
Programming Graphics HardwareProgramming Graphics Hardware

Randy Fernando, Mark Harris,
Matthias Wloka, Cyril Zeller

Tutorial 5

Tutorial 5: Programming Graphics Hardware

Overview of the Tutorial: Morning

Lunch12:00

Programming the GPU: High-level Shading Languages
Randy Fernando

10:45
Break10:15

Controlling the GPU from the CPU: the 3D API
Cyril Zeller

Introduction to the Hardware Graphics Pipeline
Cyril Zeller

9:30

8:30

Tutorial 5: Programming Graphics Hardware

Overview of the Tutorial: Afternoon

End17:30

Lunch12:00

General-Purpose Computation Using Graphics Hardware
Mark Harris

16:15
Break15:45

Advanced Rendering Techniques
Matthias Wloka

Optimizing the Graphics Pipeline
Matthias Wloka

14:45

14:00

Tutorial 5: Programming Graphics Hardware

Introduction to
the Hardware Graphics Pipeline

Introduction to
the Hardware Graphics Pipeline

Cyril Zeller

Tutorial 5: Programming Graphics Hardware

Overview

Concepts:
Real-time rendering
Hardware graphics pipeline

Evolution of the PC hardware graphics pipeline:
1995-1998: Texture mapping and z-buffer
1998: Multitexturing
1999-2000: Transform and lighting
2001: Programmable vertex shader
2002-2003: Programmable pixel shader
2004: Shader model 3.0 and 64-bit color support

PC graphics software architecture
Performance numbers

Tutorial 5: Programming Graphics Hardware

Real-Time Rendering
Graphics hardware enables real-time rendering
Real-time means display rate at more than 10 images per second

3D Scene =
Collection of

3D primitives (triangles, lines, points)

Image =
Array of pixels

Tutorial 5: Programming Graphics Hardware

Hardware Graphics Pipeline

3D Triangles 2D Triangles PixelsGeometry
Stage

Rasterization
Stage

Application
Stage

Compute
attributes

Transform
3D position

into
screen position

Resolve
visibility

Rasterize
triangle

Interpolate
vertex attributes
across triangle

Shade
pixels

For each
triangle vertex:

For each
triangle:

Tutorial 5: Programming Graphics Hardware

Video Board

Motherboard

PC Architecture

Central Processor Unit (CPU)

System Memory

Video Memory

Graphics Processor Unit (GPU)

Bus Port (PCI, AGP, PCIe)

Tutorial 5: Programming Graphics Hardware

1995-1998: Texture Mapping and Z-Buffer

PCI: Peripheral Component Interconnect
3dfx’s Voodoo

GPUCPU
Application / Geometry Stage Rasterization Stage

Texture
Unit

Raster
Operations

Unit
Rasterizer

Video MemorySystem Memory

2D Triangles

Textures
Frame
Buffer2D Triangles TexturesBus

(PCI)

Tutorial 5: Programming Graphics Hardware

Texture Mapping

+

=

Triangle Mesh Base Texturetextured with

Tutorial 5: Programming Graphics Hardware

Texture Mapping: Texture Coordinates Interpolation

(x1, y1)

(x2, y2)

(x0, y0)

(u0, v0)

(u1, v1)

(u2, v2)

u

v

(x, y)

(u, v)

Screen Space Texture Space

x

y

Texel

Tutorial 5: Programming Graphics Hardware

Texture Mapping: Perspective-Correct Interpolation

Perspective-Incorrect Perspective-Correct

Tutorial 5: Programming Graphics Hardware

Texture Mapping: Magnification

u

v

Screen Space Texture Space

x

y

or

Nearest-Point Sampling Bilinear Filtering

Pixel
Pixel’s texture footprint

Tutorial 5: Programming Graphics Hardware

Texture Mapping: Minification

u

v

Screen Space Texture Space

x

y

Pixel
Pixel’s texture footprint

Tutorial 5: Programming Graphics Hardware

Texture Mapping: Mipmapping

Bilinear Filtering Trilinear Filtering

or

Tutorial 5: Programming Graphics Hardware

Texture Mapping: Anisotropic Filtering

Bilinear Filtering Trilinear Filtering

or

Tutorial 5: Programming Graphics Hardware

Texture Mapping: Addressing Modes

Wrap Mirror

Tutorial 5: Programming Graphics Hardware

Texture Mapping: Addressing Modes

Clamp Border

Tutorial 5: Programming Graphics Hardware

Frame Buffer

Color Buffer

Raster
Operations

Unit

Raster Operations Unit (ROP)

