
Shader Model 3.0, Best PracticesShader Model 3.0, Best Practices
Phil Scott

Technical Developer Relations, EMEA

Overview

Short Pipeline Overview
CPU Bound – new optimization opportunities
Obscure bits of the pipeline that can trip you up
Pixel Bound – new optimization opportunities
3.0 shader performance characteristics

Pipelined Architecture (simplified view)

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Vertices Pixels

Bottlenecks

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Limits the speed of the pipeline

CPU / Fragment – focus of this talk

CPU / Fragment Bound

Still the two most likely cases these days in
modern apps:

CPU bound
Becomes more and more likely the faster GPUs get

Fragment bound
Becomes more and more likely the longer shaders get

Neither of these trends are likely to change soon
Some new weapons for combating these

Instancing
HW Shadow Maps
Shader model 3.0

DirectX 9 Instancing API

What is it?
Allows you to avoid DIP calls and minimise batching
overhead
Allows a single draw call to draw multiple instances
of the same model

What is required to use it?
Microsoft DirectX 9.0c
VS/PS 3.0 hardware

Why use instancing?

Speed. Still the single most common performance
suck in most games today is draw calls

Yeah. Yeah. We all know draw calls are bad
But world matrices and other state often force us to
separate draw calls

The instancing API pushes the per instance draw
logic down into the driver

Saves DIP call overhead in both D3D and Driver
Allows the driver to ensure minimal state changes
between instances

When to use instancing?

Scene contains many instances of the same model
Forest of Trees, Particles, Sprites

If you can encode per instance data in 2nd streams.
I.e instance transforms, model color, indices to
textures/constants.

Less useful if your batch size is large
>1k polygons per draw
There is some fixed overhead to using instancing

How does it work?

DX Instancing API makes use of an extended
vertex stream frequency divider API

Primary stream is a single copy of the model data
Secondary streams contain per instance data and
stream pointer is advanced each time the primary
stream is rendered.

Uses IDirect3DDevice9::SetStreamSourceFreq entry
point

Vertex Data

Per instance data
VS_3_0

Stream 0

Stream 1

Simple Instancing Example
100 poly trees

Stream 0 contains just the one tree model
Stream 1 contains model WVP transforms

Possibly calculated per frame based on the instances in the
view

Vertex Shader is the same as normal, except you use
the matrix from the vertex stream instead of the
matrix from VS constants

If you are drawing 10k trees that’s a lot of draw call
savings!

You could manipulate the VB and pre-transform
vertices, but it’s often tricky, and you are replicating a
lot of data

Some Test Results
Test scene that draws 1 million diffuse shaded polys
Changing the batch size, changes the # of drawn instances
For small batch sizes, can provide an extreme win as it gives savings PER DRAW CALL.
There is a fixed overhead from adding the extra data into the vertex stream
The sweet spot will change based on many factors (CPU Speed, GPU speed, engine overhead,
etc)

Instancing versus Single DIP calls

0 500 1000 1500 2000 2500

Batch Size

FP
S

Instancing
No Instancing

Instancing - More test results

Instancing Method Comparison
(Note: % is relative to HW instancing in each group)

[28 poly mesh]

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

100 1000 5000 10000 20000

Instances

FP
S(

re
la

tiv
e

to
 H

W
 In

st
an

ci
ng

)

Single Draw Calls
Replicated 2 Stream Instancing
Static 2 Stream Instancing
Hardware Instancing
Static Pretransformed VB

Instancing Demo

Space scene with 500+ ships, 4000+ rocks
Complex lighting, post-processing

Some simple CPU collision work as well
Dramatically faster with instancing

Instancing – Caution!

You can quickly become “attribute bound” due to
the extra data that needs to be fetched per instance

This explains the slowdown at the limit in the
previous app

Make sure you vertex cache optimize
Remember, a hit in the cache saves all previous
work, including attribute access

Pack input attributes as tightly as possible
Even if it requires a little vshader work to unpack,
probably worth it
Be careful of things in the input stream that can be
constants or easily derived in the vshader

What are attributes?

Bits of vertex data fetched
Positions
Normals
Texture coordinates
etc...

Obscure Pipeline Bits

For parts of the pipeline like vertex fetching and
triangle setup, the old advice was always “don’t
worry about it”
No longer true!

