GPGPU:.
General-Purpose
Computation on GPUs

Mark Harris
NVIDIA Developer Technology Group

EC 2004

Why GPGPU? <2

=

® The GPU has evolved into an extremely
flexible and powerful processor
® Programmability
® Precision
® Performance

® This talk addresses the basics of harnessing
the GPU for general-purpose computation

Motivation: Computational Power @a
E(C
=

® GPUs are fast...
® 3 GHz Pentium 4 theoretical: 6 GFLOPS
® 5.96 GB/sec peak

® GeForce FX 5900 observed: 20 GFLOPS
® 25.6 GB/sec peak

® GeForce 6800 Ultra observed: 40 GFLOPs
® 35.2 GB/sec peak

"Observed on a synthetic benchmark:
® A long pixel shader with nothing but MUL instructions

GPU: high performance growth @a
= -
=€

® CPU

®Annual growth ~1.5x - decade growth ~ 60x
®Moore’s law

® GPU
®Annual growth > 2.0x - decade growth > 1000x
®Much faster than Moore’s law

Why are GPUs getting faster so fast? @a

—
=6
® Computational intensity

® Specialized nature of GPUs makes it easier to use
additional transistors for computation not cache

® Economics

® Multi-billion dollar video game market is a pressure
cooker that drives innovation

Motivation: Flexible and precise

® Modern GPUs are programmable
® Programmable pixel and vertex engines
® High-level language support

® Modern GPUs support high precision
® 32-bit floating point throughout the pipeline
® High enough for many (not all) applications

<Z

Motivation: The Potential of GPGPU @a

=E

® The performance and flexibility of GPUs
makes them an attractive platform for general-
purpose computation

® Example applications (from www.GPGPU.org)

e 66 660606060600

Advanced Rendering: Global lllumination, Image-based Modeling
Computational Geometry

Computer Vision

Image And Volume Processing

Scientific Computing: physically-based simulation, linear system solution, PDEs
Stream Processing

Database queries

Monte Carlo Methods

The Problem: Difficult To Use

® GPUs are designed for and driven by grap

>

HE

NICS

® Programming model is unusual & tied to graphics
® Programming environment is tightly constrained

® Underlying architectures are:
® Inherently parallel
® Rapidly evolving (even in basic feature set!)
® Largely secret

® Can’t simply “port” code written for the CPU!

Mapping Computational
Concepts to GPUs

® Remainder of the Talk:

® Data Parallelism and Stream Processing

® Computational Resources Inventory
® CPU-GPU Analogies

® Flow Control Techniques

® Examples and Future Directions

Importance of Data Parallelism @a
E(C
=

® GPUs are designed for graphics
® Highly parallel tasks
® GPUs process independent vertices &
fragments
® Temporary registers are zeroed
® No shared or static data
® No read-modify-write buffers

® Data-parallel processing

® GPU architecture is ALU-heavy
® Multiple vertex & pixel pipelines, multiple ALUs per pipe

® Hide memory latency (with more computation)

Arithmetic Intensity <2

=

® Arithmetic intensity = ops per word transferred

® “Classic” Graphics pipeline

® Vertex
® BW: 1 triangle = 32 bytes
® OP: 100-500 f32-ops / triangle

® Fragment

® BW: 1 fragment = 10 bytes
® OP: 300-1000 i8-ops/fragment

Courtesy of Pat Hanrahan

Data Streams & Kernels <2

=

® Streams

® Collection of records requiring similar computation
® Vertex positions, Voxels, FEM cells, etc.

® Provide data parallelism

® Kernels

® Functions applied to each element in stream
® transforms, PDE, ...

