
The Making of “Nalu”

Matthias Wloka
NVIDIA Corporation

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Acknowledgement

Hubert Nguyen

William Donnelly

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Long, Blonde Hair Rendering

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Long, Blonde Hair Rendering

Long
Requires dynamic animation

Thus cannot bake lighting
Requires lots of hair

Thus shading has to be fast

Blonde
Three visible highlights, black only has one
Shadows much more visible

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Acknowledgements

“Light Scattering from Human Hair
Fibers”

By Steve Marschner, Henrik Wann
Jensen, Mike Cammarano, Steve
Worley, and Pat Hanrahan

SIGGRAPH 2003

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Paper Models three
Distinct Highlights

Uses path notation
R is reflection
T is transmission

Consider only 3 most
significant terms

R, TT, TRT

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

R and TRT Highlights

R – White primary highlight
TRT – Colored secondary highlight

TRT

R

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

TT Highlight

TT – strong forward scattering component
Important for underwater hair

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

The Reflectance Model

Three main angles
Light
Eye
Anisotropy

Factor into lower dimensional terms
M_R (thetaH) * N_R (thetaD, phiD)

+ M_TT (thetaH) * N_TT (thetaD, phiD)
+ M_TRT(thetaH) * N_TRT(thetaD, phiD)

2D functions are encoded in textures
Texture maps are faster than heavy math
Use of mip maps eliminates “shader aliasing”

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Use 2D textures to encode
look-up tables

cos(thetaL), cos(thetaE)
→ M_R, M_TT, M_TRT, cos(thetaH)

cos(thetaH), cos(phiD)
→ N_R, N_TT, N_TRT

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

It’s tweakable

Highlights:
Separation
Strength
Width

Hair color
Extinction coefficient
Index of refraction

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Shadowing

Based on
“Opacity Shadow Maps” (OSM)

By Tae-Yong Kim and Ulrich Neumann
SIGGRAPH 2001

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Why Opacity Shadow Maps?

Opacity Shadow Maps vs Shadow Maps
“What percentage of light is blocked from here?”

vs.
“Is the light blocked from here?”

Thus supports AA edges and volumetric
rendering

Regular shadow maps alias around edges
Hair is 100% edges!

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Results from Kim & Neumann

No Shadows 15 slices 255 slices

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Opacity Equation

T(z): amount of light penetrating to depth z

For discrete case (hair):
Integral is sum over all strands between light and point being
shadowed

Compute sum via additive blending
“Extinction coefficient” K controls darkness of shadows

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Creating the Opacity Maps

Choose 16 slicing planes in hair
Uniform distribution based on hair bounding sphere

For each hair-pixel and for each plane
Is hair-pixel closer to light than plane?

Yes: add hair to contribution (plane)
No: do nothing

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

OSM Slices

1 2 3

4 5 6

… up to 16

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

OSM Creation

Render hairs to 16 slices
Original implementation : 16 render passes (RP)

In practice, 4 Render Passes
4 RP x 4 BGRA targets = 16 components/slices

Bonus: use Multiple Render Targets
Single render pass instead of 4

Saves geometry computations
MRT shader is simple

4 SLT and 4 MUL instructions
Can use lower hair LOD

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

OSM Slices, 1 Render Pass BGRA packing
1

2

3

4

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Vertex Shader Implementation

Compute light space position of the (Hair) fragment
Add z-bias to counter limited z-resolution

Just like regular shadow maps

Hair-pixel position in light space determines:
Which opacity maps to look in

Depending on light space Z
Where in opacity map to look in

Depending on light space X,Y

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Pixel Shader Implementation

We know the value of the integral at each plane
Compute in-between values by linear interpolation
Interpolated value is a linear combination of plane
values
Equivalent to a 16 component dot-product:

dot(osm1weight, lookup1) + … + dot(osm4weight, lookup4)

Compute opacity by exponentiation

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

In the demo…

Hair WITHOUT Shadows Hair WITH Shadows

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Geometry & Dynamics

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Geometry : Overview
4095 individual hairs driven by 762 “control hairs”

“Control hairs “
Set of hairs that is really driven by dynamics/collisions
Based on a particle system, where particles are connected by
distance constraints
Grown from a reference geometry

