
2004

GPGPU: GPGPU: 
GeneralGeneral--Purpose Purpose 

Computation on GPUsComputation on GPUs
Mark Harris

NVIDIA Developer Technology Group



The GPU has evolved into an extremely 
flexible and powerful processor

Programmability
Precision
Performance

This talk addresses the basics of harnessing 
the GPU for general-purpose computation

Why GPGPU?Why GPGPU?



Motivation: Computational PowerMotivation: Computational Power

GPUs are fast…
3 GHz Pentium 4 theoretical: 6 GFLOPS

5.96 GB/sec peak

GeForce FX 5900 observed*: 20 GFLOPs
25.6 GB/sec peak

GeForce 6800 Ultra observed*: 40 GFLOPs
35.2 GB/sec peak

*Observed on a synthetic benchmark: 
A long pixel shader with nothing but MUL instructions



GPU: high performance growthGPU: high performance growth

CPU
Annual growth ~1.5× decade growth ~ 60×
Moore’s law

GPU
Annual growth > 2.0× decade growth > 1000×
Much faster than Moore’s  law



Why are GPUs getting faster so fast?Why are GPUs getting faster so fast?

Computational intensity 
Specialized nature of GPUs makes it easier to use 
additional transistors for computation not cache

Economics
Multi-billion dollar video game market is a pressure 
cooker that drives innovation



Motivation: Flexible and preciseMotivation: Flexible and precise

Modern GPUs are programmable
Programmable pixel and vertex engines
High-level language support

Modern GPUs support high precision
32-bit floating point throughout the pipeline
High enough for many (not all) applications



Motivation: The Potential of GPGPUMotivation: The Potential of GPGPU

The performance and flexibility of GPUs 
makes them an attractive platform for general-
purpose computation

Example applications (from www.GPGPU.org)
Advanced Rendering: Global Illumination, Image-based Modeling 
Computational Geometry
Computer Vision
Image And Volume Processing
Scientific Computing: physically-based simulation, linear system solution, PDEs
Stream Processing
Database queries
Monte Carlo Methods



The Problem: Difficult To UseThe Problem: Difficult To Use

GPUs are designed for and driven by graphics
Programming model is unusual & tied to graphics
Programming environment is tightly constrained

Underlying architectures are:
Inherently parallel
Rapidly evolving (even in basic feature set!)
Largely secret

Can’t simply “port” code written for the CPU!



Mapping Computational Mapping Computational 
Concepts to GPUsConcepts to GPUs

Remainder of the Talk:

Data Parallelism and Stream Processing
Computational Resources Inventory
CPU-GPU Analogies
Flow Control Techniques
Examples and Future Directions



Importance of Data ParallelismImportance of Data Parallelism

GPUs are designed for graphics
Highly parallel tasks

GPUs process independent vertices & 
fragments

Temporary registers are zeroed
No shared or static data
No read-modify-write buffers

Data-parallel processing
GPU architecture is ALU-heavy

Multiple vertex & pixel pipelines, multiple ALUs per pipe
Hide memory latency (with more computation)



Arithmetic IntensityArithmetic Intensity

Arithmetic intensity =  ops per word transferred

“Classic” Graphics pipeline
Vertex

BW: 1 triangle = 32 bytes 
OP: 100-500 f32-ops / triangle

Fragment 
BW: 1 fragment = 10 bytes
OP: 300-1000 i8-ops/fragment

Courtesy of Pat Hanrahan



Data Streams & KernelsData Streams & Kernels

Streams
Collection of records requiring similar computation

Vertex positions, Voxels, FEM cells, etc.

Provide data parallelism
Kernels

Functions applied to each element in stream
transforms, PDE, …

Few dependencies between stream elements
Encourage high Arithmetic Intensity

Courtesy of Ian Buck



Example: Simulation GridExample: Simulation Grid

Common GPGPU computation style
Textures represent computational grids = streams

Many computations map to grids
Matrix algebra
Image & Volume processing
Physical simulation
Global Illumination

ray tracing, photon mapping, 
radiosity

Non-grid streams can be 
mapped to grids



Stream ComputationStream Computation

Grid Simulation algorithm
Made up of steps
Each step updates entire grid
Must complete before next step can begin

Grid is a stream, steps are kernels
Kernel applied to each stream element



Scatter vs. GatherScatter vs. Gather

Grid communication (a necessary evil)
Grid cells share information
Two ways:



Computational Resources InventoryComputational Resources Inventory

Programmable parallel processors
Vertex & Fragment pipelines

Rasterizer
Mostly useful for interpolating addresses (texture 
coordinates) and per-vertex constants

Texture unit
Read-only memory interface

Render to texture
Write-only memory interface



Vertex ProcessorVertex Processor

Fully programmable (SIMD / MIMD)
Processes 4-vectors (RGBA / XYZW)
Capable of scatter but not gather

Can change the location of current vertex (scatter)
Cannot read info from other vertices (gather)
Small constant memory

New GeForce 6 Series features: 
Pseudo-gather: read textures in the vertex program
MIMD: independent per-vertex branching, early exit



