
Deferred ShadingDeferred Shading

Mark Harris

The Challenge: Real-Time Lighting

Modern games use many lights on many objects
covering many pixels

computationally expensive

Three major options for real-time lighting
Single-pass, multi-light

Multi-pass, multi-light

Deferred Shading

Each has associated trade-offs

Comparison: Single-Pass Lighting

For Each Object:

Render object, apply all lighting in one shader

Hidden surfaces can cause wasted shading

Hard to manage multi-light situations
Code generation can result in thousands of
combinations for a single template shader

Hard to integrate with shadows
Stencil = No Go

Shadow Maps = Easy to overflow VRAM

Comparison: Multipass Lighting

For Each Light:

For Each Object Affected By Light:

framebuffer += brdf(object, light)

Hidden surfaces can cause wasted shading

High Batch Count (1/object/light)
Even higher if shadow-casting

Lots of repeated work each pass:
Vertex transform & setup

Anisotropic filtering

Comparison: Deferred Shading

For Each Object:

Render lighting properties to “G-buffer”

For Each Light:

framebuffer += brdf(G-buffer, light)

Greatly simplifies batching & engine management

Easily integrates with popular shadow techniques

“Perfect” O(1) depth complexity for lighting

Lots of small lights ~ one big light

Deferred Shading: Not A New Idea!

Deferred shading introduced by Michael Deering et
al. at SIGGRAPH 1988

Their paper does not ever use the word “deferred”

PixelFlow used it (UNC / HP project)

Just now becoming practical for games!

What is a G-Buffer?

G-Buffer = All necessary per-pixel lighting terms
Normal

Position

Diffuse / Specular Albedo, other attributes

Limits lighting to a small number of parameters!

What You Need

Deferred shading is best with high-end GPU
features:

Floating-point textures: must store position

Multiple Render Targets (MRT): write all G-buffer
attributes in a single pass

Floating-point blending: fast compositing

Attributes Pass

Attributes written will depend on your shading

Attributes needed
Position

Normal

Color

Others: specular/exponent map, emissive, light map,
material ID, etc.

Option: trade storage for computation
Store pos.z and compute xy from z + window.xy

Store normal.xy and compute z=sqrt(1-x2-y2)

MRT rules

Up to 4 active render targets

All must have the same number of bits

You can mix RTs with different number of channels

For example, this is OK:
RT0 = R32f

RT1 = G16R16f

RT2 = ARGB8

This won’t work:
RT0 = G16R16f

RT1 = A16R16G16B16f

Example MRT Layout

Three 16-bit Float MRTs

16-bit float is overkill for Diffuse reflectance…
But we don’t have a choice due to MRT rules

Position.x Position.y Position.z Emissive

Diffuse.r Diffuse.g Diffuse.b Specular

Normal.x Normal.y Normal.z Free

RT0

RT1

RT2

Computing Lighting

Render convex bounding geometry

Spot Light = Cone

Point Light = Sphere

Directional Light = Quad
or box

Read G-Buffer

Compute radiance

Blend into frame buffer

Lots of optimizations possible
Clipping, occlusion query, Z-cull, stencil cull, etc.

Courtesy of Shawn Hargreaves,
GDC 2004

Lighting Details

Blend contribution from each light into
accumulation buffer

Keep diffuse and specular separate

For each light:

diffuse += diffuse(G-buff.N, L))

specular += G-buff.spec *

specular(G-buff.N, G-buff.P, L)

A final full-screen pass modulates diffuse color:
framebuffer = diffuse * G-buff.diffuse + specular

Options for accumulation buffer(s)

Precision
16-bit floating point enables HDR

Can use 8-bit for higher performance
Beware of saturation

Channels
RGBA if monochrome specular is enough

2 RGBA buffers if RGB diffuse and specular are both
needed.

Small shader overhead for each RT written

Lighting Optimization

Only want to shade surfaces inside light volume
Anything else is wasted work

Inside light volume

Outside volume, will
not be shaded

Outside volume, but
will be shaded, and
lighting discarded!

