/fzeurj | EAGUES UNDER THE SEA

e LW ]

Shadow Considerations
Ashu Rege

Developer Technology Group




¢

)
Z B =)
T
\ )

Shadows |1

< One of the most important graphical parts of game
engine
< Influence on several aspects of game
< Artwork creation and pipeline
< Min spec, fallbacks
< Shader complexity
<~ Batch size
< Performance

<

BVIDIA.




o -

Strategic Considerations

< What objects cast shadows?
< What objects receive shadows?
<~ How do shadows integrate with the art pipeline?

< What technique for shadows
< One technique or multiple?

o Static lighting v. Dynamic lighting <
BVIDIA.




Tactical Considerations

< Light Maps, Precomputed Radiance Transfer,
Blobs, ...

< Shadow Volumes or Shadow Maps?
< Both?

< Issues arising from usage of either
< World Geometry v. Local Geometry
< Aliasing problems
< CPU side computations v. GPU computations

</ [N

o -
) a%l\_\
(%

<

BVIDIA.




Two Broad Approaches 3

< Shadow Volumes and Shadow Maps
< No one ‘right’ technique
< Shadow volumes
< Mathematically elegant, ‘complete’, omni-directional

< Long term, however, we expect shadow maps to be
more widely used

< Better scaling with GPU power
<~ Softer edges

< Applicable to different kinds of geometry
< No alpha test issues

<

BVIDIA.




. i
Shadow Volumes — Basic Concept K~
S e
— O Shadowing
P o a /object
Light
source — Shadow
volume

|
(infinite extent) |

A shadow volume is
simply the half-space defined <
- by a _I_ight_ source and a shadowing object. BVIDIA.




Shadow Volumes — Basic Concept (2)

N Surface outside
:/CR\: shadow volume
(illuminated)

Simple rule:
samples within a
shadow volume
are in shadow.

/

Partially
shadowed shadow volume
object (shadowed)

™ Surface inside

<
BVIDIA.




| i R
1 ]

Stencil Shadow Volumes (zpass) E%
_ —
Light  — Shadowing object
source
T—
I \
Zero " +1 \\
\
* \ zero /
\
©®___ T T
[ I 1' l' : \‘\\\\
| +2I 1\ +2 \ \ Shadow
Eye I +1,' I +3\ \ \ Receiver
position Iy vy \\
J } < <

_§h_afgrlgy\f( Volume Count = +1+1+1-1 = 2 BVIDIA.




Stencil Shadow Volumes (zfail)

conn | E
6800 LEA

] sl
Light — Shadowing object
source —
|
[ — Shadow
Eye. | Receiver
position ] @_}

_S)_hg_ggyy_%\lolume Count=-1-1-1+1+1+1 =0 #VIDIA.




Shadow Volumes — Silhouettes "

< How to compute volumes?

< Compute (projected 2D) silhouettes instead and
extrude

< One big question to answer when using shadow
volumes is how to determine silhouettes

< On CPU, performing edge tests
< On GPU, using degenerate geometry on each edge

<

RVIDIA.




¢

Silhouette Computation on the CPU .

< Requires faces to know neighboring faces

< For each face

< Calculate dot product of face normal with light vector
< For each face

< Check 3 neighboring faces’ dot products

< If dot product of face a is <= 0.0, and face b is > 0.0
< Then the edge between a & b is a silhouette edge

< Construct quad along edge by extruding away from
light

<

BVIDIA.




CPU Silhouettes — Quad Extrusion

6800 LEAGUES UNDER THE SEA




¢

Pros and Cons of CPU Silhouettes g%

< + Straightforward algorithm
< + Linear in the number of faces

< + Only need to recompute when light or objects
move (relative to each other)

< + Works well with skinning
< Skin on CPU, then compute silhouette

<~ - Can be expensive for dense meshes

\ 25

RVIDIA.




Shadow Volumes on the GPU §

< Insert ‘degenerate’ quads at each edge of mesh
<~ Each vertex in the quad has

< a position

< a copy of the face normal

< an extrusion factor of 0 or 1
< For 2 of the quad’s vertices

< The extrusion factoris 0

< For the other 2, the factor is 1

< If the face normal dot the light direction is zero,
extrude the vertex away from the light

<

BVIDIA.




Volumes on the GPU - Bloating

3d 4d
3
* o % =
3a
4c
L 2
5 1 2b
2a 2c

5

Original triangle mesh Bloated triangle mesh
6 vertexes 12 vertexes
4 triangles 10 triangles

A lot of extra geometry!

Formula for geometry:

— *
Vbloat = 3 torig

—_ *
tbloat - torig +2 eorig

Bloated geometry based
only on number of triangles
and edges of original

geometry.

<
BVIDIA.




Skinning With GPU Extrusion '3

< If performing a non-linear transformation, like
skinning, you don’t know the face normal

< Unless you know all 3 of the face vertices’ positions

< So, if doing skinning, you must, for each edge of
the model

< Store all 3 vertex positions making up this face
< Perform skinning on each

< Then test the face normal, & extrude
< Very expensive for skinned models

<

BVIDIA.