Texture
UnitRasterizer Fragments

Pixels

Alpha Test

Stencil Buffer

Z-Buffer

Stencil Test

Z Test

Alpha Blending

Scissor Test

Fragment

Screen Position (x, y)

Alpha Value a

Depth z

Color (r, g, b)

tested against
scissor rectangle

tested against
reference value

tested against
z-buffer value at (x, y)

(visibility test)

blended with
color buffer value at (x, y):

Ksrc * Colorsrc + Kdst * Colorsrc

(src = fragment
dst = color buffer)

stencil buffer value
at (x, y)

tested against
reference value

Tutorial 5: Programming Graphics Hardware

Video Memory

1998: Multitexturing

AGP: Accelerated Graphics Port
NVIDIA’s TNT, ATI’s Rage

GPUCPU
Application / Geometry Stage

System Memory

2D Triangles

Textures

Rasterization Stage

Frame
Buffer

Multitexture
Unit

Raster
Operations

Unit
Rasterizer

2D Triangles TexturesBus
(AGP)

Tutorial 5: Programming Graphics Hardware

AGP
PCI uses a parallel connection
AGP uses a serial connection

→ Fewer pins, simpler protocol → Cheaper, more scalable

PCI uses a shared-bus protocol
AGP uses a point-to-point protocol

→ Bandwidth is not shared among devices

AGP uses a dedicated system memory called AGP memory or
non-local video memory

The GPU can lookup textures that resides in AGP memory
Its size is called the AGP aperture

Bandwidth: AGP = 2 x PCI (AGP2x = 2 x AGP, etc.)

Tutorial 5: Programming Graphics Hardware

Multitexturing
Base Texture Light Map

X

=

modulated by

from UT2004 (c)
Epic Games Inc.

Used with permission

Tutorial 5: Programming Graphics Hardware

1999-2000: Transform and Lighting

Register Combiner: Offers many more texture/color combinations
NVIDIA’s GeForce 256 and GeForce2, ATI’s Radeon 7500, S3’s Savage3D

GPU “Fixed Function Pipeline”
Rasterization StageGeometry Stage

CPU
Application
Stage

Transform
and

Lighting
Unit

Register
Combiner

Raster
Operations

Unit
Rasterizer

Texture
Unit

Video Memory

Frame
Buffer

System
Memory

3D Triangles

3D Triangles TexturesTextures Bus
(AGP)

Tutorial 5: Programming Graphics Hardware

Transform and Lighting Unit

Transform

Transform and Lighting Unit (TnL)

Lighting

Camera
or

Eye
Space

Screen
or

Window
Space

Material Properties

Vertex Color

Light Properties

World
Matrix

Perspective
Division

and
Viewport

Matrix

Projection
Matrix

View
MatrixModel

or
Object
Space Model-View

Matrix

Vertex
Diffuse and Specular Color

World
Space Projection

or
Clip

Space

Tutorial 5: Programming Graphics Hardware

Bump Mapping
Bump mapping is about fetching the normal from a texture (called a
normal map) instead of using the interpolated normal to compute
lighting at a given pixel

Normal Map

Diffuse light without bump Diffuse light with bumps

+ =

Tutorial 5: Programming Graphics Hardware

Cube Texture Mapping

Environment Mapping
(the reflection vector

is used to lookup
the cubemap)

Cubemap lookup
(with direction (x, y, z))

Cubemap
(covering

the six faces
of a cube) y

x

z

(x,y,z)

Tutorial 5: Programming Graphics Hardware

Projective Texture Mapping

(x, y, z, w)

(x/w, y/w)

Projective Texture lookup

Projected Texture

Texture Projection

Tutorial 5: Programming Graphics Hardware

2001: Programmable Vertex Shader

Z-Cull: Predicts which fragments will fail the Z test and discards them
Texture Shader: Offers more texture addressing and operations
NVIDIA’s GeForce3 and GeForce4 Ti, ATI’s Radeon 8500

GPU
Rasterization StageGeometry Stage

CPU
Application
Stage

Vertex Shader
(no flow control)

Register
Combiner

Raster
Operations

Unit
Rasterizer
(with Z-Cull)

Texture
Shader

Video Memory

Frame
Buffer

System
Memory

3D Triangles

3D Triangles TexturesTextures Bus
(AGP)

Tutorial 5: Programming Graphics Hardware

Vertex Shader

void VertexShader(
// Input per vertex

in float4 positionInModelSpace,
in float2 textureCoordinates,
in float3 normal,

// Input per batch of triangles
uniform float4x4 modelToProjection,
uniform float3 lightDirection,

