
Shadow ConsiderationsShadow Considerations
Ashu Rege

Developer Technology Group

Shadows

One of the most important graphical parts of game
engine

Influence on several aspects of game
Artwork creation and pipeline

Min spec, fallbacks

Shader complexity

Batch size

Performance

Strategic Considerations

What objects cast shadows?

What objects receive shadows?

How do shadows integrate with the art pipeline?

What technique for shadows
One technique or multiple?

Static lighting v. Dynamic lighting

Tactical Considerations

Light Maps, Precomputed Radiance Transfer,
Blobs, ...

Shadow Volumes or Shadow Maps?
Both?

Issues arising from usage of either
World Geometry v. Local Geometry

Aliasing problems

CPU side computations v. GPU computations

...

Two Broad Approaches

Shadow Volumes and Shadow Maps

No one ‘right’ technique

Shadow volumes
Mathematically elegant, ‘complete’, omni-directional

Long term, however, we expect shadow maps to be
more widely used

Better scaling with GPU power

Softer edges

Applicable to different kinds of geometry
No alpha test issues

Shadow Volumes – Basic Concept

Shadowing
object

Light
source Shadow

volume
(infinite extent)

A shadow volume is
simply the half-space defined
by a light source and a shadowing object.

Shadow Volumes – Basic Concept (2)

Partially
shadowed
object

Surface inside
shadow volume
(shadowed)

Surface outside
shadow volume
(illuminated)

Simple rule:
samples within a
shadow volume
are in shadow.

Stencil Shadow Volumes (zpass)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Shadow
Receiver

+ -+ +

Shadow Volume Count = +1+1+1-1 = 2

Stencil Shadow Volumes (zfail)

Shadowing objectLight
source

Eye
position

zero

zero

+1

+1
+2 +2

+3

Shadow
Receiver

Shadow Volume Count = -1-1-1+1+1+1 = 0

- +- - + +

Shadow Volumes – Silhouettes

How to compute volumes?

Compute (projected 2D) silhouettes instead and
extrude

One big question to answer when using shadow
volumes is how to determine silhouettes

On CPU, performing edge tests

On GPU, using degenerate geometry on each edge

Silhouette Computation on the CPU

Requires faces to know neighboring faces
For each face

Calculate dot product of face normal with light vector

For each face
Check 3 neighboring faces’ dot products

If dot product of face a is <= 0.0, and face b is > 0.0
Then the edge between a & b is a silhouette edge

Construct quad along edge by extruding away from
light

CPU Silhouettes – Quad Extrusion

Pros and Cons of CPU Silhouettes

+ Straightforward algorithm

+ Linear in the number of faces

+ Only need to recompute when light or objects
move (relative to each other)

+ Works well with skinning
Skin on CPU, then compute silhouette

- Can be expensive for dense meshes

Shadow Volumes on the GPU

Insert ‘degenerate’ quads at each edge of mesh

Each vertex in the quad has
a position

a copy of the face normal

an extrusion factor of 0 or 1

For 2 of the quad’s vertices
The extrusion factor is 0

For the other 2, the factor is 1

If the face normal dot the light direction is zero,
extrude the vertex away from the light

Volumes on the GPU – Bloating

Original triangle mesh
6 vertexes
4 triangles

Bloated triangle mesh
12 vertexes
10 triangles

1
2

3
4

5

6

1
2a

3a
4b

5

6

2b

2c

3d

3b

4c

4d

A

B

C

D

A

B

C

D

A lot of extra geometry!

Formula for geometry:

vbloat = 3 * torig

tbloat = torig + 2 * eorig

Bloated geometry based
only on number of triangles
and edges of original
geometry.

Skinning With GPU Extrusion

If performing a non-linear transformation, like
skinning, you don’t know the face normal

Unless you know all 3 of the face vertices’ positions

So, if doing skinning, you must, for each edge of
the model

Store all 3 vertex positions making up this face

Perform skinning on each

Then test the face normal, & extrude

Very expensive for skinned models

Good To Be GPU Bound, Right?

