The Making of “Nalu”

Matthias Wloka
NVIDIA Corporation

Acknowledgement

® Hubert Nguyen

® William Donnelly

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Long, Blonde Hair Rendering <§

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Long, Blonde Hair Rendering éa

®Long
® Requires dynamic animation
® T'hus cannot bake lighting
® Requires lots of hair
® Thus shading has to be fast

® Blonde
® Three visible highlights, black only has one
® Shadows much more visible

Tutorial 5: Programming Graphics Hardware w

Acknowledgements @a

®“Light Scattering from Human Hair
Fibers”

®By Steve Marschner, Henrik Wann
Jensen, Mike Cammarano, Steve
Worley, and Pat Hanrahan

®SIGGRAPH 2003
@ ~ Tutorial 5: Programming Graphics Hardwar 2.&}

Paper Models three
Distinct Highlights

® Consider only 3 most
significant terms
®R, TT, TRT

IIp=1)

IR =2 ™

® Uses path notation
® R is reflection
® T is transmission

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

R and TRT Highlights

® R — White primary highlight
® TRT — Colored secondary highlight

Tutorial 5: Igfogrammi_hg Graphics Hardware w

TT Highlight «g

® TT — strong forward scattering component
® Important for underwater hair

©2004 NVIDIA Corporation. All rights reserved.

The Reflectance Model

® Three main angles
® Light
® Eye
® Anisotropy

® Factor into lower dimensional terms
® M R (thetaH)*N_R (thetaD, phiD)

+ M _TT (thetaH) *N_TT (thetaD, phiD)
+ M_TRT(thetaH) * N_TRT(thetaD, phiD)

® 2D functions are encoded in textures
® Texture maps are faster than heavy math

® Use of mip maps eliminates “shader aliasing”
2

Tutorial 5: Programming Graphics Hardware

©2004 NVIDIA Corporation. All rights reserved.

Use 2D textures to encode
look-up tables

® cos(thetal), cos(thetaE)
— M_R, M_TT, M_TRT, cos(thetaH)

® cos(thetaH), cos(phiD)
— N R, N TT, N TRT

] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

It’s tweakable

® Highlights:
® Separation
® Strength
® Width

® Hair color
® Extinction coefficient
® Index of refraction

Tutorial 5: Programming Graphics Hardware w

Shadowing <a

® Based on
“Opacity Shadow Maps” (OSM)

® By Tae-Yong Kim and Ulrich Neumann
SIGGRAPH 2001

Tutorial 5: Programming Graphics Hardware w

Why Opacity Shadow Maps? <§

® Opacity Shadow Maps vs Shadow Maps
“What percentage of light is blocked from here?”
VS.
“Is the light blocked from here?”

® Thus supports AA edges and volumetric
rendering

® Regular shadow maps alias around edges
® Hair is 100% edges!

Tutorial 5: Programming Graphics Hardware w

No Shadows 15 slices 255 slices

Tutorial 5: Programming Graphics Hardware w

Opacity Equation

® T(z): amount of light penetrating to depth z

® For discrete case (hair):

® Integral is sum over all strands between light and point being
shadowed

® Compute sum via additive blending
@ “Extinction coefficient” K controls darkness of shadows

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Creating the Opacity Maps éa

® Choose 16 slicing planes in hair
® Uniform distribution based on hair bounding sphere

® For each hair-pixel and for each plane

® Is hair-pixel closer to light than plane?
® Yes: add hair to contribution (plane)
® No: do nothing

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

OSM Slices

... up to 16

Tutorial 5: Programming Graphics Hardware g

©2004 NVIDIA Corporation. All rights reserved.

OSM Creation éa

® Render hairs to 16 slices
® Original implementation : 16 render passes (RP)

® In practice, 4 Render Passes
® 4 RP x 4 BGRA targets = 16 components/slices

® Bonus: use Multiple Render Targets
® Single render pass instead of 4
® Saves geometry computations
® MRT shader is simple
®4 SLT and 4 MUL instructions
® Can use lower hair LOD

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

OSM Slices, 1 Render Pass BGRA packing€a

1

4)

Tutorial 5: Programming Graphics Hardware

©2004 NVIDIA Corporation. All rights reserved.

Vertex Shader Implementation ég

® Compute light space position of the (Hair) fragment

® Add z-bias to counter limited z-resolution
® Just like regular shadow maps

® Hair-pixel position in light space determines:

® Which opacity maps to look in
® Depending on light space Z

® Where in opacity map to look in
® Depending on light space X,Y

] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader Implementation éa

We know the value of the integral at each plane
® Compute in-between values by linear interpolation

® Interpolated value is a linear combination of plane
values

® Equivalent to a 16 component dot-product:
® dot(osm1weight, lookup1) + ... + dot(osm4weight, lookup4)

® Compute opacity by exponentiation

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

In the demo... @%

Hair WITH Shadows Hair WITH Shadows

] : Tutorial 5: Programming Graphics Hardware
©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry & Dynamics

] : Tutorial 5: Programming Graphics Hardware
©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry : Overview @a

® 4095 individual hairs driven by 762 “control hairs”

® “Control hairs “

® Set of hairs that is really driven by dynamics/collisions

® Based on a particle system, where particles are connected by
distance constraints

® Grown from a reference geometry

® “Fine hair” geometry is created by smoothing &
interpolating the “control hair”

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry : Layout & Growth <§

® “Control hair” grows from a dedicated geometry

® Grows along the normal of each vertex
® Growth is non-linear, segments are getting longer

J.l.'