// Output per vertex
out float4 positionInProjectionSpace,
out float2 textureCoordinatesOutput,
out float3 color

)
{

// Vertex transformation
positionInProjectionSpace = mul(modelToProjection, positionInModelSpace);

// Texture coordinates copy
textureCoordinatesOutput = textureCoordinates;

// Vertex color computation
color = dot(lightDirection, normal);

}

A programming processor for any per-vertex computation

Tutorial 5: Programming Graphics Hardware

Volume Texture Mapping

Noise Perturbation

Volume Texture lookup
(with position (x, y, z))

Volume Texture
(3D Noise)

y

z

(x,y,z)

x

Tutorial 5: Programming Graphics Hardware

Shadow Rendering

Shadow Map Computation

Hardware Shadow Mapping

The shadow map contains
the depth z/w of the 3D points visible
from the light’s point of view

A 3D point (x, y, z, w) is in shadow if:
z/w < value of shadow map at (x/w, y/w)
A hardware shadow map lookup
returns the value of this comparison
between 0 and 1

Spot
light

(x, y, z, w)

(x/w, y/w)
Spot
light

(x, y, z, w)
(x/w, y/w)

Store
z/w

Lookup
value

Shadow
map

Tutorial 5: Programming Graphics Hardware

Antialiasing: Definition

Aliasing: Undesirable visual artifacts due to
insufficient sampling of:

Primitives (triangles, lines, etc.) → jagged edges
Textures or shaders → pixelation, moiré patterns

Those artifacts are even more noticeable on animated
images
Antialiasing: Method to reduce aliasing

Texture antialiasing is largely handled by proper
mipmapping and anisotropic filtering
Shader antialiasing can be tricky (especially with
conditionals)

Tutorial 5: Programming Graphics Hardware

Antialiasing: Supersampling and Multisampling

Supersampling:
Compute color and Z at
higher resolution and
display averaged color to
smooth out the visual
artifacts

Multisampling:
Same thing except only Z
is computed at higher
resolution

As a result, multisampling
performs antialiasing on
primitive edges only

Pixel Center

Sample

Tutorial 5: Programming Graphics Hardware

2002-2003: Programmable Pixel Shader

MRT: Multiple Render Target
NVIDIA’s GeForce FX, ATI’s Radeon 9600 to 9800 and X600 to X800

GPU
Rasterization StageGeometry Stage

CPU
Application
Stage

Vertex Shader
(static and dynamic

flow control)

Pixel Shader
(static

flow control only)

Raster
Operations

Unit
Rasterizer
(with Z-Cull)

Texture
Unit

Video Memory

Frame
Buffer

System
Memory

3D Triangles

3D Triangles TexturesTextures Bus
(AGP)

Tutorial 5: Programming Graphics Hardware

Pixel Shader

void PixelShader(
// Input per pixel

in float2 textureCoordinates,
in float3 normal,

// Input per batch of triangles
uniform sampler2D baseTexture,
uniform float3 lightDirection,

// Output per pixel
out float3 color

)
{

// Texture lookup
float3 baseColor = tex2D(baseTexture, textureCoordinates);

// Light computation
float light = dot(lightDirection, normal);

// Pixel color computation
color = baseColor * light;

}

A programming processor for any per-pixel computation

Tutorial 5: Programming Graphics Hardware

Shader: Static vs. Dynamic Flow Control

void Shader(
...

// Input per vertex or per pixel
in float3 normal,

// Input per batch of triangles
uniform float3 lightDirection,
uniform bool computeLight,

...
)
{

...
if (computeLight) {
...
if (dot(lightDirection, normal)) {
...

}
...

}
...

}

Static Flow Control
(condition varies

per batch of triangles)

Dynamic Flow Control
(condition varies

per vertex or pixel)

Tutorial 5: Programming Graphics Hardware

Video Memory

2004: Shader Model 3.0 and 64-Bit Color Support

PCIe: Peripheral Component Interconnect Express
NVIDIA’s GeForce 6 Series (6800 and 6600)

GPU
Rasterization StageGeometry Stage

CPU

Frame
Buffer

Application
Stage

64-Bit
Color

Vertex Shader
(static and dynamic

flow control)

Pixel Shader
(static and dynamic

flow control)

Raster
Operations

Unit
Rasterizer
(with Z-Cull)

System
Memory

3D Triangles

3D Triangles TexturesTextures

Texture
Unit

Bus
(PCIe)