Depends: vertex bound, pixel bound, or setup
bound?

Current generation hardware: pixel shader
horsepower has grown much faster than other two

Setup in particular is still 1-2 clocks per triangle
Degenerate triangles eat up setup time

Setup bound � Rendering will scale with clock only

Clocks haven’t gone up quite as much

Future hardware and API could change this picture

Reducing Setup Dependency

Turn extruded quads into extruded tris

A quad can be viewed as a triangle with one vertex
at infinity

Quad � Tri

Rather than drawing a quad for each triangle edge,
draw a triangle with one vertex having a w
coordinate of zero for directional lights

This is known as an external vertex

Twice as fast if you are setup bound

One triangle instead of two for a quad

25% faster if you are vertex bound

Also has more subtle benefits to rasterizer, b/c the
quad isn’t two skinny triangles, but one long, fat
triangle

Other Optimizations For SSVs

Two-sided Stencil (DX9)
Send both front and back faces at same time

Semi-automatic shadow volume extrusion
CPU performs possible silhouette edge detection for
each light

GPU projects out quads from single set of vertex
data based on light position parameter

Doom3’s approach

Depth bounds, depth clamping

See Everitt and Kilgard presentations/papers for all
things SSV (www.developer.nvidia.com)

Pros and Cons of SSVs

+ Automatic self-shadowing

+ Omni-directional lights

+ Minimal aliasing and resolution issues

- No area lights, no soft shadows

- Mesh must be 2-manifold (closed) w/ connectivity

- Consumes fill rate

- Need silhouette computation
Could eat preciouss CPU cycles

- Not compatible with alpha test

- Inherently multi-pass!

- Popping esp. with low poly counts

Pixel Power!

Going forward, pixel shader math horsepower will
grow faster than :

Texture fetching & filtering

Vertex shader horsepower

Triangle Setup

CPU power

Memory bandwidth

Just about anything else

Leveraging Pixel Power For Shadows

Shadow Maps

Image-space technique
No knowledge of scene geometry

But aliasing…

Well-known technique
Ubiquitous in production Renderman shaders

Hardware-accelerated since GeForce3

Scales with pixel power

Shadow Maps – Basic Algorithm

Several variations on the same theme

Light can “see” point ⇔ Point is not in shadow
Render objects from the light’s POV, storing depth
from the light into the shadow map

Render objects from the camera’s POV, but also test
their depth with respect to the light

If this object’s depth ~= the closest object in the
shadow map, then object is lit

Else object is in shadow

Shadow Maps – Example

light
source

eye
position

depth map Z = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

The A < B shadowed fragment case

The Result So Far…

What Is Going On?

Consider 2D view of polygon (x and z == depth)

X

Z

Pixel centers

Polygon

Depth Aliasing

Add another (2D) grid for light view

X

Z

X

Z

Depth Aliasing – Measuring Error

Change of Z w.r.t. X

X

Z

∂z/∂x

Depth Aliasing – Maximum Error

Pixel center is re-sampled to shadow map grid

The re-sampled depth could be off by
+/-0.5 ∂z/∂x and +/-0.5 ∂z/∂y

The maximum absolute error would be
| 0.5 ∂z/∂x | + | 0.5 ∂z/∂y | ≈ max(| ∂z/∂x | , | ∂z/∂y |)

Assumes the two grids have pixel footprint area
ratios of 1.0

Otherwise relative resolutions of grids will determine
scale

Simple Bias Will Not Work

Post-perspective divide � depth distribution is
non-linear

Need to bias in post-projective space

Need to account for slope of polygon

Depth Bias

DX9:

Offset = m * D3DRS_SLOPESCALEDEPTHBIAS +
D3DRS_DEPTHBIAS

Where m = max(| ∂z/∂x | , | ∂z/∂y |)

Offset is added before the depth test and before
depth value is written into shadow map

Exactly what we want!
Set slope scale bias to adjust for resolution scale

Set depth bias to adjust for total error

(OpenGL: glPolygonOffset is similar)

Are We Done?

