
Tutorial 5: Programming Graphics Hardware

Advanced Rendering
Techniques

Advanced Rendering
Techniques

Matthias M Wloka

Tutorial 5: Programming Graphics Hardware

Nalu

Tutorial 5: Programming Graphics Hardware

Acknowledgements

Hubert Nguyen

William Donnelly

NVIDIA Demo Team

Tutorial 5: Programming Graphics Hardware

Long Blonde Hair

Long
Requires dynamic animation

Thus cannot bake lighting
Requires lots of hair

Thus shading has to be fast

Blonde
Three visible highlights, black only has one
Shadows much more visible

Tutorial 5: Programming Graphics Hardware

Hair Rendering: Overview

Geometry and dynamics

Shading

Shadowing

Tutorial 5: Programming Graphics Hardware

Hair Geometry, Part 1

“Skull cap” specifies
Where control hairs
grow
Which direction to grow
Growth is non-linear

762 control hairs
Each is 7 vertices long

Tutorial 5: Programming Graphics Hardware

Hair Dynamics

Treat control hairs as particle system

For all (7 * 762) vertices in control hairs do
Physics simulation
Collision detection and reaction
Vertices of each control hair

Linked
Distance-constrained

Tutorial 5: Programming Graphics Hardware

Physics Simulation

Uses Verlet integration
Previous frame’s position computes velocity
Less sensitive to frame rate

Apply forces, then apply constraints
Iteratively
Particles converge
Thus take head-motion into account

Tutorial 5: Programming Graphics Hardware

Now Have 762 7-Vertex Control Hairs

Turn each control hair into 6 basic Bezier curves
1 control hair has 6 segments
1 basic Bezier requires 2 points and 2 tangents

Concatenate and tessellate each set of 6 basic
Bezier curves

Creates smooth control hair

Tutorial 5: Programming Graphics Hardware

Interpolate 3 smooth control hairs at a time
Generates total of 4095 individual hairs

Interpolation is post-tessellation
Performance reasons:
Tessellation is expensive

Generates ~123k total vertices for hair alone

Interpolate Control Hairs

Tutorial 5: Programming Graphics Hardware

Wire-Frame Demo

Tutorial 5: Programming Graphics Hardware

Hair Shading Based On

“Light Scattering from Human Hair Fibers”

By Steve Marschner, Henrik Wann Jensen, Mike
Cammarano, Steve Worley, and Pat Hanrahan

SIGGRAPH 2003

Tutorial 5: Programming Graphics Hardware

Paper Models 3 Distinct Highlights

Uses path notation
R is reflection
T is transmission

Figures from “Light
Scattering from Human
Hair Fibers” (see
previous slide)

Tutorial 5: Programming Graphics Hardware

R and TRT Highlights

R – white primary
highlight

TRT – colored
secondary highlight

Picture from “Light
Scattering from
Human Hair Fibers”
(see previous slides)

Tutorial 5: Programming Graphics Hardware

TT Highlight

TT – strong forward scattering component
Important for underwater hair

Tutorial 5: Programming Graphics Hardware

Hair Model Is 4-Dimensional Function

Factor into lower dimensional terms
M_R (thetaH) * N_R (thetaD, phiD)

+ M_TT (thetaH) * N_TT (thetaD, phiD)
+ M_TRT(thetaH) * N_TRT(thetaD, phiD)

Use 2D textures to encode as look-up tables
cos(thetaL), cos(thetaE)
→ M_R, M_TT, M_TRT, cos(thetaD)
cos(thetaH), cos(phiD)
→ N_R, N_TT, N_TRT

Tutorial 5: Programming Graphics Hardware

Make Most Aspects Tweakable

Highlights:
Separation
Strength
Width

Hair albedo

Extinction coefficient

Index of refraction

Tutorial 5: Programming Graphics Hardware

Hair Shading Demo

Tutorial 5: Programming Graphics Hardware

Shadowing

“Opacity Shadow Maps”

By Tae-Yong Kim and Ulrich Neumann

SIGGRAPH 2001

Tutorial 5: Programming Graphics Hardware

Why Opacity Shadow Maps

Opacity shadow maps ask:
What percentage of light is blocked from here?
Vs. Is the light blocked from here?

Thus supports AA edges and volumetric rendering

Regular shadow maps alias around edges

Hair is 100% edges

Tutorial 5: Programming Graphics Hardware

Pictures From Tae-Yong Kim’s Website

No Shadows 15 slices 255 slices

Tutorial 5: Programming Graphics Hardware

For Each Point In Map Compute:

T(z): amount of light penetrating to depth z

For hair:
Integral is sum over all strands between light and
point being shadowed

Compute sum via additive blending
“Extinction coefficient” K controls darkness of
shadows

Tutorial 5: Programming Graphics Hardware

Creating the Opacity Maps

Choose 16 slicing planes in hair
Uniform distribution
In hair bounding sphere

For each hair-pixel and for each plane
Is hair-pixel closer to light than plane?
Yes: add hair to contribution (plane)
No: do nothing

Tutorial 5: Programming Graphics Hardware

Opacity Map Creation Implementation

Render all hairs to 4 render targets
Each ARGB stores 4 planes
4 passes

Render all hairs to 4 MRTs
1 pass
MRT shader is simple: 4 SLT and 4 MUL instructions

Tutorial 5: Programming Graphics Hardware

Using the Opacity Maps

Hair-pixel position determines
Which opacity maps to look in
Where in opacity map to look in

Hair-pixel positions generated by lines
Linearly interpolated vertex values are equivalent

Tutorial 5: Programming Graphics Hardware

Using Opacity Maps Implementation

Vertex-shader computes
Texture coordinates for all 16 maps
Blend-weights to use

Pixel-shader combines 16 look-ups
Via 5 dot4 instructions

Add z-bias due counter limited z-resolution
Just like regular shadow maps

Tutorial 5: Programming Graphics Hardware

Shadowing Demo

Before

After

Tutorial 5: Programming Graphics Hardware

Questions

http://developer.nvidia.com
The Source for GPU Programming

Matthias Wloka (mwloka@nvidia.com)

