViewl, float4(0,0,0,1)).-xyz;

// transform light vector to obj space
OUT.LightVecO = mul(ModelViewl, LightVec);

return OUT;
s

Pixel Shader Source Code for MultiPaint

#define WHITE half4(1.0h,1.0h,1.0h,1.0h)

// input -- same struct is output from *cg_multipaintVP.cg"

struct MultiPaintV2F {
float4 HPosition : POSITION; // position (clip space)
float4 TexCoords : TEXCOORDO; // base ST coordinates
float3 OPosition : TEXCOORD1; // position (obj space)
float3 Normal : TEXCOORD2; // normal (eye space)
float3 VPosition : TEXCOORD3; // view pos (obj space)
float3 T : TEXCOORD4; // tangent (obj space)
float3 B : TEXCOORD5; // binormal (obj space)
float3 N : TEXCOORD6; // normal (obj space)
float4 LightVecO : TEXCOORD7; // light dir (obj space)

}:

// channels in our material map:
#define SPEC_STR Xx

#define METALNESS y

#define NORM_SPEC_EXPON z

// subfields in "SpecData™
#define MINPOWER X
#define MAXPOWER vy
#define MAXSPEC z

// subfields in "ReflData"
#define FRESNEL MIN x
#define FRESNEL_MAX y
#define FRESNEL_EXPON z
#define REFL_STRENGTH w

808-00504-0000-006 167
NVIDIA

Cg Language Toolkit

168

// subfields in ""BumpData"
#define BUMP_SCALE x

half4 main(MultiPaintV2F IN,

uniform sampler2D ColorMap, // color
uniform sampler2D MaterialMap, // see above
uniform sampler2D NormalMap, // tangent-space normals

uniform samplerCUBE EnvMap, // environment skybox
uniform float4 SpecData, // see above

uniform float4 ReflData, // see above

uniform float4 BumpData // see above

) : COLOR

half4 surfCol = tex2D(ColorMap, IN.TexCoords.xy);

half4 material = tex2D(MaterialMap, IN.TexCoords.xy);

half3 Nt = tex2D(NormalMap, IN.TexCoords.xy).rgb -
hal¥3(0.5h,0.5h,0.5h);

// SpecData.MAXSPEC *should* range from 0 - 1.

half specStr = material .SPEC_STR * SpecData.MAXSPEC;

halt specPower = SpecData.MINPOWER +
material .NORM_SPEC_EXPON *
(SpecData.MAXPOWER - SpecData.MINPOWER) ;

half3 Vn = -normalize(IN.VPosition - IN_OPosition);
half3 Ln = normalize(IN.LightVecO).xyz;
half3 Nb = normalize(BumpData.BUMP_SCALE *

(NE.X*IN.T + Nt.y*IN.B) +
(Nt.z*IN.N));

half diff = dot(-Ln, Nb);
half3 Hn = -normalize(Vn + Ln);
half4 lighting = lit(diff, dot(Hn, Nb), specPower);

half4 diffResult = lighting.y * surfCol;
half4 specCol = lerp(WHITE, surfCol, material .METALNESS);
half4 specResult = lighting.z * specStr * specCol;

half3 reflVect = reflect(Vn, Nb);
half4 reflColor = texCUBE(EnvMap, reflVect);
half fakeFresnel = ReflData.FRESNEL_MIN +
ReflData.FRESNEL_MAX *
pow(saturate(l.0h-dot(-Vn,IN_N)),
ReflData.FRESNEL_EXPON) ;

808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

half4 paintShine = fakeFresnel * reflColor;
half4 metalShine = surfCol * reflColor;
half4 shineCol = ReflData.REFL_STRENGTH *
lerp(paintShine, metalShine,
material .METALNESS) ;

half4 finalColor = specResult + diffResult + shineCol;
finalColor.w = 1.0h;

return finalColor;

808-00504-0000-006 169
NVIDIA

Cg Language Toolkit

Ray-Traced Refraction

Description

This shader presents a method for adding high-quality details to small
objects using a single-bounce, ray-traced pass. In this example, the polygonal
surface is sampled and a refraction vector is calculated. This vector is then
intersected with a plane that is defined as being perpendicular to the object’s
x-axis. The intersection point is calculated and used as texture indices for a
painted iris.

The demo permits varying the index of refraction, the depth and density of
the lens. Note that the choice of geometry is arbitrary —this sample is a
sphere, but any polygonal model can be used.

Fig. 9. Example of Ray-Traced Refraction

170 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

Vertex Shader Source Code for Ray-Traced Refraction

struct appin

{
float4 Position = POSITION;
float4 Normal : NORMAL;
}:
// output -- same struct is the input to fragment shader

struct EyeV2F {
float4 HPosition : POSITION; // clip space pos
float3 OPosition : TEXCOORDO; // Obj-coords location
float3 VPosition : TEXCOORD1l; // eye pos (obj space)
float3 N : TEXCOORD2; // normal (obj space)
float4 LightVecO : TEXCOORD3; // light dir (obj sp)

B

EyeV2F main(appin IN,
uniform float4x4 ModelViewProj,
uniform float4x4 ModelViewl,
uniform float4 LightVec) // in EYE coords

EyeV2F OUT;

// calculate clip space position for rasterizer use
OUT.HPosition = mul(ModelViewProj, IN.Position);

// pass through object space position
OUT.OPosition = IN.Position.xyz;

