
Appendix A
Cg Language Specification

Language Overview
The Cg language is primarily modeled on ANSI C, but adopts some ideas from
modern languages such as C++ and Java, and from earlier shading languages
such as RenderMan and the Stanford shading language. The language also
introduces a few new ideas. In particular, it includes features designed to
represent data flow in stream-processing architectures such as GPUs. Profiles,
which are specified at compile time, may subset certain features of the language,
including the ability to implement loops and the precision at which certain
computations are performed.

Silent Incompatibilities
Most of the changes from ANSI C are either omissions or additions, but there
are a few potentially silent incompatibilities. These are changes within Cg that could
cause a program that compiles without errors to behave in a manner different
from C:
! The type promotion rules for constants are different when the constant is

not explicitly typed using a type cast or type suffix. In general, a binary
operation between a constant that is not explicitly typed and a variable is
performed at the variable’s precision, rather than at the constant’s default
precision.

! Declarations of struct perform an automatic typedef (as in C++) and
thus could override a previously declared type.

! Arrays are first-class types that are distinct from pointers. As a result, array
assignments semantically perform a copy operation for the entire array.

Similar Operations That Must be Expressed Differently
There are several changes that force the same operation to be expressed
differently in Cg than in C:
! A Boolean type, bool, is introduced, with corresponding implications for

operators and control constructs.
808-00504-0000-003 165
NVIDIA

Cg Language Toolkit
! Arrays are first-class types because Cg does not support pointers.
! Functions pass values by value/result, and thus use an out or inout

modifier in the formal parameter list to return a parameter. By default,
formal parameters are in, but it is acceptable to specify this explicitly.
Parameters can also be specified as in out, which is semantically the same
as inout.

Differences from ANSI C
Cg was developed based on the ANSI-C language with the following major
additions, deletions, and changes. (This is a summary—more detail is provided
later in this document):
! Language profiles (described in “Profiles” on page 168) may subset

language capabilities in a variety of ways. In particular, language profiles
may restrict the use of for and while loops. For example, some profiles
may only support loops that can be fully unrolled at compile time.

! A binding semantic may be associated with a structure tag, a variable, or a
structure element to denote that object’s mapping to a specific hardware or
API resource. See “Binding Semantics” on page 183.

! Reserved keywords goto, break, and continue are not supported.
! Reserved keywords switch, case, and default are not supported.

Labels are not supported either.
! Pointers and pointer-related capabilities (such as the & and -> operators) are

not supported.
! Arrays are supported, but with some limitations on size and dimensionality.

Restrictions on the use of computed subscripts are also permitted. Arrays
may be designated as packed. The operations allowed on packed arrays
may be different from those allowed on unpacked arrays. Predefined
packed types are provided for vectors and matrices. It is strongly
recommended these predefined types be used.

! There is a built-in swizzle operator: .xyzw or .rgba for vectors. This
operator allows the components of a vector to be rearranged and also
replicated. It also allows the creation of a vector from a scalar.

! For an lvalue, the swizzle operator allows components of a vector or matrix
to be selectively written.

! There is a similar built-in swizzle operator for matrices:

This operator allows access to individual matrix components and allows the
creation of a vector from elements of a matrix. For compatibility with

._m<row><col>[_m<row><col>][…]
166 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
DirectX 8 notation, there is a second form of matrix swizzle, which is
described later.

! Numeric data types are different. Cg's primary numeric data types are
float, half, and fixed. Fragment profiles are required to support all
three data types, but may choose to implement half and fixed at float
precision. Vertex profiles are required to support half and float, but may
choose to implement half at float precision. Vertex profiles may omit
support for fixed operations, but must still support definition of fixed
variables. Cg allows profiles to omit run-time support for int. Cg allows
profiles to treat double as float.

! Many operators support per-element vector operations.
! The ?:, ||, &&, !, and comparison operators can be used with bool four-

vectors to perform four conditional operations simultaneously. The side
effects of all operands to the ?:, ||, and && operators are always executed.

! Non-static global variables and parameters to top-level functions—such as
main()—may be designated as uniform. A uniform variable may be read
and written within a program, just like any other variable. However, the
uniform modifier indicates that the initial value of the variable or
parameter is expected to be constant across a large number of invocations
of the program.

! A new set of sampler* types represents handles to texture objects.
! Functions may have default values for their parameters, as in C++. These

defaults are expressed using assignment syntax.
! Function overloading is supported.
! There is no enum or union.
! Bit-field declarations in structures are not allowed.
! There are no bit-field declarations in structures.
! Variables may be defined anywhere before they are used, rather than just at

the beginning of a scope as in C. (That is, we adopt the C++ rules that
govern where variable declarations are allowed.) Variables may not be
redeclared within the same scope.

! Vector constructors, such as the form float4(1,2,3,4), may be used
anywhere in an expression.

! A struct definition automatically performs a corresponding typedef, as
in C++.

! C++-style // comments are allowed in addition to C-style /*…*/
comments.
 808-00504-0000-003 167
NVIDIA

Cg Language Toolkit
Detailed Language Specification

Definitions
The following definitions are based on the ANSI C standard:
! Object

An object is a region of data storage in the execution environment, the
contents of which can represent values. When referenced, an object may be
interpreted as having a particular type.

! Declaration
A declaration specifies the interpretation and attributes of a set of
identifiers.

! Definition
A declaration that also causes storage to be reserved for an object or code
that will be generated for a function named by an identifier is a definition.

Profiles
Compilation of a Cg program, a top-level function, always occurs in the context
of a compilation profile. The profile specifies whether certain optional language
features are supported. These optional language features include certain control
constructs and standard library functions. The compilation profile also defines
the precision of the float, half, and fixed data types, and specifies whether
the fixed and sampler* data types are fully or only partially supported. The
choice of a compilation profile is made externally to the language, by using a
compiler command-line switch, for example.
The profile restrictions are only applied to the top-level function that is being
compiled and to any variables or functions that it references, either directly or
indirectly. If a function is present in the source code, but not called directly or
indirectly by the top-level function, it is free to use capabilities that are not
supported by the current profile.
The intent of these rules is to allow a single Cg source file to contain many
different top-level functions that are targeted at different profiles. The core Cg
language specification is sufficiently complete to allow all of these functions to
be parsed. The restrictions provided by a compilation profile are only needed
for code generation, and are therefore only applied to those functions for which
code is being generated. This specification uses the word program to refer to the
top-level function, any functions the top-level function calls, and any global
variables or typedef definitions it references.
168 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
Each profile must have a separate specification that describes its characteristics
and limitations.
This core Cg specification requires certain minimum capabilities for all profiles.
In some cases, the core specification distinguishes between vertex-program and
fragment-program profiles, with different minimum capabilities for each.

The Uniform Modifier
Non-static global variables and parameters passed to functions, such as main(),
can be declared with an optional qualifier uniform. To specify a uniform
variable, use this syntax:

For example,

or

If the uniform qualifier is specified for a function that is not top level, it is
meaningless and is ignored. The intent of this rule is to allow a function to serve
either as a top-level function or as one that is not.
Note that uniform variables may be read and written just like non-uniform
variables. The uniform qualifier simply provides information about how the
initial value of the variable is to be specified and stored, through a mechanism
external to the language.
Typically, the initial value of a uniform variable or parameter is stored in a
different class of hardware register. Furthermore, the external mechanism for
specifying the initial value of uniform variables or parameters may be different
than that used for specifying the initial value of non-uniform variables or
parameters. Parameters qualified as uniform are normally treated as persistent
state, while non-uniform parameters are treated as streaming data, with a new
value specified for each stream record (such as within a vertex array).

Function Declarations
Functions are declared essentially as in C. A function that does not return a
value must be declared with a void return type. A function that takes no
parameters may be declared in one of two ways:
! As in C, using the void keyword: functionName(void)
! With no parameters at all: functionName()

uniform <type> <variable>

uniform float4 myVector;

fragout foo(uniform float4 uv);
 808-00504-0000-003 169
NVIDIA

Cg Language Toolkit
Functions may be declared as static. If so, they may not be compiled as a
program and are not visible from other compilation units.

Overloading of Functions by Profile
Cg supports overloading of functions by compilation profile. This capability
allows a function to be implemented differently for different profiles. It is also
useful because different profiles may support different subsets of the language
capabilities, and because the most efficient implementation of a function may
be different for different profiles.
The profile name must immediately precede the type name in the function
declaration. For example, to define two different versions of the function
myfunc() for the profileA and profileB profiles:

If a type is defined (using a typedef) that has the same name as a profile, the
identifier is treated as a type name and is not available for profile overloading at
any subsequent point in the file.
If a function definition does not include a profile, the function is referred to as
an open-profile function. Open-profile functions apply to all profiles.
Several wildcard profile names are defined. The name vs matches any vertex
profile, while the name ps matches any fragment or pixel profile.
The names ps_1 and ps_2 match any DirectX 8 pixel shader 1.x profile or
DirectX 9 pixel shader 2.x profile, respectively. Similarly, the names vs_1 and
vs_2 match any DirectX vertex shader 1.x or 2x, respectively. Additional valid
wildcard profile names may be defined by individual profiles.
In general, the most specific version of a function is used. More details are
provided in “Function Overloading” on page 181, but roughly speaking, the
search order is the following:
1. Version of the function with the exact profile overload
2. Version of the function with the most specific wildcard profile overload

(such as vs or ps_1)
3. Version of the function with no profile overload
This search process allows generic versions of a function to be defined that can
be overridden as needed for particular hardware.

profileA float myfunc(float x) {/*...*/};
profileB float myfunc(float x) {/*...*/};
170 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
Syntax for Parameters in Function Definitions
Functions are declared in a manner similar to C, but the parameters in function
definitions may include a binding semantic (see “Binding Semantics” on
page 183) and a default value.
Each parameter in a function definition takes the following form:

where
! <type> may include the qualifiers in, out, inout, and const, as discussed

in “Type Qualifiers” on page 175.
! <default> is an expression that resolves to a constant at compile time.
Default values are only permitted for uniform parameters, and for in
parameters to functions that are not top-level.

Function Calls
A function call returns an rvalue. Therefore, if a function returns an array, the
array may be read but not written. For example, the following is allowed:

But, this is not: myfunc(x)[2] = y;.
For multiple function calls within an expression, the calls can occur in any
order— it is undefined.

Types
Cg's types are as follows:
! The int type is preferably 32-bit two’s complement. Profiles may

optionally treat int as float.
! The float type is as close as possible to the IEEE single precision (32-bit)

floating point. Profiles must support the float data type.
! The half type is lower-precision IEEE-like floating point. Profiles must

support the half type, but may choose to implement it with the same
precision as the float type.

! The fixed type is a signed type with a range of at least [-2,2) and with at
least 10 bits of fractional precision. Overflow operations on the data type
clamp rather than wrap. Fragment profiles must support the fixed type,
but may implement it with the same precision as the half or float types.
Vertex profiles are required to provide partial support (see “Partial Support
of Types” on page 173) for the fixed type. Vertex profiles have the option

[uniform] <type> identifier [: <binding_semantic>] [= <default>]

y = myfunc(x)[2];
 808-00504-0000-003 171
NVIDIA

Cg Language Toolkit
to provide full support for the fixed type or to implement the fixed type
with the same precision as the half or float types.

! The bool type represents Boolean values. Objects of bool type are either
true or false.

! The cint type is 32-bit two’s complement. This type is meaningful only at
compile time; it is not possible to declare objects of type cint.

! The cfloat type is IEEE single-precision (32-bit) floating point. This type
is meaningful only at compile time; it is not possible to declare objects of
type cfloat.

! The void type may not be used in any expression. It may only be used as
the return type of functions that do not return a value.

! The sampler* types are handles to texture objects. Formal parameters of a
program or function may be of type sampler*. No other definition of
sampler* variables is permitted. A sampler* variable may only be used by
passing it to another function as an in parameter. Assignment to sampler*
variables is not permitted, and sampler* expressions are not permitted.
The following sampler* types are always defined: sampler, sampler1D,
sampler2D, sampler3D, samplerCUBE, and samplerRECT. The base
sampler type may be used in any context in which a more specific sampler
type is valid. However, a sampler variable must be used in a consistent way
throughout the program. For example, it cannot be used in place of both a
sampler1D and a sampler2D in the same program.
Fragment profiles are required to fully support the sampler, sampler1D,
sampler2D, sampler3D, and samplerCUBE data types. Fragment profiles
are required to provide partial support (see “Partial Support of Types” on
page 173) for the samplerRECT data type and may optionally provide full
support for this data type.
 Vertex profiles are required to provide partial support for the six sampler
data types and may optionally provide full support for these data types.

! An array type is a collection of one or more elements of the same type. An
array variable has a single index.

! Some array types may be optionally designated as packed, using the packed
type modifier. The storage format of a packed type may be different from
the storage format of the corresponding unpacked type. The storage format
of packed types is implementation dependent, but must be consistent for
any particular combination of compiler and profile. The operations
supported on a packed type in a particular profile may be different than the
operations supported on the corresponding unpacked type in that same
profile. Profiles may define a maximum allowable size for packed arrays,
but must support at least size 4 for packed vector (one-dimensional array)
types, and 4x4 for packed matrix (two-dimensional array) types.
172 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
! When declaring an array of arrays in a single declaration, the packed
modifier only refers to the outermost array. However, it is possible to
declare a packed array of packed arrays by declaring the first level of array
in a typedef using the packed keyword and then declaring a packed array
of this type in a second statement. It is not possible to have a packed array
of unpacked arrays.

! For any supported numeric data type TYPE, implementations must support
the following packed array types, which are called vector types. Type
identifiers must be predefined for these types in the global scope:

For example, implementations must predefine the type identifiers float1,
float2, float3, float4, and so on for any other supported numeric type.

! For any supported numeric data type TYPE, implementations must support
the following packed array types, which are called matrix types.
Implementations must also predefine type identifiers (in the global scope)
to represent these types:

For example, implementations must predefine the type identifiers
float2x1, float3x3, float4x4, and so on. A typedef follows the usual
matrix-naming convention of TYPE_rows_X_columns. If we declare
float4x4 a, then a[3] is equivalent to a._m30_m31_m32_m33.
Both expressions extract the third row of the matrix.

! Implementations are required to support indexing of vectors and matrices
with constant indices.

! A struct type is a collection of one or more members of possibly different
types.

Partial Support of Types
This specification mandates partial support for some types. Partial support for a
type requires the following:

typedef packed TYPE TYPE1[1];
typedef packed TYPE TYPE2[2];
typedef packed TYPE TYPE3[3];
typedef packed TYPE TYPE4[4];

packed TYPE1 TYPE1x1[1]; packed TYPE1 TYPE3x1[3];
packed TYPE2 TYPE1x2[1]; packed TYPE2 TYPE3x2[3];
packed TYPE3 TYPE1x3[1]; packed TYPE3 TYPE3x3[3];
packed TYPE4 TYPE1x4[1]; packed TYPE4 TYPE3x4[3];
packed TYPE1 TYPE2x1[2]; packed TYPE1 TYPE4x1[4];
packed TYPE2 TYPE2x2[2]; packed TYPE2 TYPE4x2[4];
packed TYPE3 TYPE2x3[2]; packed TYPE3 TYPE4x3[4];
packed TYPE4 TYPE2x4[2]; packed TYPE4 TYPE4x4[4];
 808-00504-0000-003 173
NVIDIA

Cg Language Toolkit
! Definitions and declarations using the type are supported.
! Assignment and copy of objects of that type are supported (including

implicit copies when passing function parameters).
! Top-level function parameters may be defined using that type.
If a type is partially supported, variables may be defined using that type but no
useful operations can be performed on them. Partial support for types makes it
easier to share data structures in code that is targeted at different profiles.

Type Categories
! The integral type category includes types cint and int.
! The floating type category includes types cfloat, float, half, and fixed.

(Note that floating really means floating or fixed/fractional.)
! The numeric type category includes integral and floating types.
! The compile-time type category includes types cfloat and cint. These types

are used by the compiler for constant type conversions.
! The concrete type category includes all types that are not included in the

compile-time type category.
! The scalar type category includes all types in the numeric category, the bool

type, and all types in the compile-time category. In this specification, a
reference to a <category> type (such as a reference to a numeric type)
means one of the types included in the category (such as float, half, or
fixed).

