EC 2,04

Tutorial 5: Programming Graphics Hardware

Advanced Rendering
Techniques

Matthias M Wloka

ZVIDIA.




Nalu

EG 2 04 Tutorial 5: Programming Graphics Hardware cVIDIA;




Acknowledgements

< Hubert Nguyen
< William Donnelly

< NVIDIA Demo Team

— f""h.
:G 2 - 4 Tutorial 5: Programming Graphics Hardware

<
RVIDIA.




Long Blonde Hair

< Long

< Requires dynamic animation
< Thus cannot bake lighting

< Requires lots of hair
< Thus shading has to be fast

< Blonde

< Three visible highlights, black only has one
< Shadows much more visible

| = & 2 e 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.




Hair Rendering: Overview

< Geometry and dynamics
< Shading

< Shadowing

»
A
| <
- o
:@ 2 A 4 Tutorial 5: Programming Graphics Hardware ,?V:[]:)Ij\,t




Hair Geometry, Part 1

< “Skull cap” specifies

< Where control hairs
grow

< Which direction to grow
< Growth is non-linear

< 762 control hairs
< Each is 7 vertices long

L

EC' 2@04 Tutorial 5: Programming Graphics Hardware




Hair Dynamics

< Treat control hairs as particle system

< For all (7 * 762) vertices in control hairs do
< Physics simulation
<~ Collision detection and reaction

< Vertices of each control hair
< Linked

< Distance-constrained \O
'\‘O*‘O\O
<

| = & 2 " 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t




Physics Simulation

< Uses Verlet integration

< Previous frame’s position computes velocity
< Less sensitive to frame rate

<~ Apply forces, then apply constraints

cC 2

< Iteratively
< Particles converge
< Thus take head-motion into account

- 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.




Now Have 762 7-Vertex Control Hairs

< Turn each control hair into 6 basic Bezier curves
< 1 control hair has 6 segments
< 1 basic Bezier requires 2 points and 2 tangents

< Concatenate and tessellate each set of 6 basic
Bezier curves

- Creates smooth control hair

f\ﬂ\—» /\__\
<=

| = & 2 " 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t




Interpolate Control Hairs

< Interpolate 3 smooth control hairs at a time
< Generates total of 4095 individual hairs /" ~___

< Interpolation is post-tessellation
<~ Performance reasons:

<~ Tessellation is expensive

< Generates ~123k total vertices for hair alone

<

= C 2 \ 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t




Wire-Frame Demo

EG 2 04 Tutorial 5: Programming Graphics Hardware cVIDIA;




Hair Shading Based On

< “Light Scattering from Human Hair Fibers”

< By Steve Marschner, Henrik Wann Jensen, Mike
Cammarano, Steve Worley, and Pat Hanrahan

< SIGGRAPH 2003

<

- 2 " 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t




Paper Models 3 Distinct Highlights

Figures from “Light
Scattering from Human
Hair Fibers” (see
previous slide)

IR (p=2)

- ~
:G 2 - 4 Tutorial 5: Programming Graphics Hardware

< Uses path notation
< R is reflection
< T is transmission

BVIDIA.




R and TRT Highlights

< R — white primary
highlight

< TRT - colored
secondary highlight

Picture from “Light
Scattering from
Human Hair Fibers”
(see previous slides)

»
A
<
- ™
:G 2 A 4 Tutorial 5: Programming Graphics Hardware ’QVI]:)Ijﬂ,t




TT Highlight

< TT — strong forward scattering component
< Important for underwater hair

<

— o~
cC 2 o/ 4 Tutorial 5: Programming Graphics Hardware BVIDIA.




Hair Model Is 4-Dimensional Function

< Factor into lower dimensional terms
o M_R (thetaH)*N_R (thetaD, phiD)
+ M_TT (thetaH) *N_TT (thetaD, phiD)
+ M_TRT(thetaH) * N_TRT(thetaD, phiD)

< Use 2D textures to encode as look-up tables

< cos(thetal), cos(thetaE)
— M_R, M_TT, M_TRT, cos(thetaD)

< cos(thetaH), cos(phiD)
— N_R,N_TT, N_TRT

| = & 2 . 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.




Make Most Aspects Tweakable

<~ Highlights:
< Separation
< Strength
< Width

< Hair albedo
< Extinction coefficient

< Index of refraction

<

| " 2 ;. J 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:




Hair Shading Demo

EG 2 04 Tutorial 5: Programming Graphics Hardware cVIDIA;




Shadowing

< “Opacity Shadow Maps”
< By Tae-Yong Kim and Ulrich Neumann

< SIGGRAPH 2001

<

:fﬂ 2 v ;4 Tutorial 5: Programming Graphics Hardware RVIDIA.




Why Opacity Shadow Maps

<~ Opacity shadow maps ask:

< What percentage of light is blocked from here?
< Vs. Is the light blocked from here?

<~ Thus supports AA edges and volumetric rendering
<~ Regular shadow maps alias around edges

< Hair is 100% edges

<

| = & 2 ' 4 Tutorial 5: Programming Graphics Hardware ;2‘71]:)11\,t




Pictures From Tae-Yong Kim’s Website

No Shadows 15 slices

:G 2 O4 Tutorial 5: Programming Graphics Hardware

255 slices

<

BVIDIA.




For Each Point In Map Compute:

7(2) = exp(— [ r(z") dz)
< T(z): amount of light penetrating to depth z

< For hair:

< Integral is sum over all strands between light and
point being shadowed

< Compute sum via additive blending

< “Extinction coefficient” K controls darkness of
shadows

<

| = & 2 " 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t




Creating the Opacity Maps

< Choose 16 slicing planes in hair

< Uniform distribution
< In hair bounding sphere

<~ For each hair-pixel and for each plane

cC 2

< Is hair-pixel closer to light than plane?
< Yes: add hair to contribution (plane)
< No: do nothing

- 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.




Opacity Map Creation Implementation

< Render all hairs to 4 render targets

< Each ARGB stores 4 planes
<~ 4 passes

< Render all hairs to 4 MRTs

G 2

< 1 pass
< MRT shader is simple: 4 SLT and 4 MUL instructions

<

L- J 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:




Using the Opacity Maps

< Hair-pixel position determines
< Which opacity maps to look in

<~ Hair-pixel positions generated by lines

cC 2

< Where in opacity map to look in

< Linearly interpolated vertex values are equivalent

24

Tutorial 5: Programming Graphics Hardware

<

BVIDIA.




Using Opacity Maps Implementation

< Vertex-shader computes
<~ Texture coordinates for all 16 maps
<~ Blend-weights to use

< Pixel-shader combines 16 look-ups
< Via 5 dot4 instructions

< Add z-bias due counter limited z-resolution
< Just like regular shadow maps

<

| = & 2 " 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t




Shadowing Demo

Before

<

EG 2 O4 Tutorial 5: Programming Graphics Hardware CVIDIA:




Questions

< http://developer.nvidia.com
The Source for GPU Programming

< Matthias Wloka (mwloka@nvidia.com)

<

:fﬂ 2 v ;4 Tutorial 5: Programming Graphics Hardware RVIDIA.