// object-space normal
OUT_-N = normalize(IN_Normal .xyz);

// transform view pos and light vec to obj space
OUT.VPosition = mul(ModelViewl, float4(0,0,0,1)).xyz;
OUT.LightVecO = normalize(mul (ModelViewl, LightVec));

return OUT;

808-00504-0000-006 171
NVIDIA

Cg Language Toolkit

Pixel Shader Source Code for Ray-Traced Refraction

// Assume ray direction is normalized.
// Vector "planeEq" is encoded half3(A,B,C,D) where
// (Ax+By+Cz+D)=0 and half3(A,B,C) has been normalized.
// Returns distance along to to intersection; distance is
// negative if no intersection.
half intersect_plane(half3 rayOrigin,half3 rayDir,
halft4 planeEq) {

half3 planeN = planeEq.xyz;

half denominator = dot(planeN, rayDir);

half result = -1.0h;

// d==0 -> parallel || d>0 -> faces away

if (denominator < 0.0h) {
half top = dot(planeN,rayOrigin) + planeEq.w;
result = -top/denominator;

}

return result;

}

// subfields in "BallData"
#define RADIUS x

#define IRIS_DEPTH y
#define ETA z

#define LENS_DENSITY w

// subfields in "SpecData"
#define PHONG x

#define GLOSS1 y

#define GLOSS2 z

#define DROP w

struct EyeV2F {

float4 HPosition : POSITION;
float3 OPosition : TEXCOORDO;
float3 VPosition : TEXCOORD1;
float3 N - TEXCOORD2;
float4 LightVecO : TEXCOORD3;

};

half4 main(EyeV2F IN,
uniform sampler2D ColorMap, // color
// components: {radius,irisDepth,eta, lensDensity)
uniform float4 BallData,

172 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

// components: {phongExp,glossl,gloss2,drop)
uniform float4 GlossData,

uniform float3 AmbiColor,

uniform float3 DiffColor,

uniform float3 SpecColor,

uniform float3 LensColor,

uniform float3 BgColor) : COLOR

const half3 baseTex = half3(1.0h,1.0h,1.0h);
const half GRADE = 0.05h;

const half3 yAxis = half3(0.0h,1.0h,0.0h);
const half3 xAxis = half3(1.0h,0.0h,0.0h);
const half3 ballCtr = half3(0.0h,0.0h,0.0h);

// (actually constants - could be done in VP or on CPU)

half irisSize = BallData.-RADIUS *
sqgrt(1.0h-BallData. IRIS _DEPTH * BallData.IRIS_DEPTH);

half irisScale = 0.3333h / max(0.01h, irisSize);

half irisDist = BallData.RADIUS * BallData.IRIS_DEPTH;

half3 pupilCenter = ballCtr + half3(irisDist,0.0h,0.0h);

// it x axis, returns simple -irisDist

half D = -dot(pupilCenter, XAXIiSs);

half slice = IN.OPosition.x - irisDist;

half4 planeEquation = half4(xAxis, D);

// view vector TO surface

half3 Vn = normalize(IN.OPosition - IN.VPosition);
half3 Nf = normalize(IN.N);
half3 Ln = IN.LightVecO.xyz;

half3 DiffLight = DiffColor * saturate(dot(Nf, -Ln));
half3 missColor = AmbiColor + baseTex * DiffLight;
half3 DiffPupil = AmbiColor + saturate(dot(xAxis, -Ln));

half3 halfAng = normalize(-Ln - Vn);

half ndh = abs(dot(Nf,halfAng));

half specl = pow(ndh, GlossData.PHONG) ;

half s2 = smoothstep(GlossData.GLOSS1, GlossData.GL0OSS2,
specl);

specl = lerp(GlossData.DROP, specl, s2);

half3 SpecularLight = SpecColor * specl;

half3 hitColor = missColor;

if (slice >= 0.0h) {
half gradedEta = BallData.ETA;

808-00504-0000-006 173
NVIDIA

Cg Language Toolkit

gradedEta = 1.0h/gradedEta;
half3 faceColor = BgColor;

half3 refVector = refract(Vn, Nf, gradedEta);
it (dot(refVector, refVector) > 0) {
// now let"s intersect with the iris plane
half irisT = intersect_plane(IN.OPosition, refVector,
planeEquation);
half fadeT = irisT * BallData.LENS DENSITY;
fadeT = fadeT * fadeT;
faceColor = DiffPupil.xxx;
if (irisT > 0) {
half3 irisPoint = IN.OPosition + irisT*refVector;
half3 irisST = (irisScale*irisPoint) +
hal¥3(0.0h, 0.5h, 0.5h);
faceColor = tex2D(ColorMap, irisST.yz).rgb;
3
faceColor = lerp(faceColor, LensColor, fadeT);
hitColor = lerp(missColor, faceColor,
smoothstep(0.0h, GRADE, slice));
¥
}

hitColor = hitColor + SpecularLight;
return half4(hitColor, 1.0h);
}

174 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

Skin

Description

This effect demonstrates some techniques for rendering skin ranging from
simple Blinn-Phong Bump-Mapping to more complex Subsurface Scattering
lighting models. It also illustrates the use of “Rim” lighting and simple
translucency for capturing some of the more subtle properties of skin
resulting from complex, non-local lighting interactions. Finally, it shows how
the various techniques can be combined to produce compelling, stylized
skin.