Constants
A constant may be explicitly typed or implicitly typed. Explicit typing of a
constant is performed, as in C, by suffixing the constant with a single character
indicating the type of the constant:
! f for float
! d for double
! h for half
! x for fixed
Any constant that is not explicitly typed is implicitly typed. If the constant includes
a decimal point, it is implicitly typed as cfloat. If it does not include a decimal
point, it is implicitly typed as cint.
174 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
By default, constants are base 10. For compatibility with C, integer hexadecimal
constants may be specified by prefixing the constant with 0x, and integer octal
constants may be specified by prefixing the constant with 0.
Compile-time constant folding is preferably performed at the same precision
that would be used if the operation were performed at run time. Some
compilation profiles may allow some precision flexibility for the hardware; in
such cases the compiler should ideally perform the constant folding at the
highest hardware precision allowed for that data type in that profile.
If constant folding cannot be performed at run-time precision, it may optionally
be performed using the precision indicated below for each of the numeric data
types:
! float: s23e8 (fp32) IEEE single-precision floating point
! half: s10e5 (fp16) floating point with IEEE semantics
! fixed: s1.10 fixed point, clamping to [-2, 2)
! double: s52e11 (fp64) IEEE double-precision floating point
! int: signed 32-bit integer

Type Qualifiers
The type of an object may be qualified with one or more qualifiers. Qualifiers
apply only to objects. Qualifiers are removed from the value of an object when
used in an expression. The qualifiers are
! const

The value of a const qualified object cannot be changed after its initial
assignment. The definition of a const qualified object that is not a
parameter must contain an initializer. Named compile-time values are
inherently qualified as const, but an explicit qualification is also allowed.
The value of a static const cannot be changed after compilation, and
thus its value may be used in constant folding during compilation. A
uniform const, on the other hand, is only const for a given execution of
the program; its value may be changed via the runtime between executions.

! in and out
Formal parameters may be qualified as in, out, or both (by using in out or
inout). By default, formal parameters are in qualified. An in qualified
parameter is equivalent to a call-by-value parameter. An out qualified
parameter is equivalent to a call-by-result parameter, and an inout qualified
parameter is equivalent to a value/result parameter. An out qualified
parameter cannot be const qualified, nor may it have a default value.
 808-00504-0000-003 175
NVIDIA

Cg Language Toolkit
Type Conversions
Some type conversions are allowed implicitly, while others require an cast. Some
implicit conversions may cause a warning, which can be suppressed by using an
explicit cast. Explicit casts are indicated using C-style syntax: casting variable
to the float4 type can be achieved using (float4)variable.
! Scalar conversions

Implicit conversion of any scalar numeric type to any other scalar numeric
type is allowed. A warning may be issued if the conversion is implicit and a
loss of precision is possible. Implicit conversion of any scalar object type to
any compatible scalar object type is allowed. Conversions between
incompatible scalar object types or between object and numeric types are
not allowed, even with an explicit cast. A sampler is compatible with
sampler1D, sampler2D, sampler3D, samplerCube, and samplerRECT.
No other object types are compatible—sampler1D is not comparable with
sampler2D, even though both are compatible with sampler.
Scalar types may be implicitly converted to vectors and matrices of
compatible type. The scalar is replicated to all elements of the vector or
matrix. Scalar types may also be explicitly cast to structure types if the scalar
type can be legally cast to every member of the structure.

! Vector conversions
Vectors may be converted to scalar types (the first element of the vector is
selected). A warning is issued if this is done implicitly. A vector may also be
implicitly converted to another vector of the same size and compatible
element type.
A vector may be converted to a smaller comparable vector or a matrix of
the same total size, but a warning is issued if an explicit cast is not used.

! Matrix conversions
Matrices may be converted to a scalar type (element (0,0) is selected). As
with vectors, this causes a warning if it is done implicitly. A matrix may also
be converted implicitly to a matrix of the same size and shape and
comparable element type.
A matrix may be converted to a smaller matrix type (the upper right sub-
matrix is selected) or to a vector of the same total size, but a warning is
issued if an explicit cast is not used.

! Structure conversions
A structure may be explicitly cast to the type of its first member or to
another structure type with the same number of members, if each member
of the struct can be converted to the corresponding member of the new
struct. No implicit conversions of struct types are allowed.
176 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
! Array conversions
 No conversions of array types are allowed.

Table 6 summarizes the type conversions discussed here. The table entries have
the following meanings, but please pay attention to the footnotes:
! Allowed: allowed implicitly or explicitly
! Warning: allowed, but warning issued if implicit
! Explicit: only allowed with explicit cast
! No: not allowed

Explicit casts are
! Compile-time type when applied to expressions of compile-time type
! Numeric type when applied to expressions of numeric or compile-time type
! Numeric vector type when applied to another vector type of the same number

of elements
! Numeric matrix type when applied to another matrix type of the same

number of rows and columns

Table 6 Type Conversions

Target Type

Source Type

Scalar Vector Matrix Struct Array

Scalar Allowed Warning Warning Explicit i

i. Only allowed if the first member of the source can be converted to the target.

No

Vector Allowed Allowed ii

ii. Not allowed if target is larger than source. Warning issued if target is smaller than source.

Warning iii Explicit i No

Matrix Allowed Warning iii

iii. Only allowed if source and target are the same total size.

Allowed ii Explicit i No

Struct Explicit No No Explicit iv

iv. Only allowed if both source and target have the same number of members, and each member of the
source can be converted to the corresponding member of the target.

No

Array No No No No No
 808-00504-0000-003 177
NVIDIA

Cg Language Toolkit
Type Equivalency
Type T1 is equivalent to type T2 if any of the following are true:
! T2 is equivalent to T1.
! T1 and T2 are the same scalar, vector, or structure type.

A packed array type is not equivalent to the same size unpacked array.
! T1 is a typedef name of T2.
! T1 and T2 are arrays of equivalent types with the same number of elements.
! The unqualified types of T1 and T2 are equivalent, and both types have the

same qualifications.
! T1 and T2 are functions with equivalent return types, the same number of

parameters, and all corresponding parameters are pair-wise equivalent.

Type-Promotion Rules
The cfloat and cint types behave like float and int types except for the
usual arithmetic conversion behavior and function-overloading rules (see
“Function Overloading” on page 181).
The usual arithmetic conversions for binary operators are defined as follows:
1. If either operand is double, the other is converted to double.
2. Otherwise, if either operand is float, the other operand is converted to

float.
3. Otherwise, if either operand is half, the other operand is converted to

half.
4. Otherwise, if either operand is fixed, the other operand is converted to

fixed.
5. Otherwise, if either operand is cfloat, the other operand is converted to

cfloat.
6. Otherwise, if either operand is int, the other operand is converted to int.
7. Otherwise, both operands have type cint.
Note that conversions happen prior to performing the operation.

Assignment

Assignment of an expression to an object or compile-time typed value converts
the expression to the type of the object or value. The resulting value is then
assigned to the object or value.
178 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
The value of the assignment expressions (=, *=, and so on) is defined as in C:
An assignment expression has the value of the left operand after the assignment
but is not an lvalue. The type of an assignment expression is the type of the left
operand unless the left operand has a qualified type, in which case it is the
unqualified version of the type of the left operand. The side effect of updating
the stored value of the left operand occurs between the previous and the next
sequence point.

Smearing of Scalars to Vectors

If a binary operator is applied to a vector and a scalar, the scalar is automatically
type-promoted to a same-sized vector by replicating the scalar into each
component. The ternary ?: operator also supports smearing. The binary rule is
applied to the second and third operands first, and then the binary rule is
applied to this result and the first operand.

Namespaces
Just as in C, there are two namespaces. Each has multiple scopes, as in C.
! Tag namespace, which consists of struct tags
! Regular namespace:

" typedef names (including an automatic typedef from a struct
declaration)

" Variables
" Function names

Arrays and Subscripting
Arrays are declared as in C, except that they may optionally be declared to be
packed, as described under “Types” on page 171. Arrays in Cg are first-class
types, so array parameters to functions and programs must be declared using
array syntax, rather than pointer syntax. Likewise, assignment of an array-
typed object implies an array copy rather than a pointer copy.
Arrays with size [1] may be declared but are considered a different type from
the corresponding non-array type.
Because the language does not currently support pointers, the storage order of
arrays is only visible when an application passes parameters to a vertex or
fragment program. Therefore, the compiler is currently free to allocate
temporary variables as it sees fit.
 808-00504-0000-003 179
NVIDIA

Cg Language Toolkit
The declaration and use of arrays of arrays is in the same style as in C. That is, if
the 2D array A is declared as

then, the following statements are true:
! The array is indexed as A[row][column].
! The array can be built with a constructor using

! A[0] is equivalent to {A[0][0], A[0][1], A[0][2], A[0][3]}.
Support must be provided for any struct containing arrays.

Minimum Array Requirements

Profiles are required to provide partial support for certain kinds of arrays. This
partial support is designed to support vectors and matrices in all profiles. For
vertex profiles, it is additionally designed to support arrays of light state
(indexed by light number) passed as uniform parameters, and arrays of skinning
matrices passed as uniform parameters.
Profiles must support subscripting, copying, and swizzling of vectors and
matrices. However, subscripting with run-time computed indices is not required
to be supported.
Vertex profiles must support the following operations for any non-packed array
that is a uniform parameter to the program, or is an element of a structure that
is a uniform parameter to the program. This requirement also applies when the
array is indirectly a uniform program parameter (that is, it and or the structure
containing it has been passed via a chain of in function parameters). The two
operations that must be supported are
! Rvalue subscripting by a run-time computed value or a compile-time value
! Passing the entire array as a parameter to a function, where the

corresponding formal function parameter is declared as in
The following operations are explicitly not required to be supported:
! Lvalue subscripting
! Copying
! Other operators, including multiply, add, compare, and so on

float A[4][4];

A = { {A[0][0], A[0][1], A[0][2], A[0][3]},
 {A[1][0], A[1][1], A[1][2], A[1][3]},
 {A[2][0], A[2][1], A[2][2], A[2][3]},
 {A[3][0], A[3][1], A[3][2], A[3][3]} };
180 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
Note that when the array is rvalue subscripted, the result is an expression, and
this expression is no longer considered to be a uniform program parameter.
Therefore, if this expression is an array, its subsequent use must conform to the
standard rules for array usage.
These rules are not limited to arrays of numeric types, and thus imply support
for arrays of struct, arrays of matrices, and arrays of vectors when the array is
a uniform program parameter. Maximum array sizes may be limited by the
number of available registers or other resource limits, and compilers are
permitted to issue error messages in these cases. However, profiles must
support sizes of at least float arr[8], float4 arr[8], and float4x4
arr[4][4].
Fragment profiles are not required to support any operations on arbitrarily sized
arrays; only support for vectors and matrices is required.

Function Overloading
Multiple functions may be defined with the same name, as long as the
definitions can be distinguished by unqualified parameter types and do not have
an open-profile conflict (see “Overloading of Functions by Profile” on
page 170).
Function-matching rules:
1. Add all visible functions with a matching name in the calling scope to the

set of function candidates.
2. Eliminate functions whose profile conflicts with the current compilation

profile.
3. Eliminate functions with the wrong number of formal parameters. If a

candidate function has excess formal parameters, and each of the excess
parameters has a default value, do not eliminate the function.

4. If the set is empty, fail.
5. For each actual parameter expression in sequence, perform the following:

a. If the type of the actual parameter matches the unqualified type of the
corresponding formal parameter in any function in the set, remove all
functions whose corresponding parameter does not match exactly.

b. If there is a defined promotion for the type of the actual parameter to
the unqualified type of the formal parameter of any function, remove
all functions for which this is not true from the set.

c. If there is a valid implicit cast that converts the type of the actual
parameter to the unqualified type of the formal parameter of any
function, remove all functions without this cast.
 808-00504-0000-003 181
NVIDIA

Cg Language Toolkit
d. Fail.
6. Choose a function based on profile:

a. If there is at least one function with a profile that exactly matches the
compilation profile, discard all functions that don't exactly match.

b. Otherwise, if there is at least one function with a wildcard profile that
matches the compilation profile, determine the “most specific”
matching wildcard profile in the candidate set. Discard all functions
except those with this most specific wildcard profile. How “specific” a
given wildcard profile name is relative to a particular profile is
determined by the profile specification.

7. If the number of functions remaining in the set is not one, then fail.

Global Variables
Global variables are declared and used as in C. Uniform non-static variables
may have a semantic associated with them. Uniform non-static variables may
have their value set through the run-time API.

Use of Uninitialized Variables
It is incorrect for a program to use an uninitialized variable. However, the
compiler is not obligated to detect such errors, even if it would be possible to
do so by compile-time data-flow analysis. The value obtained from reading an
uninitialized variable is undefined. This same rule applies to the implicit use of a
variable that occurs when it is returned by a top-level function. In particular, if a
top-level function returns a struct, and some element of that struct is never
written, then the value of that element is undefined.

Note: Variables are not defined as being initialized to zero because this would result in a
performance penalty in cases where the compiler is unable to determine if a
variable is properly initialized by the programmer.

Preprocessor
Cg profiles must support the full ANSI C standard preprocessor capabilities:
#if, #define, and so on. However, Cg profiles are not required to support
macro-like #define or the use of #include directives.
182 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
Overview of Binding Semantics
In stream-processing architectures, data packets flow between different
programmable units. On a GPU, for example, packets of vertex data flow from
the application to the vertex program.
Because packets are produced by one program (the application, in this case),
and consumed by another (the vertex program), there must be some method
for defining the interface between the two. Cg allows the user to choose
between two different approaches to defining these interfaces.
The first approach is to associate a binding semantic with each element of the
packet. This approach is a bind-by-name approach. For example, an output with
the binding semantic FOO is fed to an input with the binding semantic FOO.
Profiles may allow the user to define arbitrary identifiers in this “semantic
namespace,” or they may restrict the allowed identifiers to a predefined set.
Often, these predefined names correspond to the names of hardware registers
or API resources.
In some cases, predefined names may control non-programmable parts of the
hardware. For example, vertex programs normally compute a position that is
fed to the rasterizer, and this position is stored in an output with the binding
semantic POSITION.
For any profile, there are two namespaces for predefined binding semantics—
the namespace used for in variables and the namespace used for out variables.
The primary implication of having two namespaces is that the binding semantic
cannot be used to implicitly specify whether a variable is in or out.
The second approach to defining data packets is to describe the data that is
present in a packet and allow the compiler decide how to store it. In Cg, the
user can describe the contents of a data packet by placing all of its contents into
a struct. When a struct is used in this manner, we refer to it as a connector.
The two approaches are not mutually exclusive, as is discussed later. The
connector approach allows the user to rely on a combination of user-specified
semantic bindings and compiler-determined bindings.

Binding Semantics
A binding semantic may be associated with an input to a top-level function in
one of three ways:
! The binding semantic is specified in the formal parameter declaration for

the function. The syntax for formal parameters to a function is
[const] [in | out | inout]
<type> <identifier> [: <binding-semantic>][= <initializer>]
 808-00504-0000-003 183
NVIDIA

Cg Language Toolkit
! If the formal parameter is a struct, the binding semantic may be specified
with an element of the struct when the struct is defined:

! If the input to the function is implicit (a non-static global variable that is
read by the function), the binding semantic may be specified when the non-
static global variable is declared:

If the non-static global variable is a struct, the binding semantic may be
specified when the struct is defined, as described in the second bullet
above.

! A binding semantic may be associated with the output of a top-level
function in a similar manner:

Another method available for specifying a semantic for an output value is
to return a struct and to specify the binding semantic(s) with elements of
the struct when the struct is defined. In addition, if the output is a
formal parameter, the binding semantic may be specified using the same
approach used to specify binding semantics for inputs.

Aliasing of Semantics
Semantics must honor a copy-on-input and copy-on-output model. Thus, if the
same input binding semantic is used for two different variables, those variables
are initialized with the same value, but the variables are not aliased thereafter.
Output aliasing is illegal, but implementations are not required to detect it. If
the compiler does not issue an error on a program that aliases output binding
semantics, the results are undefined.