® Few dependencies between stream elements
® Encourage high Arithmetic Intensity

Courtesy of lan Buck

Example: Simulation Grid @2
1
=G

® Common GPGPU computation style

®Textures represent computational grids = streams
® Many computations map to grids

®Matrix algebra
®Image & Volume processing
®Physical simulation

®Global lllumination

®ray tracing, photon mapping,
radiosity

® Non-grid streams can be
mapped to grids

Stream Computation ég
—1
=6

AUl @ Grid Simulation algorithm
advect ® Made up of steps
accelerate @ Each step updates entire grid
water/thermo ® Must complete before next step can begin

divergence
jacobi

jacobi ® Grid Is a stream, steps are kernels

jacobi :
jacobi ® Kernel applied to each stream element

Scatter vs. Gather

® Grid communication (a necessary evil)
® Grid cells share information
® Two ways:

Computational Resources Inventory éz

=E

® Programmable parallel processors
® Vertex & Fragment pipelines

® Rasterizer

® Mostly useful for interpolating addresses (texture
coordinates) and per-vertex constants

® Texture unit
® Read-only memory interface

® Render to texture
® Write-only memory interface

Vertex Processor <2

=

® Fully programmable (SIMD / MIMD)
® Processes 4-vectors (RGBA / XYZW)

® Capable of scatter but not gather
® Can change the location of current vertex (scatter)
® Cannot read info from other vertices (gather)
® Small constant memory

® New GeForce 6 Series features:
® Pseudo-gather: read textures in the vertex program
® MIMD: independent per-vertex branching, early exit

Fragment Processor

® Fully programmable (SIMD)
® Processes 4-vectors (RGBA / XYZW)

® Capable of gather but not scatter
®Random access memory read (textures)
®Output address fixed to a specific pixel

® Typically more useful than vertex processor
®More fragment pipelines than vertex pipelines
®Gather / RAM read
®Direct output

® GeForce 6 Series adds SIMD branching
®GeForce FX only has conditional writes

CPU-GPU Analogies <2

® CPU programming is (assumed) familiar
® GPU programming is graphics-centric

® Analogies can aid understanding

CPU-GPU Analogies

GPU Simulation Overview ég

—
=6
® Analogies lead to implementation

® Algorithm steps are fragment programs
accelerate ® Computational kernels

water/thermo ® Current state variables stored in textures
divergence ® Data streams

jacobi ® Feedback via render to texture

jacobi
jacobi
jacobi

Algorithm
advect

® One question:
® How do we invoke computation?

Invoking Computation <2

=

® Must invoke computation at each pixel
® Just draw geometry!

® Most common GPGPU invocation is a full-screen
guad

Standard “ Grid” Computation <2

® Initialize “view” (so that pixels:texels::1:1)

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
gIMatrixMode(GL_PROJECTION);
glLoadldentity();

glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0O, O, gridResX, gridResY);

® For each algorithm step:
® Activate render-to-texture
® Setup input textures, fragment program
® Draw a full-screen quad (1 unit x 1 unit)

Reaction-Diffusion <Z

=

® Gray-Scott reaction-diffusion model [Pearson
1993]

® Streams = two scalar chemical

concentrations
®Kernel: just and Reaction ops
-%%—w)vﬂJ4uv2+Fxl U)|
ov

ot

PAAY +UV2—(F+k)V |

U, V are chemical concentrations,
F, k, D, D, are constants

Demo: “Disease”

R Mark’s Disease: 25.559446 FPS

Available in NVIDIA SDK: http://developer.nvidia.com

“Physically-based visual simulation on the GPU”,
Harris et al., Graphics Hardware 2002

Per-Fragment Flow Control <2

® No true branching on GeForce FX

® Simulated with conditional writes: every instruction IS
executed, even Iin branches not taken

® GeForce 6 Series has SIMD branching
® Lots of deep pixel pipelines =2 many pixels in flight
® Coherent branching = likely performance win
® Incoherent branching = likely performance loss

Fragment Flow Control Technigues @a
E(C
=

® Try to move decisions up the pipeline
® Replace with math
® Occlusion Query
® Domain decomposition
® Z-cull
® Pre-computation

Branching with Occlusion Query @a

® OQ counts the number of fragments written
® Use it for iteration termination

Do { // outer loop on CPU
BeginOcclusionQuery {
// Render with fragment program
// that discards fragments that
// satisty termination criteria
} EndQuery
} While query returns > O

® Can be used for subdivision techniques

Example: OQ-based Subdivision <2

Used in Coombe et al., “Radiosity on Graphics Hardware”