Fig. 10. Example of Skin

Pixel Shader Source Code for Skin

struct fragin

float2 texcoords : TEXCOORDO;

808-00504-0000-006 175
NVIDIA

Cg Language Toolkit

float4 shadowcoords = TEXCOORD1;
float4 tangentToEyeMatO : TEXCOORD4;
float3 tangentToEyeMatl : TEXCOORD5;
float3 tangentToEyeMat2 : TEXCOORDG6;
float3 eyeSpacePosition : TEXCOORD7;

}:

float3 hgphase(float3 v1, float3 v2, float3 g)
{

float costheta;
float3 g2;
float3 gtemp;

costheta = dot(-v1, v2);

92 = g*g;

gtemp = 1.0.xxx + g2 - 2.0*g*costheta;
gtemp = pow(gtemp, 1.5.XXX);

gtemp = (1.0.xxx - g2) / gtemp;

return gtemp;

}

// Computes the single-scattering approximation to
// scattering from a one-dimensional volumetric surface.
float3 singleScatter(float3 wi, float3 wo, float3 n,
float3 g, float3 albedo,
float thickness)

float win = abs(dot(wi,n));
float won = abs(dot(wo,n));
float eterm;

float3 result;

eterm = 1.0 - exp((-((Q-/win)+(1./won))*thickness));
result = eterm * (albedo * hgphase(wo, wi, g) /
(win + won));

return result;

}

// 1 is the incident ray

// n is the surface normal

// eta is the ratio of indices of refraction
// r is the reflected ray

// t is the transmitted ray

176 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

float fresnel(float3 i, float3 n, float eta,
out float3 r, out float3 t)
{
float result;
float cl;
float cs2;
float tflag;

// Refraction vector courtesy Paul Heckbert.
cl = dot(-i,n);

cs2 = 1.0-eta*eta*(1.0-cl*cl);

tflag = (float) (cs2 >= 0.0);

t = tflag * (((eta*cl-sqgrt(cs2))*n) + eta*i);
// t is already unit length or (0,0,0)

// Compute Fresnel terms

// (From Global Illumination Compendeum.)
float ndott;

float cosr_div_cosi;

float cosi_div_cosr;

float fs;

float fp;

float kr;

ndott = dot(-n,t);

cosr_div_cosi = ndott / cl;

cosi_div_cosr = cl / ndott;

fs = (cosr_div_cosi - eta) / (cosr_div_cosi + eta);

-h
7))
1

fs * fs;
fp = (cosi_div_cosr - eta) / (cosi_div_cosr + eta);
fp = fp * fp;

kr = 0.5 * (fs+fp);
result = tflag*kr + (1.-tflag);
r = reflect(i, n);

return result;

}

float4 main(fragin In,
uniform sampler2D texO,
uniform sampler2D texl,
uniform sampler2D tex2,
uniform sampler2D tex3,
uniform float3 eyeSpacelLightPosition,
uniform float thickness,

808-00504-0000-006 177
NVIDIA

Cg Language Toolkit

uniform float4 ambient) : COLOR
float bscale = In.tangentToEyeMatO.w;
float eta = (1.0/1.4);

// ratio of indices of refraction (air/skin)
float m = 34_; // specular exponent

float4 lightColor = { 1, 1, 1, 1 }; // light color
float4 sheenColor = { 1, 1, 1, 1 }; // sheen color
float4 skinColor = tex2D(texl, In.texcoords);
float3 g = { 0.8, 0.3, 0.0 };

float3 albedo =4{0.8, 0.5, 0.4 };

// oiliness mask
float4 oiliness = 0.9 * tex2D(tex2, In.texcoords);

// Get eye-space eye vector.
float3 v = normalize(-In.eyeSpacePosition);

// Get eye-space light and halfangle vectors.
float3 1 = normalize(eyeSpaceLightPosition -

In_eyeSpacePosition);
float3 h = normalize(v + 1);

// Get tangent-space normal vector from normal map.

float3 tangentSpaceNormal = tex2D(tex0, In.texcoords).rgb;
float3 bumpscale = { bscale, bscale, 1.0 };
tangentSpaceNormal = tangentSpaceNormal * bumpscale;

// Transform it into eye-space.

float3 n;

n[0] = dot(In.tangentToEyeMatO.xyz, tangentSpaceNormal);
n[1] dot(In.tangentToEyeMatl, tangentSpaceNormal);
n[2] dot(In.tangentToEyeMat2, tangentSpaceNormal);

n = normalize(n);

// Compute the lighting equation.
float ndotl = max(dot(n,l1), 0); // clamp O to 1
float ndoth max(dot(n,h), 0); // clamp O to 1
float flag (float) (ndotl > 0);

// Compute oil, sheen, subsurf scattering contributions.
float4 oil;
float4 sheen;

178 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

float4 subsurf;
float Kr, Kr2;
float Kt, Kt2;
float3 T, T2;
float3 R, R2;

// Compute fresnel at sheen layer, ramp it up a bit.

Kr = fresnel(-v, n, eta, R, T);
Kr = smoothstep(0.0, 0.5, Kr);
Kt = 1.0 - Kr;

// Compute the refracted light ray and the refraction
// coefficient.