¢

Good To Be GPU Bound, Right? -~

< Depends: vertex bound, pixel bound, or setup
bound?

< Current generation hardware: pixel shader
horsepower has grown much faster than other two
< Setup in particular is still 1-2 clocks per triangle
<~ Degenerate triangles eat up setup time
< Setup bound - Rendering will scale with clock only
< Clocks haven’t gone up quite as much

< Future hardware and API could change this picture

<

BVIDIA.




Reducing Setup Dependency

< Turn extruded quads into extruded tris

< A quad can be viewed as a triangle with one vertex
at infinity




9

Quad = Tri

< Rather than drawing a quad for each triangle edge,
draw a triangle with one vertex having aw
coordinate of zero for directional lights

< This is known as an external vertex

< Twice as fast if you are setup bound
< One triangle instead of two for a quad
< 25% faster if you are vertex bound

< Also has more subtle benefits to rasterizer, b/c the
quad isn’t two skinny triangles, but one long, fat
triangle

<

BVIDIA.

LB




Other Optimizations For SSVs N

< Two-sided Stencil (DX9)
< Send both front and back faces at same time

< Semi-automatic shadow volume extrusion

< CPU performs possible silhouette edge detection for
each light

< GPU projects out quads from single set of vertex
data based on light position parameter

<~ Doom3’s approach
<~ Depth bounds, depth clamping

< See Everitt and Kilgard presentations/papers for all
things SSV (www.developer.nvidia.com) <

RVIDIA.




9
&

Pros and Cons of SSVs

< + Automatic self-shadowing

< + Omni-directional lights

< + Minimal aliasing and resolution issues

<~ - No area lights, no soft shadows

< - Mesh must be 2-manifold (closed) w/ connectivity
< - Consumes fill rate

< - Need silhouette computation
< Could eat preciouss CPU cycles

< - Not compatible with alpha test
< = Inherently multi-pass!

< - Popping esp. with low poly counts @/\J
R —— BVIDIA.




¢

. -
Pixel Power! k=~

< Going forward, pixel shader math horsepower will
grow faster than :

< Texture fetching & filtering
< Vertex shader horsepower
< Triangle Setup

< CPU power

< Memory bandwidth

< Just about anything else

<

RVIDIA.




¢

Leveraging Pixel Power For Shadows ~ §°

< Shadow Maps

< Image-space technique
< No knowledge of scene geometry
< But aliasing...

< Well-known technique

< Ubiquitous in production Renderman shaders
< Hardware-accelerated since GeForce3
< Scales with pixel power

<

RVIDIA.




¢

Shadow Maps — Basic Algorithm g

< Several variations on the same theme

< Light can “see” point & Point is not in shadow

< Render objects from the light’s POV, storing depth
from the light into the shadow map

< Render objects from the camera’s POV, but also test
their depth with respect to the light

< If this object’s depth ~= the closest object in the
shadow map, then object is lit

< Else object is in shadow

<

BVIDIA.




Shadow Maps — Example

The A < B shadowed fragment case

9('{/— depth map image plane
_ ///l\\ / depthmap Z = A
Isl?)ztrce T ©
F\ \ eye
oo | . position

; eye view image plane,
a.k.a. the frame buffer

fragment’s
light Z=B

<

RVIDIA.




The Result So Far...

=2
BVIDIA.




What Is Going On?

< Consider 2D view of polygon (x and z == depth)

Polygon
_

Pixel centers BRVIDIA.




Depth Aliasing

< Add another (2D) grid for light view

Ny
N = ‘
_O: ‘.0

71N\

\ S
: AA N\
X
Z .............................:’.0.;:: ............................... >

ZVIDIA.




Depth Aliasing — Measuring Error

< Change of Zw.r.t. X

RVIDIA.




¢

Depth Aliasing — Maximum Error &

< Pixel center is re-sampled to shadow map grid

< The re-sampled depth could be off by
+/-0.5 dz/ox and +/-0.5 dz/dy

< The maximum absolute error would be
| 0.5 0z/ox | + | 0.5 dz/dy | = max( | 0z/ox | , | 0zldy | )

< Assumes the two grids have pixel footprint area
ratios of 1.0

< Otherwise relative resolutions of grids will determine
scale <

RVIDIA.




Simple Bias Will Not Work -

< Post-perspective divide - depth distribution is
non-linear

< Need to bias in post-projective space

< Need to account for slope of polygon

<

RVIDIA.




Depth Bias N

< DXO9:
Offset =m * D3DRS_SLOPESCALEDEPTHBIAS +
D3DRS_DEPTHBIAS
< Where m = max( | dz/ox | , | dz/dy | )

< Offset is added before the depth test and before
depth value is written into shadow map

< Exactly what we want!
<~ Set slope scale bias to adjust for resolution scale
< Set depth bias to adjust for total error

< (OpenGL: g/PolygonOffset is similar) .
<

BVIDIA.