View frustum

Optimization: Stencil Cull

Two pass algorithm, but first pass is very cheap
Rendering without color writes = 2x pixels per clock

1. Render light volume with color write disabled
Depth Func = LESS, Stencil Func = ALWAYS

Stencil Z-FAIL = REPLACE (with value X)

Rest of stencil ops set to KEEP

2. Render with lighting shader
Depth Func = ALWAY, Stencil Func = EQUAL,
all ops = KEEP, Stencil Ref = X

Unlit pixels will be culled because stencil will not
match the reference value

Setting up Stencil Buffer

Only regions that fail depth test represent objects
within the light volume

View frustum

Only these
bits shaded.

Shadows

Shadow maps work very well with deferred shading
Work trivially for directional and spot lights
Point (omni) lights are trickier…

Don’t forget to use NVIDIA hardware shadow maps
Render to shadow map at 2x pixels per clock
Shadow depth comparison in hardware
4 sample percentage closer filtering in hardware
Very fast high-quality shadows!

May want to increase shadow bias based on pos.z
If using fp16 for G-buffer positions

Virtual Shadow Depth Cube Texture

Solution for point light shadows
Technique created by Will Newhall & Gary King

Unrolls a shadow cube map into a 2D depth texture
Pixel shader computes ST and depth from XYZ

G16R16 cubemap efficiently maps XYZ->ST

Free bilinear filtering offsets extra per-pixel work

More details in ShaderX3

Charles River Media, October 2004

Multiple Materials w/ Deferred Shading

Deferred shading doesn’t scale to multiple materials
Limited number of terms in G-buffer

Shader is tied to light source – 1 BRDF to rule them all

Options:
Re-render light multiple times, 1 for each BRDF

Loses much of deferred shading’s benefit

Store multiple BRDFs in light shader, choose per-pixel
Use that last free channel in G-buffer to store material ID

Reasonably coherent dynamic branching

Should work well on pixel shader 3.0 hardware

Transparency

Deferred shading does not support transparency
Only shades nearest surfaces

Just draw transparent objects last

Can use depth peeling
Blend into final image, sort back-to-front as always

Use “normal” shading / lighting

Make sure you use the same depth buffer as the rest

Also draw particles and other blended effects last

Post-Processing

G-buffer + accum buffers can be used as input to
many post-process effects

Glow

Auto-Exposure

Distortion

Edge-smoothing

Fog

Whatever else!

HDR

See HDR talk

Anti-Aliasing with Deferred Shading

Deferred shading is incompatible with MSAA

API doesn’t allow antialiased MRTs
But this is a small problem…

AA resolve has to happen after accumulation!
Resolve = process of combining multiple samples

G-Buffer cannot be resolved
What happens to an FP16 position when resolved?

Shadow Edge, Correct AA Resolve

occluder

receiver

viewer

Scene

shadow

Shadow Edge, Correct AA Resolve

occluder

receiver

viewer

Scene

shadow

Anti-aliased edge

0.70.3

0.70.3

AA depths

Occluder
Depth = 0.3

Shadow Edge, Correct AA Resolve

occluder

receiver

viewer

Scene

shadow

Anti-aliased edge

0.70.3

0.70.3

AA depths

Occluder
Depth = 0.3

10

10

AA shadow

= Shadow Test Depth

Shadow Edge, Correct AA Resolve

occluder

receiver

viewer

Scene

shadow

Anti-aliased edge

0.70.3

0.70.3

AA depths

Occluder
Depth = 0.3

10

10

AA shadow

shadow = 0.5= Shadow Test Depth

Shadow Edge, G-Buffer Resolve

occluder

receiver

viewer

Scene

shadow

Anti-aliased edge

0.70.3

0.70.3

AA depths

Shadow Edge, G-Buffer Resolve

occluder

receiver

viewer

Scene

shadow

Anti-aliased edge

0.70.3

0.70.3

AA depths

Pre-resolve
depth = 0.5

Occluder
depth = 0.3

= Shadow Test Depth

Shadow Edge, G-Buffer Resolve

occluder

receiver

viewer

Scene

shadow

Anti-aliased edge

0.70.3

0.70.3

AA depths

Pre-resolve
depth = 0.5

Occluder
depth = 0.3

= Shadow Test Depth
Shadow = 1.0

1

Shadow

Occluder incorrectly self-shadows!