Kr2 = fresnel(-1, n, eta, R2, T2);

Kr2 smoothstep(0.0, 0.5, Kr2);

Kt2 1.0 - Kr2;

// For oil contribution, modulate the oiliness mask by a
// specular term.
oil = 0.5 * oiliness * pow(ndoth, m);

// For sheen contribution, modulate Fresnel term by

// sheen color times specular. Modulate by additional
// diffuse term to soften it a bit.

sheen = 2.5*Kr*sheenColor*(ndotl*(0.2 + pow(ndoth, m)));

// Compute single scattering approximation to subsurface

// scattering. Here we compute 3 scattering terms

// simultaneously and the results end up in the x,y,z

// components of a float3. Using 3 terms approximates

// distribution of multiply-scattered light. For

// details see: Matt Pharr’s SIGGRAPH 2001 RenderMan

// course notes “Layered Media for Surface Shaders”.

float3 temp = singleScatter(T2, T, n, g, albedo,

thickness);

subsurf = 2.5 * skinColor * ndotl * Kt * Kt2 *

(temp.x+temp.y+temp.z);

// Add contributions from oil, sheen, and subsurface

// scattering and modulate by light color and result

// of a shadow map lookup.

return lightColor*tex2Dproj(tex3, In.shadowcoords).r *
(oil + sheen + subsurf);

808-00504-0000-006 179
NVIDIA

Cg Language Toolkit

Thin Film Effect

Description

This demo shows a thin film interference effect. Specular and diffuse
lighting are computed per-vertex in a Cg program, along with a view depth
parameter, which is computed using the view vector, surface normal, and
the depth of the thin film on the surface of the object. The view depth is then
perturbed in an ad-hoc manner per-fragment by the underlying decal
texture, and is then used to lookup into a 1D texture containing the
precomputed destructive interference for red / green / blue wavelengths
given a particular view depth. This interference value is then used to
modulate the specular lighting component of the standard lighting equation.

Fig. 11. Example of Thin Film Effect

Vertex Shader Source Code for Thin Film Effect

// define inputs from application
struct a2v

{
float4 Position : POSITION;

180 808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

float3 Normal : NORMAL;
};
// define outputs from vertex shader
struct v2f
{
float4 HPOS : POSITION;
float4 diffCol : COLORO;
float4 specCol : COLOR1;
float2 filmDepth : TEXCOORDO;

}:

v2f main(a2v IN,
uniform float4x4 WorldViewProj,
uniform float4x4 WorldViewlT,
uniform float4x4 WorldView,
uniform float4 LightVector,
uniform float4 FilmDepth,
uniform float4 EyeVector)

v2t OUT;

//transform position to clip space
OUT.HPOS = mul(WorldViewProj, IN.Position);

float4 tempnorm = float4(IN.Normal, 0.0);
// transform normal from model-space to view-space
float3 normalVec = mul(WorldViewlT, tempnorm).xyz;

normalVec = normalize(normalVec);

// compute the eye->vertex vector
float3 eyeVec = EyeVector.xyz;

// compute the view depth for the thin film

float viewdepth = (1.0 / dot(normalVec, eyeVec)) *
FilmDepth.x;

OUT.filmDepth = viewdepth.xx;

// store normalized light vector
float3 lightVec = normalize((float3)LightVector);

// calculate half angle vector
float3 halfAngleVec = normalize(lightVec + eyeVec);

808-00504-0000-006 181
NVIDIA

Cg Language Toolkit

// calculate diffuse component
float diffuse = dot(normalVec, lightVec);

// calculate specular component
float specular = dot(normalVec, halfAngleVec);

// use the lit instruction to calculate lighting,
// automatically clamp
float4 lighting = lit(diffuse, specular, 32);

// output final lighting results
OUT.diffCol = (float4)lighting.y;
OUT.specCol = (float4)lighting.z;

return OUT;
ks

Pixel Shader Source Code for Thin Film Effect

182

struct v2f

{
float3 diffCol : COLORO;
float3 specCol : COLOR1;
float2 filmDepth : TEXCOORDO;

};

void main(v2f IN,
out float4 color : COLOR,
uniform sampler2D fringeMap,
uniform sampler2D diffMap)

// diffuse material color
float3 diffCol = float3(0.-3, 0.3, 0.5);

// lookup fringe value based on view depth
float3 fringeCol = (float3)tex2D(fringeMap, IN.filmDepth);

// modulate specular lighting by fringe color,

// combine with regular lighting

color.rgb = fringeCol*IN.specCol + IN.diffCol*diffCol;
color.a = 1.0;

808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

Car Paint 9

Description

This car paint shader uses gonioreflectometric paint samples measured by
Cornell University. The samples were converted into a 2D texture map which
is indexed using NdotL and NdotH as the (s, t) coordinate pair, and which
provides the diffuse component of our lighting equation. The specular term
is calculated using the Blinn model, and also includes a term which simulates
the clear coat’s metallic flecks.

The fleck normal mipmap chain has randomly generated vectors which
reside within a positive Z cone in tangent space. The cone is reduced
gradually at every level such that in the distance the flecks are pointing
mostly up. The flecks” specular power and their contribution are reduced by
distance, to give it a grainier appearance up close and a more uniform
appearance from afar. Next, the view vector is reflected off a wavy normal
map —which represents the object’s natural undulations—to index into the
environment map. The shininess of the clear coat itself is calculated by
scaling the Fresnel term by the luminance of the environment map. (The
luminance transfer function selects only the perceptually bright areas of the
environment map in order not to reflect the darker areas of the scene.)
Finally, the shader lerps between the diffuse paint color and the reflection
based on the Fresnel term, and adds the specular highlights.