Fragment ProcessorFragment Processor

Fully programmable (SIMD)
Processes 4-vectors (RGBA / XYZW)
Capable of gather but not scatter

Random access memory read (textures)
Output address fixed to a specific pixel

Typically more useful than vertex processor
More fragment pipelines than vertex pipelines
Gather / RAM read
Direct output

GeForce 6 Series adds SIMD branching
GeForce FX only has conditional writes



CPUCPU--GPU AnalogiesGPU Analogies

CPU programming is (assumed) familiar
GPU programming is graphics-centric

Analogies can aid understanding



CPUCPU--GPU AnalogiesGPU Analogies



GPU Simulation OverviewGPU Simulation Overview

Analogies lead to implementation
Algorithm steps are fragment programs

Computational kernels

Current state variables stored in textures
Data streams

Feedback via render to texture

One question: 
How do we invoke computation?



Invoking ComputationInvoking Computation

Must invoke computation at each pixel
Just draw geometry!
Most common GPGPU invocation is a full-screen 
quad



Standard Standard ““GridGrid”” ComputationComputation

Initialize “view” (so that pixels:texels::1:1)
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, gridResX, gridResY);

For each algorithm step:
Activate render-to-texture
Setup input textures, fragment program
Draw a full-screen quad (1 unit x 1 unit)



ReactionReaction--DiffusionDiffusion

Gray-Scott reaction-diffusion model [Pearson 
1993]
Streams = two scalar chemical 
concentrations
Kernel: just Diffusion and Reaction ops

  

∂U
∂t

= Du∇
2U −UV 2 + F (1−U ),

∂V
∂t

= Dv∇
2V +UV 2 − (F + k )V

U, V are chemical concentrations,
F, k, Du, Dv are constants



Demo: Demo: ““DiseaseDisease””

Available in NVIDIA SDK: Available in NVIDIA SDK: http://developer.nvidia.comhttp://developer.nvidia.com

““PhysicallyPhysically--based visual simulation on the GPUbased visual simulation on the GPU””,,
Harris et al., Graphics Hardware 2002Harris et al., Graphics Hardware 2002



PerPer--Fragment Flow ControlFragment Flow Control

No true branching on GeForce FX
Simulated with conditional writes: every instruction is 
executed, even in branches not taken

GeForce 6 Series has SIMD branching
Lots of deep pixel pipelines many pixels in flight
Coherent branching = likely performance win
Incoherent branching = likely performance loss



Fragment Flow Control TechniquesFragment Flow Control Techniques

Try to move decisions up the pipeline
Replace with math
Occlusion Query
Domain decomposition
Z-cull
Pre-computation



Branching with Occlusion QueryBranching with Occlusion Query

OQ counts the number of fragments written
Use it for iteration termination

Do {  // outer loop on CPU
BeginOcclusionQuery {

// Render with fragment program
// that discards fragments that
// satisfy termination criteria

} EndQuery
} While query returns > 0

Can be used for subdivision techniques



Example: OQExample: OQ--based Subdivisionbased Subdivision

Used in Coombe et al., “Radiosity on Graphics Hardware”



Static Branch ResolutionStatic Branch Resolution

Avoid branches where outcome is fixed
One region is always true, another false
Separate FP for each region, no branches

Example: 
boundaries



ZZ--CullCull

In early pass, modify depth buffer
Clear Z to 1, enable depth test
Draw quad at Z=0
Discard pixels that should be modified in later passes

Subsequent passes
Enable depth test (GL_LESS), disable depth write
Draw full-screen quad at z=0.5
Only pixels with previous depth=1 will be processed

Can also use early stencil test  on GeForce 6



PrePre--computationcomputation

Pre-compute anything that will not change 
every iteration!
Example: arbitrary boundaries

When user draws boundaries, compute texture 
containing boundary info for cells

e.g. Offsets for applying PDE boundary conditions
Reuse that texture until boundaries modified
GeForce 6 Series: combine with Z-cull for higher 
performance!



GeForce 6 Series BranchingGeForce 6 Series Branching

True, SIMD branching
Lots of incoherent branching can hurt performance
Should have coherent regions of > 1000 pixels

That is only about 30x30 pixels, so still very useable!

Don’t ignore overhead of branch instructions
Branching over only a few instructions not worth it

Use branching for early exit from loops
Save a lot of computation

GeForce 6 vertex branching is fully MIMD
very small overhead and no penalty for divergent 
branching



Current GPGPU LimitationsCurrent GPGPU Limitations

Programming is difficult
Limited memory interface
Usually “invert” algorithms (Scatter Gather)
Not to mention that you have to use a graphics API…

Limitations of communication from GPU to CPU
PCI-Express helps

GeForce 6 Quadro GPUs: 1.2 GB/s observed
Will improve in the near future

Frame buffer read can cause pipeline flush
Avoid frequent communication to CPU



Brook for GPUsBrook for GPUs

A step in the right direction
Moving away from graphics APIs

Stream programming model
enforce data parallel computing: streams
encourage arithmetic intensity: kernels

C with stream extensions
Cross compiler compiles to HLSL and Cg
GPU becomes a streaming coprocessor

See SIGGRAPH 2004 Paper and
http://graphics.stanford.edu/projects/brook
http://www.sourceforge.net/projects/brook



2004

ExamplesExamples



Example: Fluid SimulationExample: Fluid Simulation

Navier-Stokes fluid simulation on the GPU
Based on Stam’s “Stable Fluids”
Vorticity Confinement step

[Fedkiw et al., 2001]
Interior obstacles

Without branching

Fast on latest GPUs
~120 fps at 256x256 on 
GeForce 6800 Ultra

Available in NVIDIA SDK 8.0
“Fast Fluid Dynamics Simulation on the 

GPU”, Mark Harris.  In GPU Gems.