Other AA options?

Supersampling lighting is a costly option
Lighting is typically the bottleneck, pixel shader bound

4x supersampled lighting would be a big perf. Hit

“Intelligent Blur” : Only filter object edges
Based on depths and normals of neighboring pixels

Set “barrier” high, to avoid interior blurring

Full-screen shader, but cheaper than SSAA

Should I use Deferred Shading?

This is an ESSENTIAL question

Deferred shading is not always a win
One major title has already scrapped it!

Another came close

Many tradeoffs
AA is problematic

Some scenes work well, others very poorly

The benefit will depend on your application
Game design

Level design

When is Deferred Shading A Win?

Not when you have many directional lights
Shading complexity will be O(R*L), R = screen res.

Outdoor daytime scenes probably not a good case

Better when you have lots of local lights
Ideal case is non-overlapping lights

Shading complexity O(R)

Nighttime scenes with many dynamic lights!

In any case, make sure G-Buffer pass is cheap

Gosh, what about z-cull & SM3.0?

Isn’t the goal of z-cull to achieve deferred shading?
Do an initial front-to-back-sorted z-only pass.

Then you will shade only visible surfaces anyway!

Shader Model 3.0 allows “uber shaders”
Iterate over multiple lights of different types in
“traditional” (non-deferred) shading

Combine these, and performance could be as good
(better?) than deferred shading!

More tests needed

We don’t have all the answers

We can’t tell you to use it or not
Experimentation and analysis is important

Depends on your application

Need to have a fallback anyway

Sorry to end it this way, but…

MORE RESEARCH IS NEEDED!

PLEASE SHARE YOUR FINDINGS!

(you can bet we’ll share ours)

Questions?

http://developer.nvidia.com

mharris@nvidia.com

GeForce 6800 Guidance (1 of 6)

Allocate render targets FIRST
Deferred Shading uses many RTs

Allocating them first ensures they are in fastest RAM

Keep MRT usage to 3 or fewer render targets
Performance cliff at 4 on GeForce 6800

Each additional RT adds shader overhead

Don’t render to all RTs if surface doesn’t need them
e.g. Sky Dome doesn’t need normals or position

GeForce 6800 Guidance (2 of 6)

Use aniso filtering during G-buffer pass
Will help image quality on parts of image that don’t
benefit from “edge smoothing AA”

Only on textures that need it!

Take advantage of early Z- and Stencil culling
Don’t switch z-test direction mid-frame

Avoid frequent stencil reference / op changes

GeForce 6800 Guidance (3 of 6)

Use hardware shadow mapping (“UltraShadow”)
Use D16 or D24X8 format for shadow maps

Bind 8-bit color RT, disable color writes on updates

Use tex2Dproj to get hardware shadow comparison

Enable bilinear filtering to get 4-sample PCF

GeForce 6800 Guidance (4 of 6)

Use fp16 filtering and blending
Fp16 textures are fully orthogonal!

No need to “ping-pong” to accumulate light sources

Use the lowest precision possible
Lower-precision textures improve cache coherence,
reduce bandwidth

Use half data type in shaders

GeForce 6800 Guidance (5 of 6)

Use write masks to tell optimizer sizes of operands
Can schedule multiple instructions per cycle

Two simultaneous 2-component ops, or

One 3-component op + 1 scalar op

Without write masks, compiler must be conservative

GeForce 6800 Guidance (6 of 6)

Use fp16 normalize()

Compiles to single-cycle nrmh instruction

Only applies to half3, so:

half3 n = normalize(tex2D(normalmap, coords).xyz); // fast

half4 n = normalize(tex2D(normalmap, coords)); // slow

float3 n = normalize(tex2D(normalmap, coords).xyz); // slow

Example Attribute Layout

Normal: x,y,z

Position: x, y, z

Diffuse Reflectance: RGB

Specular Reflectance (“Gloss Map”, single channel)

Emissive (single channel)

One free channel
Ideas on this later

Your application will dictate

