
1

FX Composer 1.5FX Composer 1.5

Chris Maughan

2

NVIDIA FX Composer

FX Composer empowers developers to create high
performance shaders in an integrated development
environment with real-time preview & optimization features
available only from NVIDIA.

CREATE your shaders in a high
powered developer environment

DEBUG your shaders with basic
shader debugging features

TUNE your shader performance
with advanced analysis and
optimization features

EverQuest® content courtesy Sony Online Entertainment Inc.

Be sure to check out the complete User Guide and helpful tutorials!

EverQuest® content courtesy Sony Online Entertainment Inc. EverQuest

is a registered trademark of Sony Computer Entertainment America Inc.

© 2004 Sony Computer Entertainment America Inc. All rights reserved.

3

Recap…

FX Composer – an .fx file IDE
Shader development

Performance tuning

FX Composer 1.0 shipped in January
~100 .fx files, ~30 projects out of the box

Support for all ps/vs profiles in DX9b

FX Composer 1.1 shipped around GDC
Some new samples, projects

A few minor bug fixes

http://developer.nvidia.com/fxcomposer

4

Introducing FX Composer 1.5

Lots of new toys…
New Application/productivity features

DirectX9c support
GeForce 6800 & Shader Model 3.0 features….

DirectX Standard Annotations and Semantics (DXSAS)
Script Execute

SDK for plug-ins

MSFT .NET scripting through C#, VB.NET

5

Texture Panel Updates

Arbitrary Zoom
Also on materials panel

Interactive viewing of
scene targets

Previously could only
see material targets

Now can switch to either

Real time texture
preview

RGBA color masks

Better cubemap visuals

6

ShaderPerf Panel Updates

NV4x scheduling
Vertex Shader

Pixel Shader

7

Properties Panel Updates

“Reset to defaults”
Reset to the values in
the FX file

“Delete keys”
Delete all animation keys
in the parameters

Save properties
Save all the values to a
simple XML format

Works for any object
with properties

8

XML Format Example

9

.fxcomposer files are now known as “Packages”
As before, these contain all media, .fx, geometry

New naked xml file format, known as a
“Workspace”

See previous slide for example of format

Easier to parse

Smaller projects, because no media
Getting our distribution back below 100Megs…

.fxcomposer still useful for deployment…

Also improved package/workspace file
management

New File Formats

10

Improved Project File Management

Better handling of updated and changed effects
that were in the project.

Better mapping of old to new parameters
This is a tricky problem

Effect parameters depend on the effect

Change the effect, change the parameters…..

Dialogs to ease confusion
Not in the current builds yet

11

New Projects

Currently 43
Projects

… and growing

12

New examples

165 effect files

… and growing

13

DirectX9c – NV4x goodness

FX Composer 1.5 compiled against DX9c
Supports HDR format textures

DDS floating point also

Visible in the textures panel

ps_3_0, ps_2_b (and all others)
Flow control, etc…

vs_3_0 (and all others)
Vertex textures

Many examples shipping with FX Composer 1.5
Demo - Sculpt 3D

14

DirectX Standard Annotations and Semantics
(DXSAS)

15

Introducing DXSAS

Specification from Microsoft

Defines a standard set of semantics and
annotations

FX Composer almost 100% compliant at this
point

Specification will ship around the same time as
DX9c

So will FX Composer 1.5…

Help menu brings up the current list
You can also use fxmapping.xml to map your
own custom annotations/semantics to ours

16

Example Semantics

float4 myColor : DIFFUSE;
float4x4 myMat : WORLDVIEW;
float elapsed : TIME;

Screenshot of page from the FX Composer help. This page is
generated from fxmapping.xml, which tells FX Composer how to map
semantics/annotations to it’s internal values, and has validation
information for types in fxmapping.

Example semantics – DIFFUSE and WORLDVIEW, conformant with the
spec.

17

Example Annotations

float4 myColor : DIFFUSE
<

UIName=“Paint Tint”;
UIWidget = “color”;

>;

Example annotations.

18

ScriptExecute

Major new part of DXSAS

Designed to solve the effect interaction problem

Adds powerful scripting features to effects

A superset of the XML ‘scene commands’ that
FX Composer 1.1 shipped with

Much more powerful

All FX Composer effects updated to new format
Old scene command XML automatically
interpreted as ScriptExecute.

19

ScriptExecute: Step-By-Step

Scripts are added globally, and
to techniques & passes.

We’ll walk through an .fx
designed to be applied to an
object first. Fur shells.

All effects start with a global
entry point in an effect
parameter…

All compliant effect have
ScriptExecute

Notes for the structure:

STANDARDSGLOBAL semantic to label it. Version number of spec,
because it’s a float.

ScriptClass is the type of thing that this .fx file handles – in this case it’s
designed to work on individual objects.

IMPORTANT POINT – the script makes the engine easy because it is
always following the script. No scripts without scriptexecute – engine
builds a ‘fake’ one if necessary.