Restrictions on Semantics Within a Structure
For a particular profile, it is illegal to mix input binding semantics and output
binding semantics within a particular struct. That is, for a particular top-level
function, a struct must be either input-only or output-only. Likewise, a
struct must consist exclusively of uniform inputs or exclusively of non-
uniform inputs. It is illegal to use binding semantics to mix the two within a
single struct.

struct <struct-tag> {
<type> <identifier>[: <binding-semantic>];
/*...*/ };

<type> <identifier>[: <binding-semantic>][= <initializer>]

<type> <identifier> (<parameter-list>)[: <binding-semantic>]
{ <body> }
184 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
Additional Details for Binding Semantics
The following rules are somewhat redundant, but provide extra clarity:
! Semantics names are case-insensitive.
! Semantics attached to parameters to non-main functions are ignored.
! Input semantics may be aliased by multiple variables.
! Output semantics may not be aliased.

Using a Structure to Define Binding Semantics (Connectors)
Cg profiles may optionally allow the user to avoid the requirement that a
binding semantic be specified for every non-uniform input (or output) variable
to a top-level program. To avoid this requirement, all the non-uniform variables
should be included within a single struct. The compiler automatically allocates
the elements of this structure to hardware resources in a manner that allows any
program that returns this struct to interoperate with any program that uses
this struct as an input.
It is not required that all non-uniform inputs be included within a single struct
in order to omit binding semantics. Binding semantics may be omitted from any
input or output, and the compiler performs automatic allocation of that input
or output to a hardware resource. However, to guarantee interoperability of one
program’s output with another program’s input when automatic binding is
performed, it is necessary to put all of the variables in a single struct.
For various reasons, it is desirable to be able to choose a particular set of rules
for automatically performing the allocation of structure elements to hardware
resources. The set of rules to be used, the allocation-rule identifier, may be specified
by an identifier attached to the structure tag using the colon-identifier notation:

The allocation of structure elements to hardware resources may be performed
in any reproducible manner that depends only on this structure definition (and
allocation-rule identifier). In particular, the allocation algorithm may not depend
on how a particular function reads or writes to the elements of the structure.
Implementations may choose to make the specification of an allocation-rule
identifier optional; the omission of the allocation-rule identifier implies the use
of a default set of allocation rules.
It is permissible to explicitly specify a binding semantic for some elements of
the struct, but not others. The compiler’s automatic allocation must honor
these explicit bindings. The allowed set of explicitly specified binding semantics
is defined by the allocation-rule identifier. The most common use of this

struct <struct-tag> : <allocation-rule-identifier> {
/*... */ };
 808-00504-0000-003 185
NVIDIA

Cg Language Toolkit
capability is to bind variables to hardware registers that write to, or read from,
non-programmable parts of the hardware. For example, in a typical vertex-
program profile, the output struct would contain an element with an explicitly
specified POSITION semantic. This element is used to control the hardware
rasterizer.
For any particular allocation-rule identifier, additional restrictions may be
associated with particular binding semantics. For example, it might be illegal to
read from a variable with a particular binding semantic.

How Programs Receive and Return Data
A program is just a non-static function that has been designated as the main
entry point at compilation time. The varying inputs to the program come from
this top-level function's varying in parameters. The uniform inputs to the
program come from the top-level function's uniform in parameters and from
any non-static global variables that are referenced by the top-level function or
by any functions that it calls. The output of the program comes from the return
value of the function (which is always implicitly varying), and from any out
parameters, which must also be varying.
Parameters to a program of type sampler* are implicitly const.

Statements
Statements are expressed just as in C, unless an exception is stated elsewhere in
this document. Additionally,
! The if, while, and for statements require bool expressions in the

appropriate places.
! Assignment is performed using =. The assignment operator returns a value,

just as in C, so assignments may be chained.
! The new discard statement terminates execution of the program for the

current data element—such as the current vertex or current fragment—and
suppresses its output. Vertex profiles may choose to omit support for
discard.

Minimum Requirements for if, while, and for Statements
The minimum requirements are as follows:
! All profiles should support if, but such support is not strictly required for

older hardware.
! All profiles should support for and while loops if the number of loop

iterations can be determined at compile time.
186 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
“Can be determined at compile time” is defined as follows:
The loop-iteration expressions can be evaluated at compile time by use
of intra-procedural constant propagation and folding, where the
variables through which constant values are propagated do not appear
as lvalues within any kind of control statement (if, for, or while) or
?: construct.

Profiles may choose to support more general constant propagation
techniques, but such support is not required.

! Profiles may optionally support fully general for and while loops.

New Vector Operators
These new operators are defined for vector types:
! Vector construction operator: <typeID>(…)

This operator builds a vector from multiple scalars or shorter vectors:

! Matrix construction operator: <typeID>(…)
This operator builds a matrix from multiple rows. Each row may be
specified either as multiple scalars or as any combination of scalars and
vectors with the appropriate size.

! Swizzle operator: (.)

" At least one swizzle character must follow the operator.
" There are two sets of swizzle characters and they may not be mixed.

Set one is xyzw = 0123, and set two is rgba = 0123.
" The vector swizzle operator may only be applied to vectors or to

scalars.
" Applying the vector swizzle operator to a scalar gives the same result as

applying the operator to a vector of length one.
Thus, myscalar.xxx and float3(myscalar,myscalar,myscalar)
yield the same value.

" If only one swizzle character is specified, the result is a scalar, not a
vector of length one. Therefore, the expression b.y returns a scalar.

float4(scalar, scalar, scalar, scalar)
float4(float3, scalar)

float3x3(1, 2, 3, 4, 5, 6, 7, 8, 9)
float3x3(float3, float3, float3)
float3x3(1, float2, float3, float3, 1, 1, 1)

a = b.xxyz; // A swizzle operator example
 808-00504-0000-003 187
NVIDIA

Cg Language Toolkit
" Care is required when swizzling a constant scalar because of ambiguity
in the use of the decimal point character. For example, to create a
three-vector from a scalar, use one of the following:

" The size of the returned vector is determined by the number of swizzle
characters. Therefore, the size of the result may be larger or smaller
than the size of the original vector.
For example, float2(0,1).xxyy and float4(0,0,1,1) yield the
same result.

! Matrix swizzle operator:
For any matrix type of the form <type><rows>x<columns>, the notation

can be used to access individual matrix elements (in the case of only one
<row><col> pair) or to construct vectors from elements of a matrix (in the
case of more than one <row><col> pair). The row and column numbers
are zero-based.
For example,

" For compatibility with the D3DMatrix data type, Cg also allows one-
based swizzles, using a form with the m omitted after the _ symbol:

In this form, the indexes for <row> and <col> are one-based, rather
than the C standard zero-based. So, the two forms are functionally
equivalent:

(1).xxx or 1..xxx or 1.0.xxx or 1.0f.xxx

<matrixObject>._m<row><col>[_m<row><col>][…]

float4x4 myMatrix;
float myFloatScalar;
float4 myFloatVec4;

// Set myFloatScalar to myMatrix[3][2].
myFloatScalar = myMatrix.m_32;

// Assign the main diagonal of myMatrix to myFloatVec4.
myFloatVec4 = myMatrix.m_00_m11_m22_m33;

<matrixObject>._<row><col>[_<row><col>][…]

float4x4 myMatrix;
float4 myVec;

// These two statements are functionally equivalent:
myVec = myMatrix._m00_m23_m11_m31;
myVec = myMatrix._11_34_22_42;
188 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
Because of the confusion that can be caused by the one-based
indexing, use of the latter notation is strongly discouraged.

" The matrix swizzles may only be applied to matrices. When multiple
components are extracted from a matrix using a swizzle, the result is an
appropriately sized vector. When a swizzle is used to extract a single
component from a matrix, the result is a scalar.

! The write-mask operator: (.)
It can only be applied to an lvalue that is a vector. It allows assignment to
particular elements of a vector or matrix, leaving other elements
unchanged.The only restriction is that a component cannot be repeated.

Arithmetic Precision and Range
Some hardware may not conform exactly to IEEE arithmetic rules. Fixed-point
data types do not have IEEE-defined rules.
Optimizations are allowed to produce slightly different results than
unoptimized code. Constant folding must be done with approximately the
correct precision and range, but is not required to produce bit-exact results. It is
recommended that compilers provide an option either to forbid these
optimizations or to guarantee that they are made in bit-exact fashion.

Operator Precedence
Cg uses the same operator precedence as C for operators that are common
between the two languages.
The swizzle and write-mask operators (.) have the same precedence as the
structure member operator (.) and the array index operator ([]).

Operator Enhancements
The standard C arithmetic operators (+, -, *, /, %, unary-) are extended to
support vectors and matrices. Sizes of vectors and matrices must be
appropriately matched, according to standard mathematical rules. Scalar-to-
vector promotion (see “Smearing of Scalars to Vectors” on page 179) allows
relaxation of these rules.

Table 7 Expanded Operators

Operator Description
M[n][m] Matrix with n rows and m columns

V[n] Vector with n elements
 808-00504-0000-003 189
NVIDIA

Cg Language Toolkit
Operators

Boolean
&& || !

Boolean operators may be applied to bool packed bool vectors, in which case
they are applied in elementwise fashion to produce a result vector of the same
size. Each operand must be a bool vector of the same size.
Both sides of && and || are always evaluated; there is no short-circuiting as
there is in C.

Comparisons
< > <= >= != ==

Comparison operators may be applied to numeric vectors. Both operands must
be vectors of the same size. The comparison operation is performed in
elementwise fashion to produce a bool vector of the same size.
Comparison operators may also be applied to bool vectors. For the purpose of
relational comparisons, true is treated as one and false is treated as zero. The

-V[n] -> V[n] Unary vector negate

-M[n] -> M[n] Unary matrix negate

V[n] * V[n] -> V[n] Componentwise *

V[n] / V[n] -> V[n] Componentwise /

V[n] % V[n] -> V[n] Componentwise %

V[n] + V[n] -> V[n] Componentwise +

V[n] - V[n] -> V[n] Componentwise -

M[n][m] * M[n][m] -> M[n][m] Componentwise *

M[n][m] / M[n][m] -> M[n][m] Componentwise /

M[n][m] % M[n][m] -> M[n][m] Componentwise %

M[n][m] + M[n][m] -> M[n][m] Componentwise +

M[n][m] - M[n][m] -> M[n][m] Componentwise -

Table 7 Expanded Operators (continued)

Operator Description
190 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
comparison operation is performed in elementwise fashion to produce a bool
vector of the same size.
Comparison operators may also be applied to numeric or bool scalars.

Arithmetic
+ - * / % ++ -- unary- unary+

The arithmetic operator % is the remainder operator, as in C. It may only be
applied to two operands of cint or int type.
When / or % is used with cint or int operands, C rules for integer / and %
apply.
The C operators that combine assignment with arithmetic operations (such as
+=) are also supported when the corresponding arithmetic operator is
supported by Cg.

Conditional Operator
?:

If the first operand is of type bool, one of the following statements must hold
for the second and third operands:
! Both operands have compatible structure types.
! Both operands are scalars with numeric or bool type.
! Both operands are vectors with numeric or bool type, where the two

vectors are of the same size, which is less than or equal to four.
If the first operand is a packed vector of bool, then the conditional selection is
performed on an elementwise basis. Both the second and third operands must
be numeric vectors of the same size as the first operand.
Unlike C, side effects in the expressions in the second and third operands are
always executed, regardless of the condition.

Miscellaneous Operators
(typecast) ,

Cg supports C's typecast and comma operators.
 808-00504-0000-003 191
NVIDIA

Cg Language Toolkit
Reserved Words
The following are the reserved words in Cg:

Cg Standard Library Functions
Cg provides a set of built-in functions and predefined structures with binding
semantics to simplify GPU programming. These functions are discussed in “Cg
Standard Library Functions” on page 19.

asm* asm_fragment auto
bool break case
catch char class
column major compile const
const_cast continue decl*
default delete discard
do double dword*
dynamic_cast else emit
enum explicit extern
false fixed float*
for friend get
goto half if
in inline inout
int interface long
matrix* mutable namespace
new operator out
packed pass* pixelfragment*
pixelshader* private protected
public register reinterpret_cast
return row major sampler
sampler_state sampler1D sampler2D
sampler3D samplerCUBE shared
short signed sizeof
static static_cast string*
struct switch technique*
template texture* texture1D
texture2D texture3D textureCUBE
textureRECT this throw
true try typedef
typeid typename uniform
union unsigned using
vector* vertexfragment* vertexshader*
virtual void volatile
while __identifier (two underscores before identifier)
192 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
Vertex Program Profiles
A few features of the Cg language that are specific to vertex program profiles
are required to be implemented in the same manner for all vertex program
profiles.

Mandatory Computation of Position Output
Vertex program profiles may (and typically do) require that the program
compute a position output. This homogeneous clip-space position is used by
the hardware rasterizer and must be stored in a program output with an output
binding semantic of POSITION (or HPOS for backward compatibility).

Position Invariance
In many graphics APIs, the user can choose between two different approaches
to specifying per-vertex computations: use a built-in configurable fixed-function
pipeline or specify a user-written vertex program. If the user wishes to mix
these two approaches, it is sometimes desirable to guarantee that the position
computed by the first approach is bit-identical to the position computed by the
second approach. This position invariance is particularly important for multipass
rendering.
Support for position invariance is optional in Cg vertex profiles, but for those
vertex profiles that support it, the following rules apply:
! Position invariance with respect to the fixed function pipeline is guaranteed

if two conditions are met:
" The vertex program is compiled using a compiler option indicating

position invariance (-posinv, for example).
" The vertex program computes position as follows:

where
OUT_POSITION is a variable (or structure element) of type float4 with
an output binding semantic of POSITION or HPOS.
IN_POSITION is a variable (or structure element) of type float4 with
an input binding semantic of POSITION.
MVP is a uniform variable (or structure element) of type float4x4 with
an input binding semantic that causes it to track the fixed-function
modelview-projection matrix. (The name of this binding semantic is
currently profile-specific—for OpenGL profiles, the semantic
_GL_MVP is recommended).

OUT_POSITION = mul(MVP, IN_POSITION)
 808-00504-0000-003 193
NVIDIA

Cg Language Toolkit
! If the first condition is met but not the second, the compiler is encouraged
to issue a warning.

! Implementations may choose to recognize more general versions of the
second condition (such as the variables being copy propagated from the
original inputs and outputs), but this additional generality is not required.

Binding Semantics for Outputs
As shown in Table 8, there are two output binding semantics for vertex
program profiles:

Profiles may define additional output binding semantics with specific behaviors,
and these definitions are expected to be consistent across commonly used
profiles.

Fragment Program Profiles
A few features of the Cg language that are specific to fragment program profiles
are required to be implemented in the same manner for all fragment program
profiles.

Binding Semantics for Outputs
As shown in Table 9, there are three output binding semantics for fragment
program profiles. Profiles may define additional output binding semantics with
specific behaviors, and these definitions are expected to be consistent across
commonly used profiles.

Table 8 Vertex Output Binding Semantics

Name Meaning Type Default Value

POSITION Homogeneous clip-space position;
fed to rasterizer.

float4 Undefined

PSIZE Point size float Undefined

Table 9 Fragment Output Binding Semantics

Name Meaning Type Default Value

COLOR RGBA output color float4 Undefined
194 808-00504-0000-003
NVIDIA

Appendix A Cg Language Specification
If a program desires an output color alpha of 1.0, it should explicitly write a
value of 1.0 to the W component of the COLOR output. The language does not
define a default value for this output.

Note: If the target hardware uses a default value for this output, the compiler may
choose to optimize away an explicit write specified by the user if it matches the
default hardware value. Such defaults are not exposed in the language.

In contrast, the language does define a default value for the DEPTH output. This
default value is the interpolated depth obtained from the rasterizer.
Semantically, this default value is copied to the output at the beginning of the
execution of the fragment program.
As discussed earlier, when a binding semantic is applied to an output, the type
of the output variable is not required to match the type of the binding semantic.
For example, the following is legal, although not recommended:

In such cases, the variable is implicitly copied (with a typecast) to the
semantic upon program completion. If the variable’s vector size is shorter than
the semantic’s vector size, the larger-numbered components of the semantic
receive their default values, if applicable, and otherwise are undefined. In the
case above, the R and G components of the output color are obtained from
mycolor, while the B and A components of the color are undefined.