Fig. 12. Example of Car Paint 9

808-00504-0000-006 183
NVIDIA

Cg Language Toolkit

Vertex Shader Source Code for Car Paint 9

184

// This shader is based on the Time Machine temporal rust

// shader.

Car paint data was measured by Cornell

// University from samples provided by Ford Motor Company.

struct a2v {

float4
float3
float2
float3
float3
float3

}:

OPosition
ONormal
uv
Tangent
Binormal
Normal

struct VS_OUTPUT {

float4
float2
float3
float4
float3
float4
float3
float3
float3
float

B

HPosition
uv

light
halfangle
reflection
view
tangent
binormal
normal
fresn

POSITION;
NORMAL ;
TEXCOORDO;
TEXCOORD1 ;
TEXCOORD2 ;
TEXCOORDS3;

POSITION;
TEXCOORDO;
TEXCOORD1 ;
TEXCOORD2;
TEXCOORDS3;
TEXCOORD4 ;
TEXCOORDS5;
TEXCOORDG6 ;
TEXCOORD7 ;
COLORO;

VS _OUTPUT main(a2v vert,
// TRANSFORMATIONS
uniform Float4x4 ModelView,

uniform float4x4 ModelViewlT,

//
//
//
//
//
//
//
//
//

coord position in window
wavy/fleckmap coords
light pos (tangent space)
Blinn halfangle

Refl vector (per-vertex)
view (tangent space)
view-tangent matrix

uniform float4x4 ModelViewProj,

uniform Float3
uniform float3

VS_OUTPUT O;

LightVector,

// Obj space

EyePosition) // Obj space

// Generate homogeneous POSITION
O.HPosition = mul(ModelViewProj, vert.OPosition);

// Generate BASIS matrix
float3x3 ModelTangent = { normalize(vert.Tangent),
normalize(vert._Binormal),
normalize(vert_Normal) };

NVIDIA

808-00504-0000-006

Advanced Profile Sample Shaders

// FRESNEL
float4 Fresnel

{ OFFSET, SCALE, POWER, UNUSED };
{ 0.1F, 4.2F, 4.4F, 0.0F };

float3x3 ViewTangent = mul(ModelTangent,

(fFloat3x3)ModelViewlT);

// Generate VIEW SPACE vectors
float3 viewN = normalize(mul ((float3x3)ModelView,
vert_ONormal));
float4 viewP = mul(ModelView, vert.OPosition);
viewP.w = l-saturate(sqrt(dot(viewP.xyz,
viewP.xyz))*0.01);
float3 viewV = -viewP.xyz;

// Generate OBJECT SPACE vectors

float3 objV = normalize(EyePosition-vert.OPosition.xyz);
float3 objL = normalize(LightVector);

float3 objH = normalize(objL + objV);

// Generate TANGENT SPACE vectors

float3 tanL = mul(ModelTangent, objL);
float3 tanV = mul(ModelTangent, objV);
float3 tanH = mul(ModelTangent, objH);

// Generate REFLECTION vector for per-vertex
// reflection look-up
float3 reflection = reflect(-viewV, viewN);

// Generate FRESNEL term

float ndv = saturate(dot(viewN, viewV));

float FresnelApprox = (pow((1l-ndv),Fresnel_z)*Fresnel.y +
Fresnel .x);

// Fill OUTPUT parameters
O0.uv.xy = vert.uv; // TEXCOORDO.xy
O0.light = tanL; // Tangent space LIGHT
// Tangent space HALF-ANGLE
O.halfangle = float4(tanH.x, tanH.y,

tanH.z, l-exp(-viewP.w));

O.reflection = reflection; // View space REFLECTION
// Tangent space VIEW + distance attenuation
O.view = float4(tanV.x, tanV.y,

tanV.z, viewP.w);

808-00504-0000-006 185
NVIDIA

Cg Language Toolkit

// VIEWTANGENT

0.tangent = normalize(ViewTangent[0]); // column O
O.binormal = normalize(ViewTangent[1]); 7/ column 1
O.normal = normalize(ViewTangent[2]); // column 2
0.fresn = FresnelApprox;

return O;

}

Pixel Shader Source Code for Car Paint 9

186

// This shader is based on the Time Machine temporal rust
// shader. Car paint data was measured by Cornell

// University from samples provided by Ford Motor Company -
//

struct VS_OUTPUT {
float4 HPosition : POSITION; // coord position in window
float2 uv : TEXCOORDO; // wavy/fleckmap coords
float3 light : TEXCOORD1; // light pos (tangent space)
float4 halfangle : TEXCOORD2; // Blinn halfangle
float3 reflection: TEXCOORD3; // Refl vector (per-vertex)

floatd view : TEXCOORD4; // view (tangent space)
float3 tangent : TEXCOORD5; // view-tangent matrix
float3 binormal : TEXCOORD6; // ...

float3 normal : TEXCOORD7; // ...

float fresn : COLORO;

}:

// PIXEL SHADER
float4 main(VS_OUTPUT vert,

uniform sampler2D WavyMap : register(s0),
uniform samplerCUBE EnvironmentMap : register(sl),
uniform sampler2D PaintMap : register(s2),
uniform sampler2D FleckMap > register(s3),

uniform float Ambient) : COLOR

// NEWPAINTSPEC { UNUSED, SPEC POWER, GLOSSINESS,
// FLECK SPEC POWER }

float4 NewPaintSpec { 0.0F, 64.0f, 3.8F, 8.0F };
float3 ClearCoat { 0.299f,0.587f, 0.114f };

float3 FleckColor { 0.9, 1.05, 1.0 };

float3 WavyScale { 0.2, -0.2, 1.0 };