Tutorial 5: Programming Graphics Hardware

PCIe

Like AGP:
Uses a serial connection → Cheap, scalable
Uses a point-to-point protocol → No shared bandwidth

Unlike AGP:
General-purpose (not only for graphics)
Dual-channels: Bandwidth is available in both direction

Bandwidth: PCIe = 2 x AGP8x

Tutorial 5: Programming Graphics Hardware

Multi-GPU Architecture

NVIDIA’s Scalable Link Interface multi-GPU technology takes
advantage of the increased bandwidth of the PCI Express to
automatically accelerates applications through a combination
of intelligent hardware and software solutions

SLI Connector

Tutorial 5: Programming Graphics Hardware

Shader Model 3.0

Shader Model 3.0 means:
Longer shaders → More complex shading
Pixel shader:

Dynamic flow control → Better performance
Derivative instructions → Shader antialiasing
Support for 32-bit floating-point precision → Fewer artifacts
Face register → Faster two-sided lighting

Vertex shader:
Texture access → Simulation on GPU, displacement mapping
Vertex buffer frequency → Efficient geometry instancing

Tutorial 5: Programming Graphics Hardware

Shader Model 3.0 Unleashed

Image used with permission from Pacific Fighters.
© 2004 Developed by 1C:Maddox Games.

All rights reserved. © 2004 Ubi Soft Entertainment.

Tutorial 5: Programming Graphics Hardware

64-Bit Color Support
64-bit color means one 16-bit floating-point value per
channel (R, G, B, A)

Alpha blending works with 64-bit color buffer
(as opposed to 32-bit fixed-point color buffer only)
Texture filtering works with 64-bit textures
(as opposed to 32-bit fixed-point textures only)

Applications:
High-precision image compositing
High dynamic range imagery

Tutorial 5: Programming Graphics Hardware

High Dynamic Range Imagery

The dynamic range of a scene is the ratio of the highest
to the lowest luminance
Real-life scenes can have high dynamic ranges of
several millions
Display and print devices have a low dynamic range of
around 100
Tone mapping is the process of displaying high dynamic
range images on those low dynamic range devices
High dynamic range images use floating-point colors
OpenEXR is a high dynamic range image format that is
compatible with NVIDIA’s 64-bit color format

Tutorial 5: Programming Graphics Hardware

Real-Time Tone Mapping
The image is entirely computed in 64-bit color
and tone-mapped for display

From low to high exposure image of the same scene

Tutorial 5: Programming Graphics Hardware

PC Graphics Software Architecture

The application, 3D API and driver are written in C or C++
The vertex and pixel programs are written in a high-level shading language
(Cg, DirectX HLSL, OpenGL Shading Language)

Video Memory

GPU Vertex
Program

Pixel
Program

Vertex
Shader

Pixel
Shader

CPU
Application

3D API
(OpenGL or DirectX)

Driver

System Memory

BUS

Commands

Programs

Geometry
(triangles,
vertices,
normals,

etc...)

Textures

Tutorial 5: Programming Graphics Hardware

Evolution of Performance
10 000

100

1000

10

Mtransistors

Mpixels/s

Mvertices/s

1995 200420031996 1997 1998 1999 2000 2001 2002

PCI
(133 MB/s)

AGP2x
(533 MB/s)

AGP8x
(2.1 GB/s)

AGP4x
(1.06 GB/s)

PCIe
(4 GB/s)

AGP
(266 MB/s)

DirectX 1
OpenGL 1.1

DirectX 5
OpenGL 1.2

DirectX 7
DirectX 8

OpenGL 1.3
DirectX 9

OpenGL 1.5
DirectX 6 OpenGL 1.4

4 MB 32 MB 256 MB64 MB 512 MB128 MB

Bus

Video
memory

API DirectX 3DirectX 2

Tutorial 5: Programming Graphics Hardware

The Future

Unified general programming model at primitive,
vertex and pixel levels
Scary amounts of:

Floating point horsepower
Video memory
Bandwidth between system and video memory

Lower chip costs and power requirements to make
3D graphics hardware ubiquitous:

Automotive (gaming, navigation, heads-up displays)
Home (remotes, media center, automation)
Mobile (PDAs, cell phones)

Tutorial 5: Programming Graphics Hardware

References

Tons of resources at http://developer.nvidia.com:

Code samples

Programming guides

Recent conference presentations

A good website and book on real-time rendering:
http://www.realtimerendering.com

Tutorial 5: Programming Graphics Hardware

Questions

Support e-mail:
devrelfeedback@nvidia.com [Technical Questions]
sdkfeedback@nvidia.com [Tools Questions]