COLOR0 Same as COLOR — —

DEPTH Fragment depth value
(in range [0,1])

float Interpolated depth from rasterizer
(in range [0,1])

struct myfragoutput {
 float2 mycolor : COLOR; }

Table 9 Fragment Output Binding Semantics (continued)
 808-00504-0000-003 195
NVIDIA

Cg Language Toolkit
196 808-00504-0000-003
NVIDIA

Appendix B
Language Profiles

This appendix describes the language capabilities that are available in each of
the following profiles supported by the Cg compiler:

DirectX Vertex Shader 2.x Profiles (vs_2_0, vs_2_x)
DirectX Pixel Shader 2.x Profiles (ps_2_0, ps_2_x)
OpenGL ARB Vertex Program Profile (arbvp1)
OpenGL ARB Fragment Program Profile (arbfp1)
OpenGL NV_vertex_program 2.0 Profile (vp30)
OpenGL NV_fragment_program Profile (fp30)
DirectX Vertex Shader 1.1 Profile (vs_1_1)
DirectX Pixel Shader 1.x Profiles (ps_1_1, ps_1_2, ps_1_3)
OpenGL NV_vertex_program 1.0 Profile (vp20)
OpenGL NV_texture_shader and NV_register_combiners Profile (fp20)

In each case, the capabilities are a subset of the full capabilities described by the
Cg language specification in “Cg Language Specification” on page 165.
808-00504-0000-003 197
NVIDIA

Cg Language Toolkit
DirectX Vertex Shader 2.x Profiles (vs_2_0, vs_2_x)
The DirectX Vertex Shader 2.0 profiles are used to compile Cg source code to
DirectX 9 VS 2.0 vertex shaders1 and DirectX 9 VS 2.0 Extended vertex
shaders.

Profile Name:
vs_2_0 (for DirectX 9 VS 2.0 vertex shaders)
vs_2_x (for DirectX 9 VS 2.0 extended vertex shaders)
How To Invoke:
Use the compiler option -profile vs_2_0 or -profile vs_2_x

This section describes how using the vs_2_0 and vs_2_x profiles affects the Cg
source code that the developer writes.

Overview
The vs_2_0 profile limits Cg to match the capabilities of DirectX VS 2.0 vertex
shaders. The vs_2_x profile is the same as the vs_2_0 profile but allows
extended features such as dynamic flow control (branching).

Memory
DirectX 9 vertex shaders have a limited amount of memory for instructions and
data.

Program Instruction Limit

DirectX 9 vertex shaders are limited to 256 instructions. If the compiler needs
to produce more than 256 instructions to compile a program, it reports an error.

Vector Register Limit

Likewise, there are limited numbers of registers to hold program parameters
and temporary results. Specifically, there are 256 read-only vector registers and
12-32 read/write vector registers. If the compiler needs more registers to
compile a program than are available, it generates an error.

1. To understand the capabilities of DirectX VS 2.0 Vertex Shaders and the code produced
by the compiler, refer to the Vertex Shader Reference in the DirectX 9 SDK documentation.
198 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Statements and Operators
If the vs_2_0 profile is used, then if, while, do, and for statements are
allowed only if the loops they define can be unrolled because here is no
dynamic branching in unextended VS 2.0 shaders.
If the vs_2_x profile is used, then if, while, and do statements are fully
supported as long as the DynamicFlowControlDepth option is not 0.
Comparison operators are allowed (>, <, >=, <=, ==, !=) and Boolean operators
(||, &&, ?:) are allowed. However, the logic operators (&, |, ^, ~) are not.

Data Types
The profiles implement data types as follows:

float data types are implemented as IEEE 32-bit single precision.
half and double data types are treated as float.
int data type is supported using floating point operations, which adds extra
instructions for proper truncation for divides, modulos and casts from
floating point types.
fixed or sampler* data types are not supported, but the profiles do
provide the minimal "partial support" that is required for these data types
by the core language specification—that is, it is legal to declare variables
using these types, as long as no operations are performed on the variables.

Using Arrays
Variable indexing of arrays is allowed as long as the array is a uniform constant.
For compatibility reasons arrays indexed with variable expressions need not be
declared const just uniform. However, writing to an array that is later indexed
with a variable expression yields unpredictable results.
Array data is not packed because vertex program indexing does not permit it.
Each element of the array takes a single 4-float program parameter register. For
example, float arr[10], float2 arr[10], float3 arr[10], and float4
arr[10] all consume 10 program parameter registers.
It is more efficient to access an array of vectors than an array of matrices.
Accessing a matrix requires a floor calculation, followed by a multiply by a
constant to compute the register index. Because vectors (and scalars) take one
register, neither the floor nor the multiply is needed. It is faster to do matrix
skinning using arrays of vectors with a premultiplied index than using arrays of
matrices.
 808-00504-0000-003 199
NVIDIA

Cg Language Toolkit
Bindings

Binding Semantics for Uniform Data

Table 10 summarizes the valid binding semantics for uniform parameters in the
vs_2_0 and vs_2_X profiles.

Binding Semantics for Varying Input/Output Data

Only the binding semantic names need be given for these profiles. The vertex
parameter input registers are allocated dynamically. All the semantic names,
except POSITION, can have a number from 0 to 15 after them.

Table 10 vs_2_0/vs_2_x Uniform Input Binding Semantics

Binding Semantics Corresponding Data

register(c0)–register(c255)
C0–C255

Constant register [0..95].
The aliases c0-c95 (lowercase) are also
accepted.
If used with a variable that requires more
than one constant register (for example, a
matrix), the semantic specifies the first
register that is used.

Table 11 vs_2_0/vs_2_x Varying Input Binding Semanitics

Binding Semantics Name

POSITION

BLENDWEIGHT

NORMAL

COLOR

TESSFACTOR

PSIZE

BLENDINDICES

TEXCOORD

TANGENT

BINORMAL
200 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Table 12 summarizes the valid binding semantics for varying output parameters
in the vs_2_0 and vs_2__X profiles.
These map to output registers in DirectX 9 vertex shaders.

Options
The vs_2_x profile allows the following profile specific options:

DynamicFlowControlDepth <n> (where n is 0 or 24, default 24)
NumTemps <n> (where n is >= 12 and <= 32, default 16)
Predication (default true)

Table 12 vs_2_0/vs_2_x Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION Output position: oPos

PSIZE Output point size: oPts

FOG Output fog value: oFog

COLOR0-COLOR1 Output color values: oD0, oD1

TEXCOORD0–TEXCOORD7 Output texture coordinates: oT0–oT7
 808-00504-0000-003 201
NVIDIA

Cg Language Toolkit
DirectX Pixel Shader 2.x Profiles (ps_2_0, ps_2_x)
The DirectX Pixel Shader 2.0 Profiles are used to compile Cg source code to
DirectX 9 PS 2.0 pixel shaders2 and DirectX 9 PS 2.0 extended pixel shaders.

Profile name:
ps_2_0 (for DirectX 9 PS 2.0 pixel shaders)
ps_2_x (for DirectX 9 PS 2.0 extended pixel shaders)
How to invoke:
Use the compiler option -profile ps_2_0 or -profile ps_2_x

The ps_2_0 profile limits Cg to match the capabilities of DirectX PS 2.0 pixel
shaders. The ps_2_x profile is the same as the ps_2_0 profile but allows
extended features such as arbitrary swizzles, larger limit on number of
instructions, no limit on texture instructions, no limit on texture dependent
reads, and support for predication.
This section describes the capabilities and restrictions of Cg when using these
profiles.

Memory

Program Instruction Limit

DirectX 9 Pixel shaders have a limit on the number of instructions in a pixel
shader.

PS 2.0 (ps_2_0) pixel shaders are limited to 32 texture instructions and 64
arithmetic instructions.
Extended PS 2 (ps_2_x) shaders have a limit of maximum number of total
instructions between 96 to 1024 instructions.
There is no separate texture instruction limit on extended pixel shaders.

If the compiler needs to produce more than the maximum allowed number of
instructions to compile a program, it reports an error.

Vector Register Limit

Likewise, there are limited numbers of registers to hold program parameters
and temporary results. Specifically, there are 32 read-only vector registers and
12-32 read/write vector registers. If the compiler needs more registers to
compile a program than are available, it generates an error.

2. To understand the capabilities of DirectX PS 2.0 Pixel Shaders and the code produced by
the compiler, refer to the Pixel Shader Reference in the DirectX 9 SDK documentation.
202 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Language Constructs and Support

Data Types

This profile implements data types as follows:
float data type is implemented as IEEE 32-bit single precision.
half, fixed, and double data types are treated as float.
half data types can be used to specify partial precision hint for pixel shader
instructions.
int data type is supported using floating point operations.
sampler* types are supported to specify sampler objects used for texture
fetches.

Statements and Operators

With the ps_2_0 profiles while, do, and for statements are allowed only if the
loops they define can be unrolled because there is no dynamic branching in PS
2.0 shaders. In current Cg implementation, extended ps_2_x shaders also have
the same limitation.
Comparison operators are allowed (>, <, >=, <=, ==, !=) and Boolean operators
(||, &&, ?:) are allowed. However, the logic operators (&, |, ^, ~) are not.

Using Arrays and Structures

Variable indexing of arrays is not allowed. Array and structure data is not
packed.
 808-00504-0000-003 203
NVIDIA

Cg Language Toolkit
Bindings

Binding Semantics for Uniform Data

Table 13 summarizes the valid binding semantics for uniform parameters in the
ps_2_0 and ps_2_X profiles

Binding Semantics for Varying Input/Output Data

Table 14 summarizes the valid binding semantics for varying input parameters
in the ps_2_0 and ps_2_x profiles.

Table 15 summarizes the valid binding semantics for varying output parameters
in the ps_2_0 and ps_2_x profiles.

Table 13 ps_2_0/ps_2_x Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)—register(s15)
TEXUNIT0-TEXUNIT15

Texunit unit N, where N is in range [0..15]
May only be used with uniform inputs with
sampler* types.

register(c0)-register(c31)
C0–C31

Constant register N, where N is in range
[0..31]
May only be used with uniform inputs.

Table 14 ps_2_0/ps_2_x Varying Input Binding Semantics

Binding Semantics Name Corresponding Data (type)

COLOR0 Input color0 (float4)

COLOR1 Input color1 (float4)

TEXCOORD0-TEXCOORD7 Input texture coordinates (float4)

Table 15 ps_2_0/ps_2_x Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0 Output color (float4)

DEPTH Output depth (float)
204 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Options
The ps_2_x profile allows the following profile specific options:

NumTemps=<n> (where n is >= 12 and <= 32; default 32)
NumInstructionSlots=<n> (where n is >= 96 and <= 1024; default
1024)
Predication= (where b=0 or 1; default is 1)
ArbitrarySwizzle= (where b=0 or 1; default is 1)
GradientInstructions= (where b=0 or 1; default is 1)
NoDependentReadLimit= (where b=0 or 1; default is 1)
NoTexInstructionLimit= (where b=0 or 1; default is 1)

Limitations in this Implementation
Currently, this profile implementation has the following limitations:

Dynamic flow control is not supported in extended pixel shaders.
Multiple color outputs are not supported in pixel shaders. Only Color0 is
supported.
 808-00504-0000-003 205
NVIDIA

Cg Language Toolkit
OpenGL ARB Vertex Program Profile (arbvp1)
The OpenGL ARB Vertex Program Profile is used to compile Cg source code
to vertex programs compatible with version 1.0 of the
GL_ARB_vertex_program extension.

Profile Name:
arbvp1

How To Invoke:
Use the compiler option -profile arbvp1

This section describes the capabilities and restrictions of Cg when using the
arbvp1 profile.

Overview
The arbvp1 profile is similar to the vp20 profile except for the format of its
output and its capability of accessing OpenGL state easily.
ARB_vertex_program has the same capabilities as NV_vertex_program
and DirectX 8 vertex shaders, so the limitations that this profile places on
the Cg source code written by the programmer is the same as the
NV_vertex_program3 profile.

Accessing OpenGL State
The arbvp1 profile allows Cg programs to refer to the OpenGL state directly,
unlike the vp20 profile. However, if you want to write Cg programs that are
compatible with vp20 and dx8vs profiles, you should use the alternate
mechanism of setting uniform variables with the necessary state using the Cg
run time. The compiler relies on the feature of ARB vertex assembly programs
that enables parts of the OpenGL state to be written automatically to program
parameter registers as the state changes. The OpenGL driver handles this state-
tracking feature. A special variable called glstate, defined as a structure, can be
used to refer to every part of the OpenGL state that ARB vertex programs can
reference. Following this paragraph are three lists of the glstate fields that can
be accessed. The array indexes are shown as 0, but an array can be accessed
using any positive integer that is less than the limit of the array. For example, to
access the diffuse component of the second light use
glstate.light[1].diffuse, assuming that GL_MAX_LIGHTS is at least 2.

3. See “DirectX Vertex Shader 1.1 Profile (vs_1_1)” on page 222 for a full explanation of
the data types, statements, and operators supported by this profile.
206 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
float4x4 glstate Fields

These are the glstate fields of type float4x4 that can be accessed:

float4 glstate Fields
These are the glstate fields of type float4 that can be accessed:

glstate.matrix.modelview[0] glstate.matrix.projection
glstate.matrix.mvp glstate.matrix.texture[0]
glstate.matrix.palette[0] glstate.matrix.program[0]
glstate.matrix.inverse.modelview[0] glstate.matrix.inverse.projection
glstate.matrix.inverse.mvp glstate.matrix.inverse.texture[0]
glstate.matrix.inverse.palette[0] glstate.matrix.inverse.program[0]
glstate.matrix.transpose.modelview[0] glstate.matrix.transpose.projection
glstate.matrix.transpose.mvp glstate.matrix.transpose.texture[0]
glstate.matrix.transpose.palette[0] glstate.matrix.transpose.program[0]
glstate.matrix.invtrans.modelview[0] glstate.matrix.invtrans.projection
glstate.matrix.invtrans.mvp glstate.matrix.invtrans.texture[0]
glstate.matrix.invtrans.palette[0] glstate.matrix.invtrans.program[0]

glstate.material.ambient glstate.material.diffuse
glstate.material.specular glstate.material.emission
glstate.material.shininess glstate.material.front.ambient
glstate.material.front.diffuse glstate.material.front.specular
glstate.material.front.emission glstate.material.front.shininess
glstate.material.back.ambient glstate.material.back.diffuse
glstate.material.back.specular glstate.material.back.emission
glstate.material.back.shininess glstate.light[0].ambient
glstate.light[0].diffuse glstate.light[0].specular
glstate.light[0].position glstate.light[0].attenuation
glstate.light[0].spot.direction glstate.light[0].half
glstate.lightmodel.ambient glstate.lightmodel.scenecolor
glstate.lightmodel.front.scenecolor glstate.lightmodel.back.scenecolor
glstate.lightprod[0].ambient glstate.lightprod[0].diffuse
glstate.lightprod[0].specular glstate.lightprod[0].front.ambient
glstate.lightprod[0].front.diffuse glstate.lightprod[0].front.specular
glstate.lightprod[0].back.ambient glstate.lightprod[0].back.diffuse
glstate.lightprod[0].back.specular glstate.texgen[0].eye.s
glstate.texgen[0].eye.t glstate.texgen[0].eye.r
glstate.texgen[0].eye.q glstate.texgen[0].object.s
glstate.texgen[0].object.t glstate.texgen[0].object.r
glstate.texgen[0].object.q glstate.fog.color
glstate.fog.params glstate.clip[0].plane
 808-00504-0000-003 207
NVIDIA

Cg Language Toolkit
float glstate Fields
These are the glstate fields of type float that can be accessed:

Position Invariance
The arbvp1 profile supports position invariance, as described in the core
language specification.
The modelview-projection matrix is not specified using a binding semantic
of _GL_MVP.

Data Types
This profile implements data types as follows:

float data type is implemented as defined in the ARB_vertex_program
specification.
half data type is implemented as float.
fixed or sampler* data types are not supported, but the profile does
provide the minimal ‘partial support’ that is required for these data types by
the core language specification—that is, it is legal to declare variables using
these types as long as no operations are performed on the variables.