20

STANDARDSGLOBAL

float Script : STANDARDSGLOBAL

<

string ScriptClass = “object“;

string ScriptOrder = “postprocess";

string ScriptOutput = "color";

string Script = “Technique=Fur;";

> = 0.8;

Note: Version number. STANDARDSGLOBAL semantic

ScriptClass – what this effect is designed to work on.

ScriptOrder – Where it is run

ScriptOutput – What it generates.

Script function – just calls a technique script “Fur”. This is like a function
call.

21

Technique Script

int shellcount = 12;

int shellnumber;

technique Fur

<

string Script = “Pass=Setup;"

"LoopByCount=shellcount;"

"LoopGetIndex=shellnumber;"

"Pass=Shell;"

"LoopEnd;";

>

{ … } // Pass setup

Global variables – shellcount, the number of shells. shellnumber, the
current shell we are dealing with.

Same script declaration.

Note the string concatentation.

-First, immediately call a script in a pass.

-Now begin a loop, at 12 (shellcount)

-Write the current loop count into shellnumber

-Call a pass (Shell)

-End the loop.

-Repeat

22

Pass Script

pass Setup

<

string script="Draw=Geometry;";

>

{ … }

pass Shell

<

string script="Draw=Geometry;";

>

{ … }

These pass scripts are simple – just call Draw.

Draw draws all the current geometry for this shape.

Can also call Draw=“buffer” for a full screen quad.

Can also call Draw=“scene” for whole scene

Time for a demo

23

Conditionals

This one from a STANDARDSGLOBAL

“Glow Quality” appears in UI with a combobox

string Script = "Technique=Glow Quality?Glow_9Tap:Glow_5Tap;";

UI is built from conditionals so the user can choose the path through the
script.

24

Branch Trick

bool bReset : FXCOMPOSER_RESETPULSE

<

string UIName="Clear Canvas";

>;

Script = "LoopByCount=bReset;“ // Run loop?

"ClearSetColor=PaintClearColor;"

"Clear=Color0;"

“RenderColorTarget0=BufMap;"

"Clear=Color0;"

"LoopEnd=;"

From the paint 3D sample.

FXCOMPSER_RESETPULSE is a private semantic to FX Composer
that forces the bool to true at startup, resize.

Otherwise the bool controls the flow.

25

Declaring targets

texture FinalBlurMap : RENDERCOLORTARGET

<

float2 ViewportRatio = { 0.25, 0.25 };

int MIPLEVELS = 1;

string format = "A8R8G8B8";

>;

texture DepthMap : RENDERDEPTHSTENCILTARGET

<

float2 ViewportRatio = { 1.0, 1.0 };

string format = "D24S8";

>;

Semantics declare that they are targets.

Ratio used to get relative to viewport

Can also have Dimensions.

26

Using targets

float4 ClearColor : DIFFUSE = { 0.0f, 0.0f, 0.0f, 1.0f};

pass GlowV

<

string Script =
“RenderColorTarget0=FinalBlurMap;"

"ClearSetColor=ClearColor;"

"Clear=color;"

"Draw=Buffer;";

>

Note – index for rendertarget MRT

Global Color value – can set in the UI.

Draws a quad.

27

Renderport

Rendering from different POV
Switch camera from script

Example scene, Soft Shadows
Depth map rendered from
POV of light

Current matrices are changed
to use the values from the
light

"RenderPort=light0;"

Can do demo at this point, depending on time

28

LoopByType

Enables looping through scene objects

“LoopByType=Geometry”;

“LoopByType=Light”;

“LoopByType=Camera”;

This one not in the Alpha

Geometry == all objects in scene that use this geometry.

Light == Lights that affect this material.

Camera == Cameras

29

LoopUpdate

Script based update of parameters based on the
current loop object specified with LoopByType

float4x4 myMatrix : WORLDVIEW

<

string frustum=“light$”;

>

“LoopUpdate=myMatrix@frustum”;

This one not in the Alpha

Script causes the worldview matrix to be updated with the current light #
in the loop.

In beta 1. I’m more hazy about these 2 commands until I’ve
implemented, I won’t fully get it.

30

Hint

Script=“Hint=MySpecialEngineCommand”;

Designed to let you add engine specific commands

Beware of using, or you make sharing your effect
harder

Useful mechanism though…

31

Shader Networks

Effects on their own are cool, but…

Combining/Interacting effects are the goal

In the STANDARDSGLOBAL:
ScriptClass = “object” or “scene” or
“sceneorobject”

ScriptOrder = “standard” or “preprocess” or
“postprocess”

Used to determine how this script interacts with
other effects

We’ve seen “standard” “object” script so far

32

Shader Stack Demo

FX Composer 1.5 renders a stack of effects

Tiles.fx + EdgeDetect.fx Corona.fx + EdgeDetect.fx

33

How Does It Work?