This is not because these parts have become
slower, everything around them just keeps getting
exponentially faster

Vertex fetch (attribute access) bound – Instancing
Setup bound – Stencil Shadow Volumes

Two sided stencil
External triangles for extrusion

Fragment Perf - Hardware Shadow Maps

Many people developing new engines are already
using R32F or R16F shadow maps

Multiple jittered samples for higher quality / soft
edges

NVIDIA Hardware Shadow Maps can just “drop in”
to these engines

Same setup, same pipeline as any shadow map
technique

Fragment Perf - Hardware Shadow Maps

Percentage-closer filtering is “free” on these
Use ¼ the taps for performance, or get 4x the quality
for the same performance!

In D3D, simply create a depth format texture (like
D3DFMT_D24X8) and render to it

When sampled, the shadow map comparison
happens automatically

In OpenGL, use TEXTURE_COMPARE_MODE_ARB
with COMPARE_R_TO_TEXTURE

3.0 Shaders Overview

3.0 shaders can help with both CPU boundedness
and GPU boundedness

Improved batching / fewer passes
Early-outs with dynamic branching

Gory performance details of 3.0 features
Vertex and Pixel

ps.3.0 – Better Batching / Fewer Passes

Many engines have a primary lighting shader that
does something like this:

half3 diffuseTex = tex2D(DiffuseSampler);

half3 normalTex = tex2D(NormalSampler);

half shadow = tex2D(ShadowMap);

//do complex lighting
//output result

ps.3.0 – Better Batching / Fewer Passes

A few possible perf pitfalls
One pass per light – means more DrawPrimitive()
calls, worse batching
You have to refetch the diffuse map and normal map
for every pass

With 16X aniso, this can be very expensive
Memory bandwidth / transform required for each
pass

ps.3.0 – Better Batching / Fewer Passes

Solution: branching in the pixel shader!
Loop over a number of lights, accumulate lighting
in the shader

Fetches from textures only once
Fewer batches
Less transform / attribute fetching, less bandwidth

ps.3.0 – Potential Gotchas

May require more interpolators
Good thing ps.3.0 has 10 high-precision
interpolators

May require more samplers
A shadow map per light

Doesn’t really work with stencil shadow volumes

ps.3.0 – Early Outs

Early out is when you do a dynamic branch in the
shader to reduce computation
Some obvious examples:

If in shadow, don’t do lighting computations
If out of range (attenuation zero), don’t light
Obviously these apply to vs.3.0 as well

Next – a novel example for soft shadows

ps.3.0 – Soft Shadows

ps.3.0 – Soft Shadows

Works by taking 8 “test” samples from the
shadowmap

If all 8 are in shadow or all 8 are in the light we’re
done
If we’re on the edge (some are in shadow some are
in light), do 56 more samples for additional quality

64 samples at much lower cost

ps.3.0 – Soft Shadows

On GeForce6 GPUs, this demo runs more than
twice as fast using dynamic branching vs. doing all
64 samples all the time

Combined with hardware shadow maps, makes
real-time cinematic shadows a reality

3.0 Shaders Perf – Pixel Nitty-Gritty

Pixel shader flow control
instruction costs:

Not free, but certainly
usable

Additional cost associated
with divergent branches

4loop / endloop
2ret
2call
6if / else / endif
4if / endif

Cost (Cycles)Instruction

3.0 Shaders Perf - Pixel

GeForce 6 series LOD texture instructions:
texldb – full perf
texldl – full perf
texldd – much lower perf

Factor of 10

texldl has the additional benefit of not requiring the
hw to calculate derivatives for LOD

Means you can branch over them dynamically

With GeForceFX, all of these are lower perf

3.0 Shaders Perf - Pixel

Question: Does _pp (fp16) still matter in the pixel
shader?

Answer: YES
Critical for GeForceFX performance
Even helps GeForce6:

Less register pressure, better hiding of texture latency
Fast fp16 normalize (nrm_pp)

3.0 Shaders Perf - Vertex

Vertex flow control behaves a little differently
Branch instructions have a fixed cost of ~1 cycle
Divergence doesn’t matter (MIMD)

The one big gotcha with vertex is VTF...

3.0 Shaders Perf - VTF

Vertex Texture Fetch has potentially large latency
Equivalent to ~20 instructions

So multiple dependent texture fetches will be slow
Using VTF to emulate a larger constant RAM is a bad
idea in this generation of hw

But, this is per-vertex, so certainly usable for many
effects

See dynamic water displacement demo in NVSDK

Conclusion

Complex pipeline
Some stages that used to be overlooked can bite
you now that shading power has been increased so
dramatically

Most popular culprits still shading and CPU,
however

A combination of instancing and 3.0 shaders can
overcome these bottlenecks

Questions?

Phil Scott (pscott@nvidia.com)