Compatibility with the vp20 Vertex Program Profile
Programs that work with the vp20 profile are compatible with the arbvp1
profile as long as they use the Cg run time to manage all uniform parameters,
including OpenGL state. That is, arbvp1 and vp20 profiles can be used
interchangeably without changing the Cg source code or the application
program except for specifying a different profile. However, if any of the
glProgramParameterxxNV() routines are used the application program needs
to be changed to use the corresponding ARB functions.
Since there is no ARB function corresponding to glTrackMatrixNV(), an
application using glTrackMatrixNV() and the arbvp1 profile needs to be
modified. One solution is to change the Cg source code to refer to the matrix
using the glstate structure so that the matrix is automatically tracked by the
OpenGL driver as part of its GL_ARB_vertex support. Another solution is for
the application to use the Cg run-time routine
cgGLSetStateMatrixParameter() to load the appropriate matrix or matrices
when necessary.

glstate.point.size
glstate.point.attenuation
208 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Another potential incompatibility between the arbvp1 and vp20 profiles is the
way that input varying semantics are handled. In the vp20 profile, semantic
names such as POSITION and ATTR0 are aliases of each other the same way
NV_vertex_program aliases Vertex and Attribute 0 (see Table 39, “vp20
Varying Input Binding Semantics,” on page 242). In the arbvp1 profile, the
semantic names are not aliased because ARB_vertex_program allows the
conventional attributes (such as vertex position) to be separate from the generic
attributes (such as Attribute 0). For this reason it is important to follow the
conventions given in Table 17, “arbvp1 Varying Input Binding Semantics,”
on page 210 so that arbvp1 programs work for all implementations of
ARB_vertex_program. The arbvp1 conventions are compatible with the vp20
and vp30 profiles.

Loading Constants
Applications that do not use the Cg run time are no longer required to load
constant values into program parameters registers as indicated by the #const
expressions in the Cg compiler output. The compiler produces output that
causes the OpenGL driver to load them. However, uniform variables that have
a default definition still require constant values to be loaded into the
appropriate program parameter registers, as ARB vertex programs do not
support this feature. Application programs either have to use the Cg run time,
parse, and handle the #default commands, or have to avoid initializing
uniform variables in the Cg source code.

Bindings

Binding Semantics for Uniform Data

Table 16 summarizes the valid binding semantics for uniform parameters in the
arbvp1 profile. .

Table 16 arbvp1 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c255)
C0–C255

Local parameter with index n, n = [0..255].
The aliases c0–c255 (lowercase) are also
accepted.
If used with a variable that requires more
than one constant register (for example, a
matrix), the semantic specifies the first local
parameter that is used.
 808-00504-0000-003 209
NVIDIA

Cg Language Toolkit
Binding Semantics for Varying Input/Output Data

Table 17 summarizes the valid binding semantics for uniform parameters in the
arbvp1 profile.
The set of binding semantics for varying input data to arbvp1 consists of
POSITION, BLENDWEIGHT, NORMAL, COLOR0, COLOR1, TESSFACTOR, PSIZE,
BLENDINDICES, and TEXCOORD0–TEXCOORD7. One can also use TANGENT and
BINORMAL instead of TEXCOORD6 and TEXCOORD7. Additionally, a set of binding
semantics of ATTR0–ATTR15 can be used. The mapping of these semantics to
corresponding setting command is listed in the table.

Table 18 summarizes the valid binding semantics for varying output parameters
in the arbvp1 profile.

Table 17 arbvp1 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

POSITION Input Vertex, through Vertex command

BLENDWEIGHT Input vertex weight through WeightARB,
VertexWeightEXT command

NORMAL Input normal through Normal command

COLOR0, DIFFUSE Input primary color through Color command

COLOR1, SPECULAR Input secondary color through
SecondaryColorEXT command

FOGCOORD Input fog coordinate through FogCoordEXT
command

TEXCOORD0-TEXCOORD7 Input texture coordinates (texcoord0-
texcoord7) through MultiTexCoord command

ATTR0-ATTR15 Generic Attribute 0-15 through VertexAttrib
command

PSIZE, ATTR6 Generic Attribute 6
210 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
These binding semantics map to ARB_vertex_program output registers. The
two sets act as aliases to each other.

Note: The application must call glEnable(GL_COLOR_SUM_ARB) in order to
enable COLOR1 output when using the arbvp1 profile.

The profile also allows WPOS to be present as binding semantics on a member of
a structure of a varying output data structure, provided the member with this
binding semantics is not referenced. This allows Cg programs to have the same
structure specify the varying output of an arbvp1 profile program and the
varying input of an fp30 profile program.

Table 18 arbvp1 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, HPOS Output position

PSIZE, PSIZ Output point size

FOG, FOGC Output fog coordinate

COLOR0, COL0 Output primary color

COLOR1, COL1 Output secondary color

BCOL0 Output backface primary color

BCOL1 Output backface secondary color

TEXCOORD0-TEXCOORD7, TEX0-TEX7 Output texture coordinates
 808-00504-0000-003 211
NVIDIA

Cg Language Toolkit
OpenGL ARB Fragment Program Profile (arbfp1)
The OpenGL ARB Fragment Program Profile is used to compile Cg source
code to fragment programs compatible with version 1.0 of the
GL_ARB_fragment_program OpenGL extension.4

Profile name: arbfp1
How to invoke: Use the compiler option -profile arbfp1

The arbfp1 profile limits Cg to match the capabilities of OpenGL ARB
fragment programs. This section describes the capabilities and restrictions of Cg
when using the arbfp1 profile.

Memory

Program Instruction Limits

OpenGL ARB fragment programs have a limit on number of instructions in an
ARB fragment program.
ARB fragment programs are limited to number of instructions that can be
queried from underlying OpenGL implementation using
MAX_PROGRAM_INSTRUCTIONS_ARB with a minimum value of 72. There are
limits on number of texture instructions (minimum limit of 24) and arithmetic
instructions (minimum limit of 48) that can be queried from OpenGL
implementation.
If the compiler needs to produce more than maximum allowed instructions to
compile a program, it reports an error.

Vector Register Limits

Likewise, there are limited numbers of registers that can be queried from
OpenGL implementation to hold local program parameters (minimum limit of
24) and temporary results (minimum limit of 16).
If the compiler needs more temporaries or local parameters to compile a
program than are available, it generates an error.

4. To understand the capabilities of OpenGL ARB fragment programs and the code pro-
duced by the compiler, refer to the ARB fragment program extension in the OpenGL Exten-
sions documentation.
212 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Language Constructs and Support

Data Types

This profile implements data types as follows:
float data type is implemented as IEEE 32-bit single precision.
half, fixed, and double data types are treated as float.
int data type is supported using floating point operations.
sampler* types are supported to specify sampler objects used for texture
fetches.

Statements and Operators

With the ARB fragment program profiles while, do, and for statements are
allowed only if the loops they define can be unrolled because there is no
dynamic branching in ARB fragment program 1.
Comparison operators are allowed (>, <, >=, <=, ==, !=) and Boolean operators
(||, &&, ?:) are allowed. However, the logic operators (&, |, ^, ~) are not.

Using Arrays and Structures

Variable indexing of arrays is not allowed. Array and structure data is not
packed.

Bindings

Binding Semantics for Uniform Data

Table 19 summarizes the valid binding semantics for uniform parameters in the
arbfp1 profile.

Table 19 arbfp1 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)—register(s15)
TEXUNIT0-TEXUNIT15

Texunit image unit N, where N is in range
[0..15]
May only be used with uniform inputs with
sampler* types.

register(c0)-register(c31)
C0–C31

Local Parameter N, where N is in range
[0..31]
May only be used with uniform inputs.
 808-00504-0000-003 213
NVIDIA

Cg Language Toolkit
Binding Semantics for Varying Input/Output Data

Table 20 summarizes the valid binding semantics for varying input parameters in
the arbfp1 profile

Table 21 summarizes the valid binding semantics for varying output parameters
in the arbfp1 profile.

Options
The ARB fragment program profile allows the following profile specific
options:

NumTemps=<n> (where n is >= 16 and <= 32, default 32)
NumInstructionSlots=<n> (where n is >= 72 and <= 1024, default
1024)
NoDependentReadLimit= (where b=0 or 1. default is 1)
NumTexInstructionSlots=<n> (where n>=24)

Limitations in the Implementation
Currently, this profile implementation has following limitations:

OpenGL ARB fragment program profile is still in developmental beta stage
as the extension and its support is not widely available.
OpenGL state access in ARB fragment programs is not yet implemented.

Table 20 arbfp1 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data (type)

COLOR0 Input color0 (float4)

COLOR1 Input color1 (float4)

TEXCOORD0-TEXCOORD7 Input texture coordinates (float4)

Table 21 arbfp1 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0 Output color (float4)

DEPTH Output depth (float)
214 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
OpenGL NV_vertex_program 2.0 Profile (vp30)
The vp30 Vertex Program profile is used to compile Cg source code to vertex
programs for use by the NV_vertex_program2 OpenGL extension.

Profile name: vp30
How to invoke: Use the compiler option -profile vp30

The vp30 profile limits Cg to match the capabilities of the
NV_vertex_program2 extension. This section describes the capabilities and
restrictions of Cg when using the vp30 profile.

Position Invariance
The vp30 profile supports position invariance, as described in the core language
specification.

The modelview-projection matrix must be specified using a binding
semantic of _GL_MVP. Unlike the vp20 and arbvp1 profiles, this profile
causes the compiler to emit the instructions for transforming the position
using the modelview-projection matrix.
The assembly code position invariant option is not used because the
hardware guarantees that the position calculation is invariant compared to
the fixed pipeline calculation.

Language Constructs

Data Types

This profile implements data types as follows:
float data type is implemented as IEEE 32-bit single precision.
half data type is implemented as float.
int data type is supported using floating point operations, which adds extra
instructions for proper truncation for divides, modulos, and casts from
floating point types.
fixed or sampler* data types are not supported, but the profile does
provide the minimal "partial support" that is required for these data types
by the core language specification—that is, it is legal to declare variables
using these types, as long as no operations are performed on the variables.
 808-00504-0000-003 215
NVIDIA

Cg Language Toolkit
Statements and Operators

This profile is a superset of the vp20 profile. Any program that compiles for the
vp20 profile should also compile for the vp30 profile, although the converse is
not true.
The additional capabilities of the vp30 profile, beyond those of vp20 are:

for, while, and do loops are supported without requiring loop unrolling
Full support for if/else allowing non-constant conditional expressions

Bindings

Binding Semantics for Uniform Data

Table 22 summarizes the valid binding semantics for uniform parameters in the
vp30 profile.

Table 22 vp30 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c255)
C0–C255

Constant register [0..255].
The aliases c0–c255 (lowercase) are also
accepted.
If used with a variable that requires more
than one constant register (for example, a
matrix), the semantic specifies the first
register that is used.
216 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Binding Semantics for Varying Input/Output Data

Table 23 summarizes the valid binding semantics for varying input parameters
in the vp30 profile.
One can also use TANGENT and BINORMAL instead of TEXCOORD6 and
TEXCOORD7. These binding semantics map to NV_vertex_program2 input
attribute parameters. The two sets act as aliases to each other.

Table 24 summarizes the valid binding semantics for varying output parameters
in the vp30 profile.
These binding semantics map to NV_vertex_program2 output registers. The
two sets act as aliases to each other.

Table 23 vp30 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, ATTR0 Input Vertex, Generic Attribute 0

BLENDWEIGHT, ATTR1 Input vertex weight, Generic Attribute 1

NORMAL, ATTR2 Input normal, Generic Attribute 2

COLOR0, DIFFUSE, ATTR3 Input primary color, Generic Attribute 3

COLOR1, SPECULAR, ATTR4 Input secondary color, Generic Attribute 4

TESSFACTOR, FOGCOORD,
ATTR5

Input fog coordinate, Generic Attribute 5

PSIZE, ATTR6 Input point size, Generic Attribute 6

BLENDINDICES, ATTR7 Generic Attribute 7

TEXCOORD0-TEXCOORD7,
ATTR8-ATTR15

Input texture coordinates (texcoord0-
texcoord7), Generic Attributes 8–15

TANGENT, ATTR14 Generic Attribute 14

BINORMAL, ATTR15 Generic Attribute 15

Table 24 vp30 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, HPOS Output position

PSIZE, PSIZ Output point size
 808-00504-0000-003 217
NVIDIA

Cg Language Toolkit
The profile allows WPOS to be present as binding semantics on a member of a
structure of a varying output data structure, provided the member with this
binding semantics is not referenced. This allows Cg programs to have same
structure specify the varying output of a vp30 profile program and the varying
input of an fp30 profile program.

FOG, FOGC Output fog coordinate

COLOR0, COL0 Output primary color

COLOR1, COL1 Output secondary color

BCOL0 Output backface primary color

BCOL1 Output backface secondary color

TEXCOORD0-TEXCOORD7,
TEX0-TEX7

Output texture coordinates

CLP0-CL5 Output Clip distances

Table 24 vp30 Varying Output Binding Semantics (continued)

Binding Semantics Name Corresponding Data
218 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
OpenGL NV_fragment_program Profile (fp30)
The fp30 Fragment Program Profile is used to compile Cg source code to
fragment programs for use by the NV_fragment_program OpenGL extension.

Profile Name: fp30
How To Invoke: Use the compiler option -profile fp30

This section describes the capabilities and restrictions of Cg when using the
fp30 profile.

Language Constructs and Support

Data Types

fixed type (s1.10 fixed point) is supported
half type (s10e5 floating-point) is supported

It is recommended that you use fixed, half, and float in that order for
maximum performance. Reversing this order provides maximum precision.
You are encouraged to use the fastest type that meets your needs for precision.

Statements and Operators

Full support for if/else
No for and while loops, unless they can be unrolled by the compiler
Support for flexible texture mapping
Support for screen-space derivative functions
No support for variable indexing of arrays.
 808-00504-0000-003 219
NVIDIA

Cg Language Toolkit
Bindings

Binding Semantics for Uniform Data

Table 25 summarizes the valid binding semantics for uniform parameters in the
fp30 profile.

Binding Semantics for Varying Input/Ouput Data

Table 26 summarizes the valid binding semantics for varying input parameters
in the fp30 profile.
These binding semantics map to NV_fragment_program input registers. The
two sets act as aliases to each other. The profile also allows POSITION, FOG,
PSIZE, HPOS, FOGC, PSIZ, BCOL0, BCOL1, and CLP0–CLP5 to be present as
binding semantics on a member of a structure of a varying input data structure,
provided the member with this binding semantics is not referenced. This allows
Cg programs to have the same structure specify the varying output of a vp30
profile program and the varying input of an fp30 profile program. .

Table 25 fp30 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)-register(s15)
TEXUNIT0-TEXUNIT15

Texunit N, where N is in the range
[0..15].
May be used only with uniform inputs
with sampler* types.

register(c0)-register(c31)
C0-C31

Constant register N, where N is in range
[0..15]
May only be used with uniform inputs.

Table 26 fp30 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data (type)

COLOR0, COL0 Input color0 (float4)

COLOR1, COL1 Input color1 (float4)

TEXCOORD0-TEXCOORD7,
TEX0-TEX7

Input texture coordinates (float4)

WPOS Window Position Coordinates (float4)
220 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Table 27 summarizes the valid binding semantics for varying output parameters
in the fp20 profile. .

Table 27 fp30 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0, COL Output color (float4)

DEPTH, DEPR Output depth (float)
 808-00504-0000-003 221
NVIDIA

Cg Language Toolkit
DirectX Vertex Shader 1.1 Profile (vs_1_1)
The DirectX Vertex Shader 1.1 profile is used to compile Cg source code to
DirectX 8.1 Vertex Shaders and DirectX 9 VS 1.1 shaders5.

Profile Name: vs_1_1

How To Invoke: Use the compiler option -profile vs_1_1.

The vs_1_1 profile limits Cg to match the capabilities of DirectX Vertex
Shaders.
This section describes how using the vs_1_1 profile affects the Cg source code
that the developer writes.

Memory Restrictions
DirectX 8 vertex shaders have a limited amount of memory for instructions and
data.

Program Instruction Limits

The DirectX 8 vertex shaders are limited to 128 instructions. If the compiler
needs to produce more than 128 instructions to compile a program, it reports
an error.

Vector Register Limits

Likewise, there are limited numbers of registers to hold program parameters
and temporary results. Specifically, there are 96 read-only vector registers and
12 read/write vector registers. If the compiler needs more registers to compile a
program than are available, it generates an error.

Language Constructs and Support

Data Types

This profile implements data types as follows:
float data types are implemented as IEEE 32-bit single precision.
half and double data types are treated as float.

5. To understand the capabilities of DirectX VS 1.1 Vertex Shaders and the code produced
by the compiler, refer to the Vertex Shader Reference in the DirectX 8.1 SDK documenta-
tion.
222 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
int data type is supported using floating point operations, which adds extra
instructions for proper truncation for divides, modulos and casts from
floating point types.
fixed or sampler* data types are not supported, but the profile does
provide the minimal "partial support" that is required for these data types
by the core language specification—that is, it is legal to declare variables
using these types, as long as no operations are performed on the variables.