“ScriptSignature” command precedes
“ScriptExternal”

ScriptSignature = “Color”, “Depth”, “Normal”,
“Stencil”

The signature is used to match up with an external
effect

Signature values match those of the “ScriptOutput”
annotation of an effect

When the “ScriptExternal” command is called from
script, it matches up to an effect with the same
signature on it’s ScriptOutput value

Diagram coming up

34

Shader Stack Implementation

Bloom.fx

STANDARDSGLOBAL<
…
ScriptOutput=“color”;
Script=“Technique=Edges;”

>;

EdgeDetect.fx

Technique
<

Script= “RenderColorTarget0=foo;”
“ScriptSignature0=color;”
“ScriptExternal=;”

>

Execution Path

Signature Match

This diagram shows how 2 effects in a stack are matched up based on
signature.

The bottom of the stack is ran first, calling the previous stack script to
get the color buffer.

35

ScriptExternal

The point here is that ScriptExternal jumps to an
external effect

Current Script: “I’m at a point in my script where I
need the color data for my effect in this target…”.

ScriptSignature0=color, ScriptExternal=;”

Target Script: “I can provide color”
ScriptOutput=“color”;

Engine enables match up of effects

Works with MRT (color, normal, etc…)

The target color data is placed into the active rendertarget. So a script
can declare a rendertarget, then get the current scene into it.

36

Script Execution Order

Effects are arranged in scene by artist

ScriptOrder indicates general nature of effect
PreProcess

Standard

PostProcess

Engine actually starts rendering at the ‘bottom’.
Since the last post-process effect will call
“ScriptExternal=“color” and walk up the stack…

37

Stack vs Network

Basic support for ScriptExecute is the stack as
described

No reason for a stack, Network is more flexible…

ScriptExternal
…
…
…

ScriptExternal
….
….
….

ScriptExternal

Draw SceneA

B

C

D

Where next?E
ScriptExternal

…

F

G

Follow the arrows to see the execution path. Note that the DrawScene
occurs when there’s no connection/you’re at the top of the stack.

Lends itself very well to wiregraph style of interface…

38

ScriptExecute Summary

Very flexible way to solve interacting effect
problems

Not too hard to implement in the engine

Really powerful

A Standard

Will get easier as DCC apps & FX Composer UI
catch up…

39

DXSAS Implementations

DCC Companies are working on it
Varying levels of support likely – some just object
scripts, others the Full Monty

FX Composer will try to implement it all…
Already have many effects using it

Microsoft working on full sample implementation

40

FX Composer SDK & .NET Scripting

41

FX Composer SDK

FX Composer 1.5 is the first version with an SDK
Can write plug-ins

Can write scripts in C# or VB.NET

Clean engine, 100% COM interfaces.
Easy to build plugins using VC wizard

COM nastiness is completely hidden using ATL
attributes

No code, just a few attributes above the class
declaration

.NET components can call the engine through RCW
Runtime Callable Wrapper

Easy cross-communication

42

Plug-in Types

Import

Export

Shapes,
Lights

Geometry
modifiers

Perf
analysis

Graphics
Device

43

Plug-ins For This Release

For this build import/export a
priority

Most common request

Example .x file importer, with
skinning

Example material exporter
Both samples in
nv_pluginexample

Full Source

44

Simple Plug-in Creation

Attributed C++ DLL

You can use the VC IDE to implement the DLL, the COM bits, and let
you pick the plugin interface you want to support….

Should we do a ‘custom’ wizard? Not sure this is necessary…

45

ATL Metadata for an Exporter

[

coclass,

threading("single"),
vi_progid("myplug.MyExporter"),

progid("myplug.MyExporter.1"),

version(1.0),

uuid("6A0DBA22-AFE7-448A-8552-66E50EBDA678")

]

Class CMyExporter : public INVSceneExporter

{
...

};

This is the junk that VC adds to the class definition. All you need to
know is that the progid section has to be copied into the FX composer
plugins.xml, which tells FX Composer what to look for.

46

But do you need to write a plug-in?

.NET scripting is a powerful new feature
C# and VB.NET

Editing & Compilation integrated into FXComposer

Errors displayed in task bar
Just like working with an effect

Full FX Composer engine is exposed to the script

Disadvantages
No single stepping

No intellisense, not currently as integrated into the
IDE as ‘real’ plugins

Version 2 fix this

-Debugging of small scripts isn’t hard….

-Intellisense is easy to add, but not for 1.5

-May get more integration…. We’ll see.

47

Do a scripting demo, spirals….

48

Most of the time a script will do...

Examples
Import/export of scene & material data

Custom built scenes

Material parameter setting/restoring

Generation of effect files, based on data

Communication between FX Composer & your
engine

Regression testing, batch processing of
materials/effects

We have scripts to build screenshots of effects &
projects
Other samples to copy

If have time, show a script loading projects. Great demo of stability.

49

Questions?

Suggestions, bug reports, early access
fxcomposer@nvidia.com

http://developer.nvidia.com/fxcomposer

Me
cmaughan@nvidia.com

More FX Composer stuff in
GPU Gems
http://developer.nvidia.com/object/gpu_gems_home.html

ShaderX 3

Thanks for listening…