Unfortunately, not quite

How to select bias
Magnified shadow maps require larger scale

Problem: depth precision (or lack thereof)
Use higher precision depth: D16 � D24

Not a scalable solution

Problem: perspective aliasing
Depth distribution is not uniform

Objects distant from light may be close to viewer

Shadow texels near camera can be very large

Use higher res � again not scalable

Per-Object Shadow Maps

Instead of measuring

depth across the

light range in

(0,1)

Per-Object Shadow Maps

Each object has its own

depth measured in (0,1)

Per-Object Maps – Pros and Cons

Increased depth precision per object

Possible reuse per frame

Can pack multiple shadow maps into ‘shadow map
atlas’

Saves render target switches

Could get away with 8 bits of depth
Support self-shadowing in ps1.1 hardware

Only supports local objects, not world geometry

Too many casters � performance problems
Merge close casters into one frustum

What About Perspective Aliasing?

Shadow texels far from light, close to viewer get
magnified

Fundamental property of projection transform

Sampling is done independent of the view matrix

Idea: Transform light space in a view-dependent
manner

Perspective Shadow Maps

Generate the map in post-projective space.
Originally proposed by Stamminger/Drettakis, 2002

Key Improvements/Elaboration: Kozlov, GPU Gems
http://developer.nvidia.com/object/gpu_gems_home.html

For a directional light
Take ‘LookAt’ matrix from post-projective light
space to view space

Compose with scene View*Projection

PSMs – Pros And Cons

Reduces perspective aliasing significantly

Tricky to implement (and get right)
See Gary King’s NVSDK demo for implementation

CPU-side computations needed for speedups

View dependence �Caching schemes defeated

Are We Out Of The Woods Yet?

Just like standard projective textures, shadow
maps can back-project

Spotlight casting shadows

Spotlight’s cone of illumination
where “true” shadows can form

Back-projection of
spotlight’s cone of illumination

Pentagon
would be
incorrectly
lit by back-
projection
if not specially
handled

Eliminating Back Projection

Modulate shadow map result with lighting result
from a single per-vertex spotlight with proper cut off

Ensures light is “off” behind the spotlight

Use small 1D texture – s is planar dist from light
Lookup is 0 for negative distances, 1 for positive

Clip plane positioned at light position OR

Simply avoid drawing geometry behind light when
applying shadow map

Other Tricks With Shadow Maps

Render back faces into map instead of front
Leakage moved to less noticeable areas

Shrink shadow casters
Minimize self-shadowing artifacts (works with SSVs)

Omni-directional shadow ‘cube’ maps (Newhall/King)
Simulate cube map with 2D texture

Lookup with an auxiliary smaller cube map

Pros and Cons of Shadow Maps

+ Image space � Pixel based
Independent of vertex programs – skinning
Independent of scene complexity

+ No special requirements for geometry
No CPU side computations (in general)

+ Soft shadows, filtering
+ Works great with multi-pass

Can collapse multiple lights using SM3.0
Compatible with alpha test

- Omni-directional lights?
- Resource consumption (textures, render target
switching)
- Aliasing issues

World v. Local Geometry

Probably best to mix and match techniques

World Geometry
Light maps

Stencil Shadow Volumes

Precomputed Radiance Transfer

Projective Shadow Maps

Local Geometry a.k.a. ‘objects’
Shadow Maps

Per-object Shadow Maps

Object ID Shadow Maps

Hardware Shadow Maps – Use Them!

There is no reason not to

Supported since GeForce3
Except GeForce4 MX

Free Percentage Closest Filtering
Weighted average of shadow map comparisons

Can combine with higher quality filters

Combine with branching in SM3.0 for selective
filtering

Huge perf win v. emulating in shader

Double speed rendering on GeForce FX and above

Credits and References

Cass Everitt, Mark Kilgard. Series of presentations
and papers on stencil shadow volumes available
from developer.nvidia.com

Sim Dietrich (whose original presentation and
ideas I stole)

Cem Cebenoyan, Gary King (for valuable insights,
and posing deep imponderable questions)

All errors are theirs ☺

But you can complain to me at: arege@nvidia.com