Statements and Operators

The if, while, do, and for statements are allowed only if the loops they define
can be unrolled, because there is no branching in VS 1.1 shaders.
There are no subroutine calls either, so all functions are inlined. Comparison
operators are allowed (>, <, >=, <=, ==, !=) and Boolean operators (||, &&, ?:)
are allowed. However, the logic operators (&, |, ^, ~) are not allowed.

Using Arrays

Variable indexing of arrays is allowed as long as the array is a uniform constant.
For compatibility reasons arrays indexed with variable expressions need not be
declared const just uniform. However, writing to an array that is later indexed
with a variable expression yields unpredictable results.
Array data is not packed because vertex program indexing does not permit it.
Each element of the array takes a single 4-float program parameter register. For
example, float arr[10], float2 arr[10], float3 arr[10], and float4
arr[10] all consume ten program parameter registers.
It is more efficient to access an array of vectors than an array of matrices.
Accessing a matrix requires a floor calculation, followed by a multiply by a
constant to compute the register index. Because vectors (and scalars) take one
register, neither the floor nor the multiply is needed. It is faster to do matrix
skinning using arrays of vectors with a premultiplied index than using arrays of
matrices.
 808-00504-0000-003 223
NVIDIA

Cg Language Toolkit
Constants

Literal constants can be used with this profile, but it is not possible to store
them in the program itself. Instead the compiler will issue, as comments, a list
of program parameter registers and the constants that need to be loaded into
them. The Cg run-time system will handle loading the constants, as directed by
the compiler.

Note: If the Cg run-time system is not used, it is the responsibility of the programmer to
make sure that the constants are loaded properly.

Bindings

Binding Semantics for Uniform Data

Table 28 summarizes the valid binding semantics for uniform parameters in the
vs_1_1 profile.

Binding Semantics for Varying Input/Output Data

Table 29 summarizes the valid binding semantics for uniform parameters in the
vs_1_1 profile. These map to the input registers in DirectX 8.1 vertex shaders.

Table 28 vs_1_1 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c95)
C0–C95

Constant register [0..95].
The aliases c0–c95 (lowercase) are also
accepted.
If used with a variable that requires more than
one constant register (for example, a matrix),
the semantic specifies the first register that is
used.

Table 29 vs_1_1 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

POSITION Vertex shader input register: v0

BLENDWEIGHT Vertex shader input register: v1
224 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Table 30 summarizes the valid binding semantics for varying output parameters
in the vs_1_X profile.These map to output registers in DirectX 8.1 vertex
shaders.

Options
When using the vs_1_1 profile under DirectX 9 it is necessary to tell the
compiler to produce dcl statements to declare varying inputs. The option -
profileopts dcls will cause dcl statements to be added to the compiler
output.

BLENDINDICES Vertex shader input register: v2

NORMAL Vertex shader input register: v3

PSIZE Vertex shader input register: v4

COLOR0, DIFFUSE Vertex shader input register: v5

COLOR1, SPECULAR Vertex shader input register: v6

TEXCOORD0–TEXCOORD7 Vertex shader input register: v7–v14

TANGENTi Vertex shader input register: v14

BINORMAL Vertex shader input register: v15

i. TANGENT is as alias for TEXCOORD7.

Table 30 vs_1_1 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION Output position: oPos

PSIZE Output point size: oPts

FOG Output fog value: oFog

COLOR0–COLOR1 Output color values: oD0, oD1

TEXCOORD0–TEXCOORD7 Output texture coordinates: oT0–oT7

Table 29 vs_1_1 Varying Input Binding Semantics (continued)

Binding Semantics Name Corresponding Data
 808-00504-0000-003 225
NVIDIA

Cg Language Toolkit
DirectX Pixel Shader 1.x Profiles (ps_1_1, ps_1_2,
ps_1_3)

The DirectX pixel shader 1_X profiles are used to compile Cg source code to
DirectX PS 1.1, 1.2 or 1.3 pixel shader assembly.

Profile Names:
ps_1_1 (for DirectX PS 1.1 pixel shaders)
ps_1_2 (for DirectX PS 1.2 pixel shaders)
ps_1_3 (for DirectX 1.2 pixel shaders)
How To Invoke:
Use the compiler option
-profile ps_1_1,
-profile ps_1_2, or
-profile ps_1_3

The deprecated profile dx8ps is also available and is synonymous with ps_1_1.
This document describes the capabilities and restrictions of Cg when using the
DirectX pixel shader 1_X profiles.

Overview
DirectX PS 1.4 is not currently supported by any Cg profile; all statements
about ps_1_X in the remainder of this document refer only to ps_1_1, ps_1_2
and ps_1_3.
The underlying instruction set and machine architecture limit programmability
in these profiles compared to what is allowed by Cg constructs6. Thus, these
profiles place additional restrictions on what can and cannot be done in a Cg
program.
The main differences between these profiles from the Cg perspective is that
additional texture addressing operations are exposed in ps_1_2 and ps_1_3 and
the depth value output is made available (in a limited form) in ps_1_3.
Operations in the DirectX pixel shader 1_X profiles can be categorized as
texture addressing operations and arithmetic operations. Texture addressing
operations are operations which generate texture addressing instructions,
arithmetic operations are operations which generate arithmetic instructions. A
Cg program in one of these profiles is limited to generating a maximum of four
texture addressing instructions and eight arithmetic instructions. Since these

6. For more details about the underlying instruction sets, their capabilities, and their limita-
tions, please refer to the MSDN documentation of DirectX pixel shaders 1.1, 1.2 and 1.3.
226 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
numbersare quite small, users need to be very aware of this limitation while
writing Cg code for these profiles.
There are certain simple arithmetic operations that can be applied to inputs of
texture addressing operations and to inputs and outputs of arithmetic
operations without generating an arithmetic instruction. From here on, these
operations are referred to as input modifiers and output modifiers.
The ps_1_X profiles also restrict when a texture addressing operation or
arithmetic operation can occur in the program. A texture addressing operation
may not have any dependency on the output of an arithmetic operation unless

the arithmetic operation is a valid input modifier for the texture addressing
operation
the arithmetic operation is part of a complex texture addressing operation
(which are summarized in the section on Auxiliary Texture Functions)

Modifiers
Input and output modifiers may be used to perform simple arithmetic
operations without generating an arithmetic instruction. Instead, the arithmetic
operation modifies the assembly instruction or source registers to which it is
applied. For example, the following Cg expression:

z = (x - 0.5 + y) / 2

could generate the following pixel shader instruction (assuming x is in t0, y is in
t1, and z is in r0):

add_d2 r0, t0_bias, t1

Table 31 summarizes how different DirectX pixel shader 1_X instruction set
modifiers are expressed in Cg programs. For more details on the context in
which each modifier is allowed and ways in which modifiers may be combined
refer to the DirectX pixel shader 1_X documentation.

Table 31 DirectX pixel shader 1_X Instruction Set Modifiers

Instruction/Register
Modifier Cg expression

instr_x2 2*x

instr_x4 4*x

instr_d2 x/2

instr_sat saturate(x) (i.e. min(x, max(x, 1), 0))

reg_bias x-0.5
 808-00504-0000-003 227
NVIDIA

Cg Language Toolkit
Language Constructs and Support

Data Types

In the ps_1_X profiles, operations occur on signed clamped floating point
values in the range MaxPixelShaderValue to MaxPixelShaderValue, where
MaxPixelShaderValue is determined by the DirectX implementation. These
profiles allow all data types to be used, but all operations are carried out in the
above range.
Refer to the DirectX pixel shader 1_X documentation for more details.

Statements and Operators

The DirectX pixel shader 1_X profiles support all of the Cg language
constructs, with the following exceptions:

Arbitrary swizzles are not supported (though arbitrary write masks are).
Only the following swizzles are allowed
.x/.r .y/.g .z/.b .w/.a
.xy/.rg .xyz/.rgb .xyzw/.rgba
.xxx/.rrr .yyy/.ggg .zzz/.bbb .www/.aaa
.xxxx/.rrrr .yyyy/.gggg .zzzz/.bbbb .wwww/.aaaa

Matrix swizzles are not supported.
Boolean operators other than <, <=, > and >= are not supported.
Furthermore, <, <=, > and >= are only supported as the condition in the ?:
operator.
Bitwise integer operators are not supported.
/ is not supported unless the divisor is a non-zero constant or it is used to
compute the depth output in ps_1_3.
% is not supported.

1-reg 1-x

-reg -x

reg_bx2 2*(x-0.5)

Table 31 DirectX pixel shader 1_X Instruction Set Modifiers

Instruction/Register
Modifier Cg expression
228 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Ternary ?: is supported if the boolean test expression is a compile-time
boolean constant, a uniform scalar boolean or a scalar comparison to a
constant value in the range [-0.5, 1.0] (for example, a > 0.5 ? b : c).
do, for, and while loops are supported only when they can be
completely unrolled.
arrays, vectors, and matrices may be indexed only by compile-time constant
values or index variables in loops that can be completely unrolled.
The discard statement is not supported. The similar but less general
clip() function is supported.
The use of an "allocation-rule-identifier" for input and output structs is
optional.

Standard Library Functions
Because the DirectX pixel shader 1_X profiles have limited capabilities, not all
of the Cg standard library functions are supported. Table 32 presents the Cg
standard library functions that are supported by these profiles. See the standard
library documentation for descriptions of these functions.

Table 32 Supported Standard Library Functions

dot(floatN, floatN)

lerp(floatN, floatN, floatN)

lerp(floatN, floatN, float)

tex1D(sampler1D, float)

tex1D(sampler1D, float2)

tex1Dproj(sampler1D, float2)

tex1Dproj(sampler1D, float3)

tex2D(sampler2D, float2)

tex2D(sampler2D, float3)

tex2Dproj(sampler2D, float3)

tex2Dproj(sampler2D, float4)

texRECT(samplerRECT, float2)

texRECT(samplerRECT, float3)

texRECTproj(samplerRECT, float3)
 808-00504-0000-003 229
NVIDIA

Cg Language Toolkit
Note: The non-projective texture lookup functions are actually done as projective
lookups on the underlying hardware. Because of this, the w component of the
texture coordinates passed to these functions from the application or vertex
program must contain the value 1.

Texture coordinate parameters for projective texture lookup functions must
have swizzles that match the swizzle done by the generated texture addressing
instruction. While this may seem burdensome, it is intended to allow ps_1_X
profile programs to behave correctly under other pixel shader profiles.
Table 33 lists the swizzles required on the texture coordinate parameter to the
projective texture lookup functions.

texRECTproj(samplerRECT, float4)

tex3D(sampler3D, float3)

tex3Dproj(sampler3D, float4)

texCUBE(samplerCUBE, float3)

texCUBEproj(samplerCUBE, float4)

Table 33 Required Projective Texture Lookup Swizzles

Texture Lookup Function Texture Coordinate Swizzle

tex1Dproj .xw/.ra

tex2Dproj .xyw/.rga

texRECTproj .xyw/.rga

tex3Dproj .xyzw/.rgba

texCUBEproj .xyz/.rgba

Table 32 Supported Standard Library Functions (continued)
230 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Bindings

Manual Assignment of Bindings

The Cg compiler can determine bindings between texture units and uniform
sampler parameters/texture coordinate inputs automatically. This automatic
assignment is based on the context in which uniform sampler parameters and
texture coordinate inputs are used together.
To specify bindings between texture units and uniform parameters/texture
coordinates to match their application, all sampler uniform parameters and
texture coordinate inputs that are used in the program must have matching
binding semantics—that is, TEXUNIT<n> may only be used with TEXCOORD<n>.
Partially specified binding semantics may not work in all cases. Fundamentally,
this restriction is due to the close coupling between texture samplers and
texture coordinates in DirectX pixel shaders 1_X.

Binding Semantics for Uniform Data

If a binding semantic for a uniform parameter is not specified then the compiler
will allocate one automatically. Scalar uniform parameters may be allocated to
either the xyz or the w portion of a constant register depending on how they are
used within the Cg program. When using the output of the compiler without
the Cg runtime, you must set all values of a scalar uniform to the desired scalar
value, not just the x component.
Table 34 summarizes the valid binding semantics for uniform parameters in the
ps_1_X profiles. :

Table 34 DirectX Pixel Shader 1_X Uniform Input Binding
Semantics

Binding Semantics Name Corresponding Data

register(s0)—register(s3)
TEXUNIT0—TEXTUNIT3

Texture unit N, where N is in range
[0...3].
May be used only with uniform inputs
with sampler* types.

register(c0)–register(c7)
C0–C7

Constant register [0...7]
 808-00504-0000-003 231
NVIDIA

Cg Language Toolkit
Binding Semantics for Varying Input/Output Data

The varying input binding semantics in the ps_1_X profiles are the same as the
varying output binding semantics of the vs_1_1 profile.
Varying input binding semantics in the ps_1_X profiles consist of COLOR0,
COLOR1, TEXCOORD0, TEXCOORD1, TEXCOORD2 and TEXCOORD3. These map to
output registers in DirectX vertex shaders.
Table 35 summarizes the valid binding semantics for varying input parameters
in the ps_1_X profiles. .

Additionally, the ps_1_X profiles allow POSITION, FOG, PSIZE, TEXCOORD4,
TEXCOORD5, TEXCOORD6, and TEXCOORD7 to be specified on varying inputs,
provided these inputs are not referenced. This allows Cg programs to have the
same structure specify the varying output of a vs_1_1 profile program and the
varying input of a ps_1_X profile program.
Table 36 summarizes the valid binding semantics for varying output parameters
in the ps_1_X profile.

Table 35 DirectX Pixel Shader 1_X Varying Input Binding
Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0
COL, COL0

Input color value v0

COLOR1
COL1

Input coor value v1

TEXCOORD0—TEXCOORD3
TEX0—TEX3

Input texture coordinates t0–t3

Table 36 DirectX Pixel Shader 1_X Varying Output Binding
Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0
COL, COL0

Output color (float4)

DEPTH
DEPR

Output depth (float)
232 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
The output depth value is special in that it may only be assigned a value in the
ps_1_3 profile, and must be of the form

...
float4 t = <texture addressing operation>;
float z = dot(texCoord<n>, t.xyz);
float w = dot(texCoord<n+1>, t.xyz);
depth = z / w;
...

Auxiliary Texture Functions
Because the capabilities of the texture addressing instructions are limited in
DirectX pixel shader 1_X, a set of auxiliary functions are provided in these
profiles that express the functionality of the more complex texture addressing
instructions. These functions are merely provided as a convenience for writing
ps_1_X Cg programs. The same result can be achieved by writing the expanded
form of each function directly. Using the expanded form has the additional
advantage of being supported on other profiles.
Table 37 summarizes these functions.

Table 37 DirectX Pixel Shader 1_X Auxiliary Texture Functions

Texture Function

Description

offsettex2D(uniform sampler2D tex, float2 st,
 float4 prevlookup, uniform float4 m)
offsettexRECT(uniform samplerRECT tex, float2 st,
 float4 prevlookup, uniform float4 m)

Performs the following:
 float2 newst = st + m.xy * prevlookup.xx + m.zw * prevlookup.yy;
 return tex2D/RECT(tex, newst);
where
 st are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation, and
 m is the 2-D bump environment mapping matrix.
This function can be used to generate the texbem instruction in all ps_1_X
profiles.
 808-00504-0000-003 233
NVIDIA

Cg Language Toolkit
offsettex2DScaleBias(uniform sampler2D tex, float2 st,
 float4 prevlookup, uniform float4 m,
 uniform float scale, uniform float bias)
offsettexRECTScaleBias(uniform samplerRECT tex, float2 st,
 float4 prevlookup, uniform float4 m,
 uniform float scale, uniform float bias)

Performs the following
 float2 newst = st + m.xy * prevlookup.xx + m.zw * prevlookup.yy;
 float4 result = tex2D/RECT(tex, newst);
 return result * saturate(prevlookup.z * scale + bias);
where
 st are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation,
 m is the 2-D bump environment mapping matrix,
 scale is the 2-D bump environment mapping scale factor, and
 bias is the 2-D bump environment mapping offset.
This function can be used to generate the texbeml instruction in all ps_1_X
profiles.

tex1D_dp3(sampler1D tex, float3 str, float4 prevlookup)

Performs the following
 return tex1D(tex, dot(str, prevlookup.xyz));
where
 str are texture coordinates associated with sampler tex, and
 prevlookup is the result of a previous texture operation.
This function can be used to generate the texdp3tex instruction in the
ps_1_2 and ps_1_3 profiles.