Static Branch Resolution <§

® Avoid branches where outcome is fixed
® One region is always true, another false
® Separate FP for each region, no branches

® Example:
boundaries

Interior: A Quad Primitive

Boundaries: Line Primitives

O OO0 O 0O o0 0 0o o O
00 0 O oo oo opfpg
0o 0 o0 oo o o ofpg
00 0 0o oo oo opg
00O 0o o o/o o o gopgd
00 0 o oyjo oo opg
0O 0O o ojo o o ofg
0B 0 0 O Oojo o o of@
0 O O O ojo o o oQo
O 04,0 O OO0 O O O O

0 = Location of Pixels

Z-Cull <2
=E

® In early pass, modify depth buffer
® Clear Z to 1, enable depth test
® Draw quad at Z=0
® Discard pixels that should be modified in later passes

® Subsequent passes
® Enable depth test (GL_LESS), disable depth write
® Draw full-screen quad at z=0.5
® Only pixels with previous depth=1 will be processed

® Can also use early stencil test on GeForce 6

Pre-computation <2
=G

® Pre-compute anything that will not change
every iteration!

® Example: arbitrary boundaries

® When user draws boundaries, compute texture
containing boundary info for cells
® e.g. Offsets for applying PDE boundary conditions

® Reuse that texture until boundaries modified

® GeForce 6 Series: combine with Z-cull for higher
performance!

GeForce 6 Series Branching <2

=G
® True, SIMD branching

®Lots of incoherent branching can hurt performance

®Should have coherent regions of > 1000 pixels
®That is only about 30x30 pixels, so still very useable!

® Don’t ignore overhead of branch instructions
®Branching over only a few instructions not worth it

® Use branching for early exit from loops
®Save a lot of computation

® GeForce 6 vertex branching is fully MIMD

®very small overhead and no penalty for divergent
branching

Current GPGPU Limitations <2

=

® Programming is difficult
® Limited memory interface
® Usually “invert” algorithms (Scatter - Gather)
® Not to mention that you have to use a graphics API...

® Limitations of communication from GPU to CPU

® PCI-Express helps
® GeForce 6 Quadro GPUs: 1.2 GB/s observed
® Will improve in the near future

® Frame buffer read can cause pipeline flush
® Avoid frequent communication to CPU

Brook for GPUs

® A step In the right direction
® Moving away from graphics APIs
® Stream programming model
® enforce data parallel computing: streams
® encourage arithmetic intensity: kernels
® C with stream extensions

® Cross compiler compiles to HLSL and Cg
® GPU becomes a streaming coprocessor

® See SIGGRAPH 2004 Paper and

® http://graphics.stanford.edu/projects/brook
® http://www.sourceforge.net/projects/brook

Examples

=G 2004

Example: Fluid Simulation <2

® Navier-Stokes fluid simulation on the GPU
® Based on Stam’s “Stable Fluids”

® Vorticity Confinement step
® [Fedkiw et al., 2001]

® Interior obstacles
® Without branching

® Fast on latest GPUs

® ~120 fps at 256x256 on
GeForce 6800 Ultra

® Available in NVIDIA SDK 8.0

“Fast Fluid Dynamics Simulation on the
GPU”, Mark Harris. In GPU Gems.

Fluid Dynamics <Z

® Solution of Navier-Stokes flow equations
® Stable for arbitrary time steps
®[Stam 1999], [Fedkiw et al. 2001]

® Fast on latest GPUs
® 100+ fps at 256x256 on GeForce 6800 Ultra

® See “Fast Fluid Dynamics Simulation
on the GPU”

® Harris, GPU Gems, 2004

Fluid Simulator Demo

Available in NVIDIA SDK: http://developer.nvidia.com

1 Million Particles
Demo by Simon Green

Example: N-Body Simulation éa

B ﬁ_*

."'o‘%f

Nyland et al., GP2 poster

=E

Brute force ®
N = 4096 particles
N2 gravity computations

16M force comps. / frame
~25 flops per force

17+ fps

7+ GFLOPs sustained

The Future

®

Increasing flexibility
® Always adding new features
® Improved vertex, fragment languages

Easier programming
® Non-graphics APIs and languages?