808-00504-0000-006
NVIDIA

Advanced Profile Sample Shaders

// Tangent space LIGHT vector
float3 L = normalize(vert._light);

// Tangent space HALF-ANGLE vector
float3 H = normalize(vert.halfangle.xyz);

// Tangent space VIEW vector
float3 V = normalize(vert.view.xyz);
float v_dist = vert.view.w;

// Tangent space WAVY_NORMAL
float3 wavyN = (float3)tex2D(WavyMap, vert.uv)*2-1;
wavyN = normalize(wavyN*WavyScale);

// PAINT

// A normal map map could be loaded here instead if

// we wanted more detail. In this case we have a

// uniform tangent space normal (0,0,1)

float n_d_ I = L.z;

float n.d h = H.z;

float3 paint_color = (float3)tex2D(PaintMap,
float2(n_d_I, n_d _h));

// SPECULAR POWER - use a saturated diffuse term
// to clamp the backlighting
n_d_h = saturate(n_d_I1*4)*pow(n_d_h, NewPaintSpec.y);

// REFLECTION ENVIRONMENT

// Reflect view vector about wavy normal and bring

// to view space

float3 R = reflect(-V, wavyN);

R = R.x*vert.tangent + R.y*vert.binormal +
R.z*vert.normal ;

float3 reflect_color

(float3)texCUBE(EnvironmentMap, R);

// FLECKS

// Load random 3-vector flecks from fleck map

// Reduce tiling artifacts by sampling at

// different frequencies

float3 fleckN = (Float3)tex2D(FleckMap, vert.uv*37)*2-1;

fleckN = ((float3)tex2D(FleckMap, vert.uv*23)*2-1)/2 +
fleckN/2;

float fleck n_d_h

float3 fleck color

saturate(dot(fleckN, H));
FleckColor * pow(fleck_n_d_h,

808-00504-0000-006 187
NVIDIA

Cg Language Toolkit

lerp(NewPaintSpec.y, NewPaintSpec.w, v_dist));
// Control the ambient fleckiness and also
// attenuate with distance
fleck_color = fleck_color*Ambient*vert._halfangle.w;

// DIFFUSE

float k_d = saturate(n_d_I1*1.2);

float3 paintResult = lerp(Ambient*paint_color,
paint_color, k_d);

// FRESNEL
float Fresnel = saturate(dot(ClearCoat, reflect_color));
Fresnel = pow(Fresnel, NewPaintSpec.z);

// This helps make the clear coat less omnipresent --
// only the really (perceptually) bright areas reflect
// the most.

Fresnel = saturate(vert.fresn*Fresnel);

// Show more of the specular reflection environment

// when in fresnel zones

// diffuse * (1-fresnel) + environment * (fresnel)
paintResult = lerp(paintResult, reflect_color, Fresnel);

// SPECULAR
// diffuse + specular + flecks
paintResult = paintResult + n_d h + fleck color;

// OUTPUT
return paintResult.xyzz;

188 808-00504-0000-006
NVIDIA

47

7.

w

o

——— ™

—

- — _—

n.'// =

Basic Profile Sample Shaders

This chapter provides a set of basic profile sample shaders written in Cg.
Each shader comes with an accompanying snapshot, description, and source

code.

Examples shown are:

Anisotropic Lighting

0 00O OO0 00D o0

808-00504-0000-006

Grass

Bump Dot3x2 Diffuse and Specular
Bump-Reflection Mapping

Fresnel

Refraction

Shadow Mapping

Shadow Volume Extrusion
Sine Wave Demo

Matrix Palette Skinning

189
NVIDIA

Cg Language Toolkit

Anisotropic Lighting

Description

The anisotropic lighting effect (Fig. 13.) shows the vertex program’s half-
angle vector calculation. It uses HdotN and LdotN per-vertex to look up into a
2D texture to achieve interesting lighting effects.

Fig. 13. Example of Anisotropic Lighting

190 808-00504-0000-006
NVIDIA

Basic Profile Sample Shaders

Vertex Shader Source Code for Anisotropic Lighting

struct appdata {
float3 Position : POSITION;
float3 Normal : NORMAL;

I

struct vpconn {
float4 Hposition : POSITION;
float4 TexCoordO : TEXCOORDO;

}:

vpconn main(appdata IN,
uniform float4x4 WorldViewProj,
uniform float3x3 WorldIT,
uniform float3x4 World,
uniform float3 LightVec,
uniform float3 EyePos)

{
vpconn OUT;
float3 worldNormal = normalize(mul(WorldIT, IN_Normal));
//build float4
float4 tempPos;
tempPos.xyz = IN_Position.xyz;
tempPos.w = 1.0;
//compute world space position
float3 worldSpacePos = mul(World, tempPos);
//vector from vertex to eye, normalized
float3 vertToEye = normalize(EyePos - worldSpacePos);
//h = normalize(l + e)
float3 halfAngle = normalize(vertToEye + LightVec);
OUT.TexCoord0.x = max(dot(LightVec,worldNormal),0.0);
OUT.TexCoord0.y = max(dot(halfAngle,worldNormal),0.0);
// transform into homogeneous-clip space
OUT .Hposition = mul(WorldViewProj, tempPos);
return OUT;
}