Table 37 DirectX Pixel Shader 1_X Auxiliary Texture Functions

Texture Function

Description
234 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
tex2D_dp3x2(uniform sampler2D tex, float3 str,
 float4 intermediate_coord, float4 prevlookup)
texRECT_dp3x2(uniform samplerRECT tex, float3 str,
 float4 intermediate_coord, float4 prevlookup)

Performs the following
 float2 newst = float2(dot(intermediate_coord.xyz, prevlookup.xyz),
 dot(str, prevlookup.xyz));
 return tex2D/RECT(tex, newst);
where
 str are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation, and
 intermediate_coord are texture coordinates associated with the previous
 texture unit.
This function can be used to generate the texm3x2pad/texm3x2tex
instruction combination in all ps_1_X profiles.

tex3D_dp3x3(sampler3D tex, float3 str,
 float4 intermediate_coord1,
 float4 intermediate_coord2, float4 prevlookup)
texCUBE_dp3x3(samplerCUBE tex, float3 str,
 float4 intermediate_coord1,
 float4 intermediate_coord2, float4 prevlookup)

Performs the following
 float3 newst = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
 dot(intermediate_coord2.xyz, prevlookup.xyz),
 dot(str, prevlookup.xyz));
 return tex3D/CUBE(tex, newst);
where
 str are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation,
 intermediate_coord1 are texture coordinates associated with the 'n-2'
 texture unit, and
 intermediate_coord2 are texture coordinates associated with the 'n-1'
 texture unit.
This function can be used to generate the texm3x3pad/texm3x3pad/
texm3x3tex instruction combination in all ps_1_X profiles.

Table 37 DirectX Pixel Shader 1_X Auxiliary Texture Functions

Texture Function

Description
 808-00504-0000-003 235
NVIDIA

Cg Language Toolkit
texCUBE_reflect_dp3x3(uniform samplerCUBE tex, float4 strq,
 float4 intermediate_coord1,
 float4 intermediate_coord2,
 float4 prevlookup)

Performs the following
 float3 E = float3(intermediate_coord2.w, intermediate_coord1.w,
 strq.w);
 float3 N = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
 dot(intermediate_coord2.xyz, prevlookup.xyz),
 dot(strq.xyz, prevlookup.xyz));
 return texCUBE(tex, 2 * dot(N, E) / dot(N, N) * N - E);
where
 strq are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation,
 intermediate_coord1 are texture coordinates associated with the n-2
 texture unit, and
 intermediate_coord2 are texture coordinates associated with the n-1
 texture unit.
This function can be used to generate the texm3x3pad/texm3x3pad/
texm3x3vspec instruction combination in all ps_1_X profiles.

Table 37 DirectX Pixel Shader 1_X Auxiliary Texture Functions

Texture Function

Description
236 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
texCUBE_reflect_eye_dp3x3(uniform samplerCUBE tex,
 float3 str, float4 intermediate_coord1,
 float4 intermediate_coord2,
 float4 prevlookup, uniform float3 eye)

Performs the following
 float3 N = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
 dot(intermediate_coord2.xyz, prevlookup.xyz),
 dot(coords.xyz, prevlookup.xyz));
 return texCUBE(tex, 2 * dot(N, E) / dot(N, N) * N - E);
where
 strq are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation,
 intermediate_coord1 are texture coordinates associated with the n-2
 texture unit,
 intermediate_coord2 are texture coordinates associated with the n-1
 texture unit, and
 eye is the eye-ray vector.
This function can be used to generate the texm3x3pad/texm3x3pad/
texm3x3spec instruction combination in all ps_1_X profiles.

tex_dp3x2_depth(float3 str, float4 intermediate_coord,
 float4 prevlookup)

Performs the following
 float z = dot(intermediate_coord.xyz, prevlookup.xyz);
 float w = dot(str, prevlookup.xyz);
 return z / w;
where
 str are texture coordinates associated with the nth texture unit,
 intermediate_coord' are texture coordinates associated with the n-1
 texture unit, and
 prevlookup is the result of a previous texture operation.
This function can be used in conjunction with the DEPTH varying out semantic
to generate the texm3x2pad/texm3x2depth instruction combination in
ps_1_3.

Table 37 DirectX Pixel Shader 1_X Auxiliary Texture Functions

Texture Function

Description
 808-00504-0000-003 237
NVIDIA

Cg Language Toolkit
Examples
The following examples illustrate how a developer can use Cg to achieve
DirectX pixel shader 1_X functionality.

Example 1:

Example 2:

struct VertexOut {
 float4 color : COLOR0;
 float4 texCoord0 : TEXCOORD0;
 float4 texCoord1 : TEXCOORD1;
};

float4 main(VertexOut IN,
 uniform sampler2D diffuseMap,
 uniform sampler2D normalMap) : COLOR
{
 float4 diffuseTexColor = tex2D(diffuseMap,
IN.texCoord0.xy);
 float4 normal = 2 * (tex2D(normalMap, IN.texCoord1.xy) -
0.5);
 float3 light_vector = 2 * (IN.color.rgb - 0.5);
 float4 dot_result = saturate(dot(light_vector,
normal.xyz).xxxx);
 return dot_result * diffuseTexColor;
}

struct VertexOut {
 float4 texCoord0 : TEXCOORD0;
 float4 texCoord1 : TEXCOORD1;
 float4 texCoord2 : TEXCOORD2;
 float4 texCoord3 : TEXCOORD3;
};

float4 main(VertexOut IN,
 uniform sampler2D normalMap,
 uniform sampler2D intensityMap,
 uniform sampler2D colorMap) : COLOR
{
 float4 normal = 2 * (tex2D(normalMap, IN.texCoord0.xy) -
0.5);
 float2 intensCoord = float2(dot(IN.texCoord1.xyz,
normal.xyz),
 dot(IN.texCoord2.xyz,
normal.xyz));
238 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
 float4 intensity = tex2D(intensityMap, intensCoord);
 float4 color = tex2D(colorMap, IN.texCoord3.xy);
 return color * intensity;
}

 808-00504-0000-003 239
NVIDIA

Cg Language Toolkit
OpenGL NV_vertex_program 1.0 Profile (vp20)
The vp20 Vertex Program profile is used to compile Cg source code to vertex
programs for use by the NV_vertex_program OpenGL extension7.

Profile Name: vp20

How To Invoke: Use the compiler option -profile vp20

This section describes the capabilities and restrictions of Cg when using the
vp20 profile.

Overview
The vp20 profile limits Cg to match the capabilities of the NV_vertex_program
extension. NV_vertex_program has the same capabilities as DirectX 8 vertex
shaders, so the limitations that this profile places on the Cg source code written
by the programmer is the same as the DirectX VS 1.1 shader profile8.
Aside from the syntax of the compiler output, the only difference between the
vp20 Vertex Shader profile and the DirectX VS 1.1 profile is that the vp20
profile supports two more outputs. The vertex-to-fragment connector can have
the additional fields BFC0 (for back-facing primary color) and BFC1 (for back-
facing secondary color).

Position Invariance
The vp20 profile supports position invariance, as described in the core
language specification.
The modelview-projection matrix must be specified using a binding
semantic of _GL_MVP.

7. To understand the capabilities of NV_vertex_program and the code produced by the com-
piler using the vp20 profile, see the GL_NV_vertex_program extension documentation.
8. See “DirectX Vertex Shader 1.1 Profile (vs_1_1)” on page 222 for a full explanation of
the data types, statements, and operators supported by this profile.
240 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Data Types
This profile implements data types as follows:

float data types are implemented as IEEE 32-bit single precision.
half and double data types are implemented as float.
int data type is supported using floating point operations, which add extra
instructions for proper truncation for divides, modulos, and casts from
floating point types.
fixed or sampler* data types are not supported, but the profile does
provide the minimal "partial support" that is required for these data types
by the core language specification—that is, it is legal to declare variables
using these types, as long as no operations are performed on the variables.

Bindings

Binding Semantics for Uniform Data

Table 38 summarizes the valid binding semantics for uniform parameters in the
vp20 profile.

Table 38 vp20 Uniform Input Binding Semantics

Binding Semantics Name Corresponding Data

register(c0)–register(c95)
C0–C95

Constant register [0..95].
The aliases c0–c95 (lowercase) are also
accepted.
If used with a variable that requires more
than one constant register (for example, a
matrix), the semantic specifies the first
register that is used.
 808-00504-0000-003 241
NVIDIA

Cg Language Toolkit
Binding Semantics for Varying Input/Output Data

Table 39 summarizes the valid binding semantics for varying input parameters
in the vp20 profile.
One can also use TANGENT and BINORMAL instead of TEXCOORD6 and
TEXCOORD7. A second set of binding semantics, ATTR0–ATTR15, can also be
used. The two sets act as aliases to each other.

Table 40 summarizes the valid binding semantics for varying output parameters
in the vp20 profile.
These binding semantics map to NV_vertex_program output registers. The
two sets act as aliases to each other.

Table 39 vp20 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, ATTR0 Input Vertex, Generic Attribute 0

BLENDWEIGHT, ATTR1 Input vertex weight, Generic Attribute 1

NORMAL, ATTR2 Input normal, Generic Attribute 2

COLOR0, DIFFUSE, ATTR3 Input primary color, Generic Attribute 3

COLOR1, SPECULAR, ATTR4 Input secondary color, Generic Attribute 4

TESSFACTOR, FOGCOORD, ATTR5 Input fog coordinate, Generic Attribute 5

PSIZE, ATTR6 Input point size, Generic Attribute 6

BLENDINDICES, ATTR7 Generic Attribute 7

TEXCOORD0-TEXCOORD7,
ATTR8–ATTR15

Input texture coordinates (texcoord0-
texcoord7), Generic Attributes 8-15

TANGENT, ATTR14 Generic Attribute 14

BINORMAL, ATTR15 Generic Attribute 15

Table 40 vp20 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

POSITION, HPOS Output position

PSIZE, PSIZ Output point size

FOG, FOGC Output fog coordinate
242 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
The profile also allows WPOS to be present as binding semantics on a member of
a structure of a varying output data structure, provided the member with this
binding semantics is not referenced. This allows Cg programs to have the same
structure specify the varying output of a vp20 profile program and the varying
input of an fp30 profile program.

COLOR0, COL0 Output primary color

COLOR1, COL1 Output secondary color

BCOL0 Output backface primary color

BCOL1 Output backface secondary color

TEXCOORD0-TEXCOORD3, TEX0-TEX3 Output texture coordinates

Table 40 vp20 Varying Output Binding Semantics (continued)

Binding Semantics Name Corresponding Data
 808-00504-0000-003 243
NVIDIA

Cg Language Toolkit
OpenGL NV_texture_shader and NV_register_combiners
Profile (fp20)

The OpenGL NV_texture_shader and NV_register_combiners profile is used
to compile Cg source code to the nvparse text format for the
NV_texture_shader and NV_register_combiners family of OpenGL
extensions9.

Profile Name: fp20
How To Invoke: Use the compiler option -profile fp20

This document describes the capabilities and restrictions of Cg when using the
fp20 profile.

Overview
Operations in the fp20 profile can be categorized as texture shader operations
and arithmetic operations. Texture shader operations are operations which
generate texture shader instructions, arithmetic operations are operations which
generate register combiners instructions.
The underlying instruction set and machine architecture limit programmability
in this profile compared to what is allowed by Cg constructs. Thus, this profile
places additional restrictions on what can and cannot be done in a Cg program.

Restrictions
A Cg program in one of these profiles is limited to generating a maximum of
four texture shader instructions and eight register combiner instructions. Since
these numbers are quite small, users need to be very aware of this limitation
while writing Cg code for these profiles.
The fp20 profile also restricts when a texture shader operation or arithmetic
operation can occur in the program. A texture shader operation may not have
any dependency on the output of an arithmetic operation unless

the arithmetic operation is a valid input modifier for the texture shader
operation
the arithmetic operation is part of a complex texture shader operation
(which are summarized in the section “Auxiliary Texture Functions” on
page 251)

9. For more details about the underlying instruction sets, their capabilities, and their limita-
tions, please refer to the NV_texture_shader and NV_register_combiners extensions in the
OpenGL Extensions documentation.
244 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Modifiers
There are certain simple arithmetic operations that can be applied to inputs of
texture shader operations and to inputs and outputs of arithmetic operations
without generating a register combiner instruction. These operations are
referred to as input modifiers and output modifiers.
Instead of generating a register combiners instruction, the arithmetic operation
modifies the assembly instruction or source registers to which it is applied. For
example, the following Cg expression

 z = (x - 0.5 + y) / 2
could generate the following register combiner instruction (assuming x is in
tex0, y is in tex1, and z is in col0)

Table 41 summarizes how different NV_texture_shader and
NV_register_combiners instruction set modifiers are expressed in Cg
programs. For more details on the context in which each modifier is allowed
and ways in which modifiers may be combined refer to the NV_texture_shader
and NV_register_combiners documentation.

 rgb
 {
 discard = half_bias(tex0.rgb);
 discard = tex1.rgb;
 col0 = sum();
 scale_by_one_half();
 }
 alpha
 {
 discard = half_bias(tex0.a);
 discard = tex1.a;
 col0 = sum();
 scale_by_one_half();
 }

Table 41 NV_texture_shader and NV_register_combiners
Instruction Set Modifiers

Instruction/Register Modifier Cg Expression

scale_by_two() 2*x

scale_by_four() 4*x

scale_by_one_half() x/2

bias_by_negative_one_half() x-0.5
 808-00504-0000-003 245
NVIDIA

Cg Language Toolkit
Language Constructs and Support

Data Types

In the fp20 profile, operations occur on signed clamped floating-point values in
the range -1 to 1. These profiles allow all data types to be used, but all
operations are carried out in the above range. Refer to the NV_texture_shader
and NV_register_combiners documentation for more details.

Statements and Operators

The fp20 profile supports all of the Cg language constructs, with the following
exceptions:

Arbitrary swizzles are not supported (though arbitrary write masks are).
Only the following swizzles are allowed
.x/.r .y/.g .z/.b .w/.a
.xy/.rg .xyz/.rgb .xyzw/.rgba
.xxx/.rrr .yyy/.ggg .zzz/.bbb .www/.aaa
.xxxx/.rrrr .yyyy/.gggg .zzzz/.bbbb .wwww/.aaaa

Matrix swizzles are not supported.
Boolean operators other than <, <=, > and >= are not supported.
Furthermore, <, <=, > and >= are only supported as the condition in the ?:
operator.
Bitwise integer operators are not supported.
/ is not supported unless the divisor is a non-zero constant or it is used to
compute the depth output.

bias_by_negative_one_half_scale_by_two() 2*(x-0.5)

unsigned(reg) saturate(x)
(i.e. min(x, max(x, 1), 0))

unsigned_invert(reg) 1-saturate(x)

half_bias(reg) x-0.5

-reg -x

expand(reg) 2*(x-0.5)

Table 41 NV_texture_shader and NV_register_combiners
Instruction Set Modifiers (continued)

Instruction/Register Modifier Cg Expression
246 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
% is not supported.
Ternary ?: is supported if the boolean test expression is a compile-time
boolean constant, a uniform scalar boolean or a scalar comparison to a
constant value in the range [-0.5, 1.0] (for example, a > 0.5 ? b : c).
do, for, and while loops are supported only when they can be
completely unrolled.
arrays, vectors, and matrices may be indexed only by compile-time constant
values or index variables in loops that can be completely unrolled.
The discard statement is not supported. The similar but less general
clip() function is supported.
The use of an "allocation-rule-identifier" for input and output structs is
optional.

Standard Library functions
Because the fp20 profile has limited capabilities, not all of the Cg standard
library functions are supported.
Table 42 presents the Cg standard library functions that are supported by this
profile. See the standard library documentation for descriptions of these
functions.