® Brook for GPUs
® http://graphics.stanford.edu/projects/brookgpu

The Future

® Increasing performance
® More vertex & fragment processors
® More flexible with better branching

® GFLOPs, GFLOPs, GFLOPS!

® Fast approaching TFLOPS!
® Supercomputer on a chip

® Start planning ways to use it!

More Information <2

® GPGPU news, research links and forums
® www.GPGPU.org

® developer.nvidia.org

® Questions?
® mharris@nvidia.com

New Functionality Overview <2

=

® Vertex Programs

® Vertex Textures: gather

® MIMD processing: full-speed branching
® Fragment Programs

® Looping, branching, subroutines, indexed input
arrays, explicit texture LOD, facing register

® Multiple Render Targets
® More outputs from a single shader
® Fewer passes, side effects

New Functionality Overview

® VBO / PBO & Superbuffers
® Feedback texture to vertex input
® Render simulation output as geometry

® Not as flexible as vertex textures
® No random access, no filtering

® Demos

® PCIl-Express
® Higher GPU < ->CPU bandwidth

CPU-GPU Analogies

Stream / Data Array = Texture
Memory Read = Texture Sample

CPU-GPU Analogies

advect
CPU GPU

Tor Gnt J = 1. 3 < height - 1: %13
{
for (int 1 = 1; i < width - 1; ++i)
{ : .
// get velocity at this cell un%iom iioat dt, :j:: tJII}EStq:?l
Vec2f v = grid &, y) ; uniform cat dx, grid scale
uniform samp lerRECT u, // velocity
// trace backwards along velocity field uniform samp lerRECT x) // state
float x = (1 - f .x * timestep / dx)) ; {
float y = (J - .y * timestep / dy)) ; // trace backwards along velocity field
float2 pos = ub - dt * f£2texRECT fu, uv) / dx;

vold advect (float2 uv : WPOS,
out floatd xNew : COLOR,

grid ,y) = grid bilerp &, y) ;
}

xNew = fdtexRECTbilerp fx, pos) ; Cg
} c++ |

Loop body / kernel / algorithm step = Fragment Program

Feedback ég
—1
Algorithm E',@

® Each algorithm step depend on

accelerate
[jacobiT

the results of previous steps

S 3

water/thermo

® Each time step depends on the
results of the previous time step

divergence

jacobi

j]aCcoDI
]aCcoODI

u-grad(p)

Y Y SLIR Y

S 30

CPU-GPU Analogies

CPU

i Texture | | Fragment
_ 7 T unit Unit
Grid[i]1]= X;

| S—

Array Write Render to Texture

Navier-Stokes Equations <Z

=

® Describe flow of an incompressible fluid

ou

ot

—(U-V)u- in — WU +f

/ 7P 1 7
% 7

/

Advection Pressure Diffusion External Force

Gradient (viscosity)

<+— Velocity Is divergence-free

Fluid Algorithm

® Break it down [Stam
1999].

® Advect:;

® Add forces:

® Solve for pressure:

® Subtract pressure
gradient:

<
=

u, = u(x—uAt)>
u, =u, +fAt

Vip=V-u

0

=

u =u,-Vp

Advection

® Advection: guantities in a fluid are carried along

velocity

® Follow velocity field back
position

U, = U(X—UAt)

//

\ . Path of ﬂuid>

\ \ \ \ Trace back in time

float2 pos =

uNew = texBilerp(u, pos);

coords — delta t * tex(u, coords);

Poisson-Pressure Solution <Z
Vip=V-u, =G

® Discretize equation, solve using iterative solver
® Jacobi, multigrid, conjugate gradient, etc.
® Jacobi easy on GPU, but others possible too

® Demo uses Jacobi iteration (50 iterations by default)

float
float
float
float

tex(pressure, coords float2(-1, 0));
tex(pressure, coords float2(1, 0));
tex(pressure, coords float2(0,-1));
tex(pressure, coords float2(0, 1));

float di tex(divergence, coords);

pNew = 0.25 * (pL + pR + pB + pT — delta2 * div);