808-00504-0000-006
NVIDIA

191

Cg Language Toolkit

Bump Dot3x2 Diffuse and Specular

Description

The bump dot3x2 diffuse and specular effect mixes bump mapping with
diffuse and specular lighting based on the texm3x2tex DirectX 8 pixel
shader instruction (DOT_PRODUCT_TEXTURE_2D in OpenGL). This
instruction computes the dot product of the normal and the light vector,
corresponding to the diffuse light component, and the dot product of the
normal and the half angle vector, corresponding to the specular light
component. This results into two scalar values that are used as texture
coordinates to look up a 2D illumination texture containing the diffuse color
and the specular term in its alpha component. Since the normal fetched from
the normal map is in tangent space, both the light vector and the half angle
vector are transformed to this space by the vertex shader (Fig. 14.).

Fig. 14. Example of Bump Dot3x2 Diffuse and Specular

192 808-00504-0000-006
NVIDIA

Vertex Shader Source Code for Bump Dot3x2

struct a2v {

Basic Profile Sample Shaders

float4 Position : POSITION; //in object space

float3 Normal : NORMAL; //in object space

float2 TexCoord : TEXCOORDO;

float3 T : TEXCOORD1l; //in object space
float3 B : TEXCOORD2; //in object space
float3 N TEXCOORD3; //in object space

B

struct v2f {

float4 Position : POSITION; //in projection space
float4 Normal : COLORO; //in tangent space

float4 LightVectorUnsigned : COLOR1;
float3 TexCoordO : TEXCOORDO;

float3 TexCoordl : TEXCOORD1;

float4 LightVector : TEXCOORD2;
float4 HalfAngleVector : TEXCOORDS3;

}:

v2f main(a2v IN,
uniform float4x4 WorldViewProj,

//in tangent space

//in tangent space
//in tangent space

uniform float4 LightVector, //in object space
uniform float4 EyePosition //in object space

)

v2f OUT;

{

// pass texture coordinates for
// fetching the diffuse map
OUT.TexCoordO.xy = IN.TexCoord.xy;

// pass texture coordinates for
// fetching the normal map
OUT.TexCoordl.xy = IN.TexCoord.xy;

// compute the 3x3 transform from
// tangent space to object space
Tfloat3x3 objToTangentSpace;
objToTangentSpace[0] = IN.T;
objToTangentSpace[1] IN.B;
objToTangentSpace[2] = IN.N;

// transform normal from

808-00504-0000-006
NVIDIA

193

Cg Language Toolkit

// object space to tangent space
OUT-Normal .xyz = 0.5 * mul(objToTangentSpace, IN.Normal) +
0.5;

// transform light vector from
// object space to tangent space
float3 lightVectorInTangentSpace =
mul (objToTangentSpace, LightVector.xyz);
OUT.LightVector.xyz = lightVectorlInTangentSpace;
OUT.LightVectorUnsigned.xyz = 0.5 *
lightVectoriInTangentSpace + 0.5;

// compute view vector
float3 viewVector =
normal ize(EyePosition.xyz - IN.Position.xyz);

// compute half angle vector
float3 halfAngleVector =
normalize(LightVector.xyz + viewVector);

// transform half-angle vector from
// object space to tangent space
OUT.HalfAngleVector.xyz =

mul (objToTangentSpace, halfAngleVector);

// transform position to projection space
OUT.Position = mul(WorldViewProj, IN.Position);

return OUT;
s

Pixel Shader Source Code for Bump Dot3x2

struct v2f {
float4 Position - POSITION; //in projection space
float4 Normal : COLORO; //in tangent space
float4 LightVectorUnsigned : COLOR1; //in tangent space
float3 TexCoordO : TEXCOORDO;
float3 TexCoordl : TEXCOORD1;
float4 LightVector : TEXCOORD2; //in tangent space
float4 HalfAngleVector : TEXCOORD3; //in tangent space

};
float4 main(v2f IN,

uniform sampler2D DiffuseMap,

194 808-00504-0000-006
NVIDIA

Basic Profile Sample Shaders

uniform sampler2D NormalMap,
uniform sampler2D IlluminationMap,
uniform float Ambient) : COLOR

// fetch base color
float4 color = tex2D(DiffuseMap, IN.TexCoordO.xy);

// fetch bump normal and expand it to [-1,1]
float4 bumpNormal = 2 *
(tex2D(NormalMap, IN.TexCoordl.xy) - 0.5);

// compute the dot product between

// the bump normal and the light vector,

// compute the dot product between

// the bump normal and the half angle vector,
// fetch the illumination map using

// the result of the two previous dot products
// as texture coordinates

// returns the diffuse color in the
// color components and the specular color in the
// alpha component

float2 illumCoord =
float2(dot(IN.LightVector.xyz, bumpNormal .xyz),
dot(IN_HalfAngleVector.xyz, bumpNormal .xyz));
float4d illumination = tex2D(llluminationMap, §llumCoord);

// expand iterated normal to [-1,1]
float4 normal = 2 * (IN.Normal - 0.5);

// compute self-shadowing term
float shadow = saturate(4 * dot(normal .xyz,
IN.LightVectorUnsigned.xyz));

// compute final color
return (Ambient * color + shadow)
* (illumination * color + illumination._wwww);

808-00504-0000-006 195
NVIDIA

Cg Language Toolkit

Bump-Reflection Mapping

Description

This effect mixes bump mapping and reflection mapping based on the
texm3x3vspec DirectX 8 pixel shader instruction
(DOT_PRODUCT_REFLECT_CUBE_MAP in OpenGL). This instruction
computes three dot products to transform the normal fetched from the
normal map into the environment cube space, reflects the transformed
normal with respect to the eye vector and fetches a cube map to get the final
color. The vertex shader is responsible for computing the transform matrix
and the eye vector (Fig. 15.).