Table 42 Supported Standard Library Functions

dot(floatN, floatN)

lerp(floatN, floatN, floatN)

lerp(floatN, floatN, float)

tex1D(sampler1D, float)

tex1D(sampler1D, float2)

tex1Dproj(sampler1D, float2)

tex1Dproj(sampler1D, float3)

tex2D(sampler2D, float2)

tex2D(sampler2D, float3)

tex2Dproj(sampler2D, float3)

tex2Dproj(sampler2D, float4)

texRECT(samplerRECT, float2)
 808-00504-0000-003 247
NVIDIA

Cg Language Toolkit
Note: The non-projective texture lookup functions are actually done as projective
lookups on the underlying hardware. Because of this, the w component of the
texture coordinates passed to these functions from the application or vertex
program must contain the value 1.

Texture coordinate parameters for projective texture lookup functions must
have swizzles that match the swizzle done by the generated texture shader
instruction. While this may seem burdensome, it is intended to allow fp20
profile programs to behave correctly under other pixel shader profiles.
Table 43 lists the swizzles required on the texture coordinate parameter to the
projective texture lookup functions.

texRECT(samplerRECT, float3)

texRECTproj(samplerRECT, float3)

texRECTproj(samplerRECT, float4)

tex3D(sampler3D, float3)

tex3Dproj(sampler3D, float4)

texCUBE(samplerCUBE, float3)

texCUBEproj(samplerCUBE, float4)

Table 43 Required Projective Texture Lookup Swizzles

Texture Lookup Function Texture Coordinate Swizzle

tex1Dproj .xw/.ra

tex2Dproj .xyw/.rga

texRECTproj .xyw/.rga

tex3Dproj .xyzw/.rgba

texCUBEproj .xyz/.rgba

Table 42 Supported Standard Library Functions (continued)
248 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
Bindings

Manual Assignment of Bindings

The Cg compiler can determine bindings between texture units and uniform
sampler parameters/texture coordinate inputs automatically. This automatic
assignment is based on the context in which uniform sampler parameters and
texture coordinate inputs are used together.
To specify bindings between texture units and uniform parameters/texture
coordinates to match their application, all sampler uniform parameters and
texture coordinate inputs that are used in the program must have matching
binding semantics—for example, TEXUNIT<n> may only be used with
TEXCOORD<n>. Partially specified binding semantics may not work in all cases.
Fundamentally, this restriction is due to the close coupling between texture
samplers and texture coordinates in the NV_texture_shader extension.

Binding Semantics for Uniform Data

If a binding semantic for a uniform parameter is not specified, then the
compiler will allocate one automatically. Scalar uniform parameters may be
allocated to either the xyz or the w portion of a constant register depending on
how they are used within the Cg program. When using the output of the
compiler without the Cg runtime, you must set all values of a scalar uniform to
the desired scalar value, not just the x component.
Table 44 summarizes the valid binding semantics for uniform parameters in the
fp20 profile:

The ps_1_X profiles allow the programmer to decide which constant register a
uniform variable will reside in by specifying the C<n>/register(c<n>)
binding semantic. This is not allowed in the fp20 profile since the
NV_register_combiners extension does not have a single bank of constant
registers. While the NV_register_combiners extension does describe
constant registers, these constant registers are per-combiner stage and
specifying bindings to them in the program would overly constrain the
compiler.

Table 44 fp20 Uniform Binding Semantics

Binding Semantics Name Corresponding Data

register(s0)—register(s3)
TEXUNIT0—TEXTUNIT3

Texture unit N, where N is in range
[0...3].
May be used only with uniform inputs
with sampler* types.
 808-00504-0000-003 249
NVIDIA

Cg Language Toolkit
Binding Semantics for Varying Input/Output Data

The varying input binding semantics in the fp20 profile are the same as the
varying output binding semantics of the vp20 profile.
Varying input binding semantics in the fp20 profile consist of COLOR0, COLOR1,
TEXCOORD0, TEXCOORD1, TEXCOORD2 and TEXCOORD3. These map to output
registers in vertex shaders.
Table 45 summarizes the valid binding semantics for varying input parameters
in the fp20 profile.

Additionally, the fp20 profile allows POSITION, PSIZE, TEXCOORD4,
TEXCOORD5, TEXCOORD6, and TEXCOORD7 to be specified on varying inputs,
provided these inputs are not referenced. This allows Cg programs to have the
same structure specify the varying output of a vp20 profile program and the
varying input of a fp20 profile program.
Table 46 summarizes the valid binding semantics for varying output parameters
in the fp20 profile.

Table 45 fp20 Varying Input Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0
COL, COL0

Input color value v0

COLOR1
COL1

Input coor value v1

TEXCOORD0—TEXCOORD3
TEX0—TEX3

Input texture coordinates t0–t3

FOGP
FOG

Input fog color and factor

Table 46 fp20 Varying Output Binding Semantics

Binding Semantics Name Corresponding Data

COLOR, COLOR0
COL, COL0

Output color (float4)

DEPR
DEPTH

Output depth (float)
250 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
The output depth value is special in that it may only be assigned a value of the
form

 ...
 float4 t = <texture shader operation>;
 float z = dot(texCoord<n>, t.xyz);
 float w = dot(texCoord<n+1>, t.xyz);
 depth = z / w;
 ...

Auxiliary Texture Functions
Because the capabilities of the texture shader instructions are limited in
NV_texture_shader, a set of auxiliary functions are provided in these profiles
that express the functionality of the more complex texture shader instructions.
These functions are merely provided as a convenience for writing fp20 Cg
programs. The same result can be achieved by writing the expanded form of
each function directly. Using the expanded form has the additional advantage of
being supported on other profiles.
Table 47 summarizes these functions.

Table 47 fp20 Auxiliary Texture Functions

Texture Function

Description

offsettex2D(uniform sampler2D tex, float2 st,
 float4 prevlookup, uniform float4 m)
offsettexRECT(uniform samplerRECT tex, float2 st,
 float4 prevlookup, uniform float4 m)

Performs the following:
 float2 newst = st + m.xy * prevlookup.xx + m.zw * prevlookup.yy;
 return tex2D/RECT(tex, newst);
where
 st are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation, and
 m is the offset texture matrix.
This function can be used to generate the offset_2d or
offset_rectangle NV_texture_shader instructions.
 808-00504-0000-003 251
NVIDIA

Cg Language Toolkit
offsettex2DScaleBias(uniform sampler2D tex, float2 st,
 float4 prevlookup, uniform float4 m,
 uniform float scale, uniform float bias)
offsettexRECTScaleBias(uniform samplerRECT tex, float2 st,
 float4 prevlookup, uniform float4 m,
 uniform float scale, uniform float bias)

Performs the following
 float2 newst = st + m.xy * prevlookup.xx + m.zw * prevlookup.yy;
 float4 result = tex2D/RECT(tex, newst);
 return result * saturate(prevlookup.z * scale + bias);
where
 st are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation,
 m is the offset texture matrix,
 scale is the offset texture scale, and
 bias is the offset texture bias.
This function can be used to generate the offset_2d_scale or
offset_rectangle_scale NV_texture_shader instructions.

tex1D_dp3(sampler1D tex, float3 str, float4 prevlookup)

Performs the following
 return tex1D(tex, dot(str, prevlookup.xyz));
where
 str are texture coordinates associated with sampler tex, and
 prevlookup is the result of a previous texture operation.
This function can be used to generate the dot_product_1d
NV_texture_shader instruction.

Table 47 fp20 Auxiliary Texture Functions (continued)

Texture Function

Description
252 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
tex2D_dp3x2(uniform sampler2D tex, float3 str,
 float4 intermediate_coord, float4 prevlookup)
texRECT_dp3x2(uniform samplerRECT tex, float3 str,
 float4 intermediate_coord, float4 prevlookup)

Performs the following
 float2 newst = float2(dot(intermediate_coord.xyz, prevlookup.xyz),
 dot(str, prevlookup.xyz));
 return tex2D/RECT(tex, newst);
where
 str are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation, and
 intermediate_coord are texture coordinates associated with the previous
 texture unit.
This function can be used to generate the dot_product_2d or
dot_product_rectangle NV_texture_shader instruction combinations.

tex3D_dp3x3(sampler3D tex, float3 str,
 float4 intermediate_coord1,
 float4 intermediate_coord2, float4 prevlookup)
texCUBE_dp3x3(samplerCUBE tex, float3 str,
 float4 intermediate_coord1,
 float4 intermediate_coord2, float4 prevlookup)

Performs the following
 float3 newst = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
 dot(intermediate_coord2.xyz, prevlookup.xyz),
 dot(str, prevlookup.xyz));
 return tex3D/CUBE(tex, newst);
where
 str are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation,
 intermediate_coord1 are texture coordinates associated with the 'n-2'
 texture unit, and
 intermediate_coord2 are texture coordinates associated with the 'n-1'
 texture unit.
This function can be used to generate the dot_product_3d or
dot_product_cube_map NV_texture_shader instruction combinations.

Table 47 fp20 Auxiliary Texture Functions (continued)

Texture Function

Description
 808-00504-0000-003 253
NVIDIA

Cg Language Toolkit
texCUBE_reflect_dp3x3(uniform samplerCUBE tex, float4 strq,
 float4 intermediate_coord1,
 float4 intermediate_coord2,
 float4 prevlookup)

Performs the following
 float3 E = float3(intermediate_coord2.w, intermediate_coord1.w,
 strq.w);
 float3 N = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
 dot(intermediate_coord2.xyz, prevlookup.xyz),
 dot(strq.xyz, prevlookup.xyz));
 return texCUBE(tex, 2 * dot(N, E) / dot(N, N) * N - E);
where
 strq are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation,
 intermediate_coord1 are texture coordinates associated with the n-2
 texture unit, and
 intermediate_coord2 are texture coordinates associated with the n-1
 texture unit.
This function can be used to generate the
dot_product_reflect_cube_map_eye_from_qs NV_texture_shader
instruction combination.

Table 47 fp20 Auxiliary Texture Functions (continued)

Texture Function

Description
254 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
texCUBE_reflect_eye_dp3x3(uniform samplerCUBE tex,
 float3 str,
 float4 intermediate_coord1,
 float4 intermediate_coord2,
 float4 prevlookup,
 uniform float3 eye)

Performs the following
 float3 N = float3(dot(intermediate_coord1.xyz, prevlookup.xyz),
 dot(intermediate_coord2.xyz, prevlookup.xyz),
 dot(coords.xyz, prevlookup.xyz));
 return texCUBE(tex, 2 * dot(N, E) / dot(N, N) * N - E);
where
 strq are texture coordinates associated with sampler tex,
 prevlookup is the result of a previous texture operation,
 intermediate_coord1 are texture coordinates associated with the 'n-2'
 texture unit,
 intermediate_coord2 are texture coordinates associated with the n-1
 texture unit, and
 eye is the eye-ray vector.
This function can be used generate the
dot_product_reflect_cube_map_const_eye NV_texture_shader
instruction combination.

tex_dp3x2_depth(float3 str, float4 intermediate_coord,
 float4 prevlookup)

Performs the following
 float z = dot(intermediate_coord.xyz, prevlookup.xyz);
 float w = dot(str, prevlookup.xyz);
 return z / w;
where
 str are texture coordinates associated with the nth texture unit,
 intermediate_coord' are texture coordinates associated with the n-1
 texture unit, and
 prevlookup is the result of a previous texture operation.
This function can be used in conjunction with the DEPTH varying out semantic
to generate the dot_product_depth_replace NV_texture_shader
instruction combination.

Table 47 fp20 Auxiliary Texture Functions (continued)

Texture Function

Description
 808-00504-0000-003 255
NVIDIA

Cg Language Toolkit
Examples
The following examples illustrate how a developer can use Cg to achieve
NV_texture_shader and NV_register_combiners functionality.

Example 1:

Example 2:

struct VertexOut {
 float4 color : COLOR0;
 float4 texCoord0 : TEXCOORD0;
 float4 texCoord1 : TEXCOORD1;
};

float4 main(VertexOut IN,
 uniform sampler2D diffuseMap,
 uniform sampler2D normalMap) : COLOR
{
 float4 diffuseTexColor = tex2D(diffuseMap,
IN.texCoord0.xy);
 float4 normal = 2 * (tex2D(normalMap, IN.texCoord1.xy) -
0.5);
 float3 light_vector = 2 * (IN.color.rgb - 0.5);
 float4 dot_result = saturate(dot(light_vector,
normal.xyz).xxxx);
 return dot_result * diffuseTexColor;
}

struct VertexOut {
 float4 texCoord0 : TEXCOORD0;
 float4 texCoord1 : TEXCOORD1;
 float4 texCoord2 : TEXCOORD2;
 float4 texCoord3 : TEXCOORD3;
};

float4 main(VertexOut IN,
 uniform sampler2D normalMap,
 uniform sampler2D intensityMap,
 uniform sampler2D colorMap) : COLOR
{
 float4 normal = 2 * (tex2D(normalMap, IN.texCoord0.xy) -
0.5);
 float2 intensCoord = float2(dot(IN.texCoord1.xyz,
normal.xyz),
 dot(IN.texCoord2.xyz,
normal.xyz));
 float4 intensity = tex2D(intensityMap, intensCoord);
256 808-00504-0000-003
NVIDIA

Appendix B Language Profiles
 float4 color = tex2D(colorMap, IN.texCoord3.xy);
 return color * intensity;
}

 808-00504-0000-003 257
NVIDIA

Cg Language Toolkit
258 808-00504-0000-003
NVIDIA

	Appendix A Cg Language Specification
	Language Overview
	Silent Incompatibilities
	Similar Operations That Must be Expressed Differently
	Differences from ANSI C

	Detailed Language Specification
	Definitions
	Profiles
	The Uniform Modifier
	Function Declarations
	Overloading of Functions by Profile
	Syntax for Parameters in Function Definitions
	Function Calls
	Types
	Partial Support of Types
	Type Categories
	Constants
	Type Qualifiers
	Type Conversions
	Type Equivalency
	Type-Promotion Rules
	Assignment
	Smearing of Scalars to Vectors

	Namespaces
	Arrays and Subscripting
	Minimum Array Requirements

	Function Overloading
	Global Variables
	Use of Uninitialized Variables
	Preprocessor

	Overview of Binding Semantics
	Binding Semantics
	Aliasing of Semantics
	Restrictions on Semantics Within a Structure
	Additional Details for Binding Semantics
	Using a Structure to Define Binding Semantics (Connectors)
	How Programs Receive and Return Data
	Statements
	Minimum Requirements for if, while, and for Statements
	New Vector Operators
	Arithmetic Precision and Range
	Operator Precedence
	Operator Enhancements
	Operators
	Boolean
	Comparisons
	Arithmetic
	Conditional Operator
	Miscellaneous Operators

	Reserved Words

	Cg Standard Library Functions
	Vertex Program Profiles
	Mandatory Computation of Position Output
	Position Invariance
	Binding Semantics for Outputs

	Fragment Program Profiles
	Binding Semantics for Outputs

	Appendix B Language Profiles
	DirectX Vertex Shader 2.x Profiles (vs_2_0, vs_2_x)
	Overview
	Memory
	Statements and Operators
	Data Types
	Using Arrays
	Bindings
	Options

	DirectX Pixel Shader 2.x Profiles (ps_2_0, ps_2_x)
	Memory
	Language Constructs and Support
	Bindings
	Options
	Limitations in this Implementation

	OpenGL ARB Vertex Program Profile (arbvp1)
	Overview
	Accessing OpenGL State
	Position Invariance
	Data Types
	Compatibility with the vp20 Vertex Program Profile
	Loading Constants
	Bindings

	OpenGL ARB Fragment Program Profile (arbfp1)
	Memory
	Language Constructs and Support
	Bindings
	Options
	Limitations in the Implementation

	OpenGL NV_vertex_program 2.0 Profile (vp30)
	Position Invariance
	Language Constructs
	Bindings

	OpenGL NV_fragment_program Profile (fp30)
	Language Constructs and Support
	Bindings

	DirectX Vertex Shader 1.1 Profile (vs_1_1)
	Memory Restrictions
	Language Constructs and Support
	Bindings
	Options

	DirectX Pixel Shader 1.x Profiles (ps_1_1, ps_1_2, ps_1_3)
	Overview
	Modifiers
	Language Constructs and Support
	Standard Library Functions
	Bindings
	Auxiliary Texture Functions
	Examples

	OpenGL NV_vertex_program 1.0 Profile (vp20)
	Overview
	Position Invariance
	Data Types
	Bindings

	OpenGL NV_texture_shader and NV_register_combiners Profile (fp20)
	Overview
	Restrictions
	Modifiers
	Language Constructs and Support
	Standard Library functions
	Bindings
	Auxiliary Texture Functions
	Examples