Are We Done? §

< Unfortunately, not quite
< How to select bias
< Magnified shadow maps require larger scale
< Problem: depth precision (or lack thereof)
< Use higher precision depth: D16 > D24
< Not a scalable solution
< Problem: perspective aliasing
< Depth distribution is not uniform
< Objects distant from light may be close to viewer
< Shadow texels near camera can be very large
< Use higher res - again not scalable @/J

BVIDIA.




Per-Object Shadow Maps

< Instead of measuring
depth across the
light range in
(0,1)

6800 LEAGUES UNDER THE SEA




Per-Object Shadow Maps

Each object has its own *

depth measured in (0,1)

6800 LEAGUES UNDER THE SEA




¢

Per-Object Maps — Pros and Cons i%

< Increased depth precision per object
<~ Possible reuse per frame

< Can pack multiple shadow maps into ‘shadow map
atlas’
<~ Saves render target switches

< Could get away with 8 bits of depth
< Support self-shadowing in ps1.1 hardware

< Only supports local objects, not world geometry
<~ Too many casters - performance problems
< Merge close casters into one frustum @/J

BVIDIA.




¢

&)
Z B =)
T |
\ K

What About Perspective Aliasing? u

< Shadow texels far from light, close to viewer get
magnified
< Fundamental property of projection transform
< Sampling is done independent of the view matrix

< ldea: Transform light space in a view-dependent
manner

<

RVIDIA.




Perspective Shadow Maps 5

< Generate the map in post-projective space.
< Originally proposed by Stamminger/Drettakis, 2002

< Key Improvements/Elaboration: Kozlov, GPU Gems
http://developer.nvidia.com/object/gpu_gems_home.html

< For a directional light

< Take ‘LookAt’ matrix from post-projective light
space to view space

< Compose with scene View*Projection

<

RVIDIA.




i

PSMs — Pros And Cons

< Reduces perspective aliasing significantly

< Tricky to implement (and get right)

< See Gary King’s NVSDK demo for implementation
< CPU-side computations needed for speedups
< View dependence ->Caching schemes defeated

<

RVIDIA.




Are We Out Of The Woods Yet? =

< Just like standard projective textures, shadow
maps can back-project

Pent S _ |
Wf,zﬁgboen \;( ~ Spotlight casting shadows

incorrectly \
lit by back- = S
projection

if not specially
handled

Back-projection of

spotlight’s cone of illumination /

. o <
Spotlight’s cone of illumination t
- Where “true” shadows can form ZVIDIA.




¢

Eliminating Back Projection -~

< Modulate shadow map result with lighting result
from a single per-vertex spotlight with proper cut off

< Ensures light is “off” behind the spotlight

< Use small 1D texture — s is planar dist from light
< Lookup is 0 for negative distances, 1 for positive

< Clip plane positioned at light position OR

< Simply avoid drawing geometry behind light when
applying shadow map

<

BVIDIA.




¢

Other Tricks With Shadow Maps &

< Render back faces into map instead of front
<~ Leakage moved to less noticeable areas

< Shrink shadow casters
< Minimize self-shadowing artifacts (works with SSVs)

< Omni-directional shadow ‘cube’ maps (Newhall/King)
< Simulate cube map with 2D texture
< Lookup with an auxiliary smaller cube map

<

RVIDIA.




¢

Pros and Cons of Shadow Maps =

< + Image space - Pixel based
< Independent of vertex programs — skinning
< Independent of scene complexity

< + No special requirements for geometry
< No CPU side computations (in general)

< + Soft shadows, filtering

< + Works great with multi-pass
<~ Can collapse multiple lights using SM3.0
< Compatible with alpha test

< - Omni-directional lights?
<~ - Resource consumption (textures, render target
switching) @/\1

o - Aliasing issues BVIDIA.




World v. Local Geometry 1

<~ Probably best to mix and match techniques
< World Geometry

< Light maps

< Stencil Shadow Volumes

< Precomputed Radiance Transfer

< Projective Shadow Maps
< Local Geometry a.k.a. ‘objects’

< Shadow Maps

< Per-object Shadow Maps

< Object ID Shadow Maps

<

RVIDIA.




Hardware Shadow Maps — Use Them!

< There is no reason not to

< Supported since GeForce3
< Except GeForce4 MX
< Free Percentage Closest Filtering
< Weighted average of shadow map comparisons

< Can combine with higher quality filters
< Combine with branching in SM3.0 for selective
filtering
< Huge perf win v. emulating in shader

L%

<~ Double speed rendering on GeForce FX and above

<

BVIDIA.




Credits and References ¥

<~ Cass Everitt, Mark Kilgard. Series of presentations
and papers on stencil shadow volumes available
from developer.nvidia.com

<~ Sim Dietrich (whose original presentation and
ideas | stole)

<~ Cem Cebenoyan, Gary King (for valuable insights,
and posing deep imponderable questions)

< All errors are theirs ©
< But you can complain to me at: arege@nvidia.com

<

RVIDIA.