Fig. 15. Example of Bump-Reflection Mapping

196 808-00504-0000-006
NVIDIA

Basic Profile Sample Shaders

Vertex Shader Source Code for Bump-Reflection Mapping

struct a2v {
float4 Position : POSITION; // in object space
float2 TexCoord : TEXCOORDO;

float3 T : TEXCOORD1; // in object space
float3 B : TEXCOORD2; // in object space
float3 N : TEXCOORDS3; // 1n object space

B

struct v2f {
float4 Position : POSITION; // in projection space
float4 TexCoord : TEXCOORDO;

// Tirst row of the 3x3 transform
// from tangent to cube space
float4 TangentToCubeSpaceO : TEXCOORD1;

// second row of the 3x3 transform
// from tangent to cube space
float4 TangentToCubeSpacel : TEXCOORD2;

// third row of the 3x3 transform
// from tangent to cube space
float4 TangentToCubeSpace2 : TEXCOORD3;

}:

v2f main(a2v IN,
uniform float4x4 WorldViewProj,
uniform float3x4 ObjToCubeSpace,
uniform float3 EyePosition, // in cube space
uniform float BumpScale)

{
v2f OUT;

// pass texture coordinates for
// fetching the normal map
OUT.TexCoord.xy = IN.TexCoord.xy;

// compute 3x3 transform from tangent to object space
float3x3 objToTangentSpace;

// first rows are the tangent and binormal
// scaled by the bump scale
objToTangentSpace[0] = BumpScale * IN.T;

808-00504-0000-006 197
NVIDIA

Cg Language Toolkit

objToTangentSpace[1] = BumpScale * IN.B;
objToTangentSpace[2] = IN_N;

// compute the 3x3 transform from

// tangent space to cube space:

// TangentToCubeSpace

// = object2cube * tangent2object

// = object2cube * transpose(objToTangentSpace)
// (since the inverse of a rotation is its transpose)
//

// So a row of TangentToCubeSpace is the transform by
// objToTangentSpace of the corresponding row of
// ObjToCubeSpace

OUT.TangentToCubeSpace0.xyz =

mul (objToTangentSpace, ObjToCubeSpace[0]-xyz);
OUT.TangentToCubeSpacel.xyz =

mul (objToTangentSpace, ObjToCubeSpace[1l]-xyz);
OUT.TangentToCubeSpace2.xyz =

mul (objToTangentSpace, ObjToCubeSpace[2]-xyz);

// compute the eye vector

// (going from eye to shaded point) iIn cube space

float3 eyeVector = mul(ObjToCubeSpace, IN.Position) -
EyePosition;

OUT.TangentToCubeSpaceO.w = eyeVector.x;
OUT.TangentToCubeSpacel.w = eyeVector.y;
OUT.TangentToCubeSpace2.w = eyeVector.z;

// transform position to projection space
OUT.Position = mul(WorldViewProj, IN.Position);

return OUT;

198 808-00504-0000-006
NVIDIA

Basic Profile Sample Shaders

Pixel Shader Source Code for Bump and Reflection Mapping

struct v2f {

}

float4 Position - POSITION; //in projection space
float4 TexCoord : TEXCOORDO;

// first row of the 3x3 transform
// from tangent to cube space
float4 TangentToCubeSpaceO : TEXCOORD1;

// second row of the 3x3 transform
// from tangent to cube space
float4 TangentToCubeSpacel : TEXCOORD2;

// third row of the 3x3 transform
// from tangent to cube space
float4 TangentToCubeSpace2 : TEXCOORD3;

float4 main(v2f IN,

uniform sampler2D NormalMap,
uniform samplerCUBE EnvironmentMap,
uniform float3 EyeVector) : COLOR

// fetch the bump normal from the normal map
float4 normal = tex2D(NormalMap, IN.TexCoord.xy);

// transform the bump normal into cube space

// then use the transformed normal and eye vector

// to compute the reflection vector that is

// used to fetch the cube map

return texCUBE_reflect_eye dp3x3(EnvironmentMap,
IN.TangentToCubeSpace2.xyz,
IN.TangentToCubeSpaceO,
IN.TangentToCubeSpacel,
normal,
EyeVector) ;

808-00504-0000-006 199

NVIDIA

Cg Language Toolkit

Fresnel

Description

This effect computes a reflection vector to lookup into an environment map
for reflections, and modulates this by a Fresnel term. The result is reflections

only at grazing angles (Fig. 16.).

Fig. 16. Example of Fresnel

Vertex Shader Source Code for Fresnel

struct app2vert

{
float4 Position : POSITION;
float4 Normal - NORMAL;
float4 TexCoordO : TEXCOORDO;
};

200 808-00504-0000-006
NVIDIA

Basic Profile Sample Shaders

struct vert2frag

{

float4 HPosition - POSITION;
float4 ColorO : COLORO;
float4 TexCoordO : TEXCOORDO;

I

vert2frag main(app2vert IN,