] : Tutorial 5: Programming Graphics Hardware
©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry : Control Hairs @z
(left image)

® Physics/dynamics/collisions are performed on
the control hairs

Control Hair Fine Hair

Hair Dynamics <a

® Based on a particle system

® Uses the “Verlet” integration

® previous frame position to compute velocity
® Less sensitive to frame rate, less prone to explosion

X=2X—X +a-At’

X =X

Reference: “Advanced Character Physics”
Thomas Jakobsen, 1O Interactive, Denmark.

] : Tutorial 5: Programming Graphics Hardware
©2004 NVIDIA Corporation. All rights reserved.

Hair Dynamics: constraints éa

® Two constraint types:

® Infinite mass: applied to the “hair root” particles. Allows the
head to “pull” the hair.

® Distance constraints: forces “control hair” segments length to
stay constant

\,\
Desired
length

® If we apply those constraints iteratively, the particles will
globally converge to the desired solution

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Hair Dynamics: Collisions Gz
® Quite simple

® Nalu has a set of Spheres

® Control hair has 1Sphere/CV

® CV Sphere grows towards the tip
of the hair

® Prevents collision sphere from
slipping between 2 CVs

Hair
CV sphere

“Pearl” configuration ¢4

] : Tutorial 5: Programming Graphics Hardware m M}
©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry : Data Flow éa

® Line lists or strips are sent to the GPU In World

Every frame

Control compute Bezier
Hairs Tangents Curves

7 , Smooth
Yy 7 Interpolate Control Tesselate
Hairs
.‘ e

Tutorial 5: Programming Graphics Hardware _G

©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry : Lifecycle (per frame)@z
P

Compute tangents

N

Interpolate

()
.-—-.
Tessellate l

/

] : Tutorial 5: Programming Graphics Hardware
©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry : Interpolation ég

® 3 smoothed control hairs are the basis for interpolating

more hair on the surface :
-SmoothHair1

SmoothHair0 “
@

Interpolated Hair = weight0 * SmoothHair0 o
+ weight1 * SmoothHair1
+ weight2 * SmoothHair2 4

®
SmoothHair2

©2004 NVIDIA Corporation. All rights reserved. Tuu)rlg?an&&m% Graphics Hardware w

Hair Geometry : Interpolation

® Halrlnterpolatlon happens *after® Bezier
tessellation A7

® it's faster

123k vertices in Hair

] : Tutorlal 5: Programmlng Graphlcs Hardware
©2004 NVIDIA Corporation. All rights reserved.

Fins €z

® Fins are a cloth simulation.

® Any mesh can be turned into a cloth by using triangle
edges as constraints

® Same physics as hair

® Normals are recomputed each frame

] : Tutorial 5: Programming Graphics Hardware
©2004 NVIDIA Corporation. All rights reserved.

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Radial Blur effect <§

®Render bright regions
®Render shadow caster in alpha

@®Blur in the radial direction, subtract occlusion
factor (from alpha channel)

To Polar Coordinates |
>

] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Shafts are based on a
Radial Blur effect

Radial Blur effect <2

® Transform into polar co-ordinates (x,y)->(r,theta)
®Use a grid where position = (r,theta) and texcoord = (X,y)

®Blur in the radial direction

® Transform back into Cartesian co-ordinates

®Use the same geometric warping, but with positions and
texture co-ordinates reversed

From Cartesian to Polar coordinates -
©2004 NVIDIA Corporation. All rights reserved. Tutorial 5: Programmlng Graphlcs Hardware w

Radial Blur effect : visuals <%

Vertical
blur

Polar to
‘ rectangular

\‘ ’ 'I\L

Tutorial 5: Programming Graphics Hardware
©2004 NVIDIA Corpor: . All rights

“God Rays” in the Demo

]) Tutorial 5: Programming Graphics Hardware
©2004 NVIDIA Corporation. All rights reserved.

Soft Shadows @a

® Soft shadowing based on Texture Space
Diffusion (by Simon Green)

® Described in “GPU GEMS” book (page 272)

® Basically:
® Do the regular shadow mapping computations

® But render in Texture Space
® Using the UV coordinates as Vertex Shader Output Position

® Blur the Texture Space B&W shadow result

® Use the blurred shadow result in place of shadow
compare when rendering the character

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Soft Shadows: visualizations ég

— r
R Yy
- 1>

Tutorial 5: Programming Graphics Hardware

©2004 NVIDIA Corporation. All rights reserved.

Soft Shadows: challenges

® Unfold character in UV Space

® Visible Seams were UV
are not continuous

® Workarounds
® Improve UV layout
® Do shadows in UV space, Lighting in Camera space

] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Future work

® Move more work to the GPU
® Physics
® Collisions (e.g., Simon's cloth demo)
® Curves Tessellation
® Normal / Tangent computation
® Hair Interpolation
® Anything, really :-)

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

Vertex Shader Optimization éa

® Compute percentage contribution of each plane to the
current fragment in the vertex shader:

OSM1weight = max(0, 1 — abs(dist — depth1)*inverseDeltaD);

® Dist is hair distance from light source
® Depth1 is distance of first 4 planes packed in a float4

® inverseDeltaD is 1/(distance between planes)
® OSM[2-4]weight calculated similarly

- . . |
] : Tutorial 5: Programming Graphics Hardware w
©2004 NVIDIA Corporation. All rights reserved.