Fluid DynamicsFluid Dynamics

Solution of Navier-Stokes flow equations
Stable for arbitrary time steps
[Stam 1999], [Fedkiw et al. 2001]

Fast on latest GPUs
100+ fps at 256x256 on GeForce 6800 Ultra

See “Fast Fluid Dynamics Simulation 
on the GPU”

Harris, GPU Gems, 2004



Fluid Simulator DemoFluid Simulator Demo

Available in NVIDIA SDK: http://Available in NVIDIA SDK: http://developer.nvidia.comdeveloper.nvidia.com



Example: Particle SimulationExample: Particle Simulation

1 Million Particles1 Million Particles
Demo by Simon GreenDemo by Simon Green



Example: NExample: N--Body SimulationBody Simulation

Brute force 
N = 4096 particles
N2 gravity computations

16M force comps. / frame
~25 flops per force
17+ fps 

7+ GFLOPs sustained

Nyland et al., GP2 poster



The FutureThe Future

Increasing flexibility
Always adding new features
Improved vertex, fragment languages

Easier programming
Non-graphics APIs and languages?
Brook for GPUs 

http://graphics.stanford.edu/projects/brookgpu



The FutureThe Future

Increasing performance
More vertex & fragment processors
More flexible with better branching

GFLOPs, GFLOPs, GFLOPs!
Fast approaching TFLOPs!
Supercomputer on a chip 

Start planning ways to use it!



More InformationMore Information

GPGPU news, research links and forums
www.GPGPU.org

developer.nvidia.org

Questions?
mharris@nvidia.com



New Functionality OverviewNew Functionality Overview

Vertex Programs
Vertex Textures: gather
MIMD processing: full-speed branching

Fragment Programs
Looping, branching, subroutines, indexed input 
arrays, explicit texture LOD, facing register

Multiple Render Targets
More outputs from a single shader
Fewer passes, side effects



New Functionality OverviewNew Functionality Overview

VBO / PBO & Superbuffers
Feedback texture to vertex input
Render simulation output as geometry
Not as flexible as vertex textures

No random access, no filtering

Demos
PCI-Express

Higher GPU CPU bandwidth



CPUCPU--GPU AnalogiesGPU Analogies

CPU GPU

Stream / Data Array =        Texture
Memory Read          =    Texture Sample



CPUCPU--GPU AnalogiesGPU Analogies

Loop body / kernel / algorithm step   =   Fragment Program

CPU GPU



FeedbackFeedback

Each algorithm step depend on 
the results of previous steps

Each time step depends on the 
results of the previous time step



CPUCPU--GPU AnalogiesGPU Analogies

.

.
.

Grid[i][j]= x;
.
.
.

Array Write =     Render to Texture

CPU GPU



NavierNavier--Stokes EquationsStokes Equations

Describe flow of an incompressible fluid

   

∂u
∂t

= −(u ⋅∇)u −
1
ρ
∇p − ν∇2u + f

AdvectionAdvection PressurePressure
GradientGradient

Diffusion Diffusion 
(viscosity)(viscosity)

External ForceExternal Force

  ∇ ⋅ u = 0 Velocity is divergenceVelocity is divergence--freefree



Fluid AlgorithmFluid Algorithm

Break it down [Stam
1999]:

Advect:

Add forces:

Solve for pressure:

Subtract pressure
gradient:

)(1 t∆−= uxuu

t∆+= fuu 12

2
2 u⋅∇=∇ p

p∇−= 2
* uu



AdvectionAdvection

Advection: quantities in a fluid are carried along by 
velocity

Follow velocity field back in time from current 
position

uu((xx, , t+t+∆∆tt))

uu((xx’’, , tt))

Path of fluid

Trace back in time

float2 pos = 
coords – delta_t * tex(u, coords);

uNew = texBilerp(u, pos); 

)(1 t∆−= uxuu



PoissonPoisson--Pressure SolutionPressure Solution

Discretize equation, solve using iterative solver 
Jacobi, multigrid, conjugate gradient, etc.
Jacobi easy on GPU, but others possible too
Demo uses Jacobi iteration (50 iterations by default)

Compute divergence field, then repeatedly 
evaluate:

2
2 u⋅∇=∇ p

float pL = tex(pressure, coords + float2(-1, 0));
float pR = tex(pressure, coords + float2( 1, 0));
float pB = tex(pressure, coords + float2( 0,-1));
float pT = tex(pressure, coords + float2( 0, 1));

float div = tex(divergence, coords);

pNew = 0.25 * (pL + pR + pB + pT – delta2 * div);