“Fine hair” geometry is created by smoothing &
interpolating the “control hair”

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Geometry : Layout & Growth

“Control hair” grows from a dedicated geometry
Grows along the normal of each vertex

Growth is non-linear, segments are getting longer

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Geometry : Control Hairs
(left image)

Physics/dynamics/collisions are performed on
the control hairs

Control Hair Fine Hair

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Dynamics

Based on a particle system
Uses the “Verlet” integration

previous frame position to compute velocity
Less sensitive to frame rate, less prone to explosion

.
2'

*

2*

xx
axxx

=

∆⋅+−= t

Reference: “Advanced Character Physics”
Thomas Jakobsen, IO Interactive, Denmark.

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Dynamics: constraints

Two constraint types:
Infinite mass: applied to the “hair root” particles. Allows the
head to “pull” the hair.
Distance constraints: forces “control hair” segments length to
stay constant

Desired
length

Too long,
contract

Too short,
expand

If we apply those constraints iteratively, the particles will
globally converge to the desired solution

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Dynamics: Collisions

Head

Quite simple
Nalu has a set of Spheres
Control hair has 1Sphere/CV

CV Sphere grows towards the tip
of the hair
Prevents collision sphere from
slipping between 2 CVs

Hair
CV sphere
CV“Pearl” configuration

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Geometry : Data Flow

Line lists or strips are sent to the GPU In World
Space

Control
Hairs

compute
Tangents

Bezier
Curves

Tesselate
Smooth
Control
Hairs

Interpolate

Final Hairs

Every frame

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Compute tangents

Tessellate

Interpolate

3D API

Hair Geometry : Lifecycle (per frame)
Dynamics

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Geometry : Interpolation

3 smoothed control hairs are the basis for interpolating
more hair on the surface

Interpolated Hair = weight0 * SmoothHair0
+ weight1 * SmoothHair1
+ weight2 * SmoothHair2

SmoothHair0

Control hair

Interpolated Hair

SmoothHair1

SmoothHair2

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Hair Geometry : Interpolation

Hair interpolation happens *after* Bezier
tessellation

it’s faster

123k vertices in Hair

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Fins

Fins are a cloth simulation.
Any mesh can be turned into a cloth by using triangle
edges as constraints

Same physics as hair
Normals are recomputed each frame

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Shafts of Light : “God Rays”

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Radial Blur effect
Render bright regions
Render shadow caster in alpha
Blur in the radial direction, subtract occlusion
factor (from alpha channel)

To Polar Coordinates

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Shafts are based on a
Radial Blur effect

Radial Blur

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Radial Blur effect
Transform into polar co-ordinates (x,y)->(r,theta)

Use a grid where position = (r,theta) and texcoord = (x,y)

Blur in the radial direction
Transform back into Cartesian co-ordinates

Use the same geometric warping, but with positions and
texture co-ordinates reversed

From Cartesian to Polar coordinates

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Radial Blur effect : visuals

Rectangular
to polar

Polar to
rectangular

Vertical
blur

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

“God Rays” in the Demo

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Soft Shadows

Soft shadowing based on Texture Space
Diffusion (by Simon Green)

Described in “GPU GEMS” book (page 272)
Basically:

Do the regular shadow mapping computations
But render in Texture Space

Using the UV coordinates as Vertex Shader Output Position

Blur the Texture Space B&W shadow result
Use the blurred shadow result in place of shadow
compare when rendering the character

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Soft Shadows: visualizations

UV Space
rendering

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Soft Shadows: challenges
Unfold character in UV Space
Visible Seams were UV
are not continuous

Workarounds
Improve UV layout
Do shadows in UV space, Lighting in Camera space

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Future work

Move more work to the GPU
Physics
Collisions (e.g., Simon's cloth demo)
Curves Tessellation
Normal / Tangent computation
Hair Interpolation
Anything, really :-)

Questions ?

? ?
?

?

©2004 NVIDIA Corporation. All rights reserved.
Tutorial 5: Programming Graphics Hardware

Vertex Shader Optimization

Compute percentage contribution of each plane to the
current fragment in the vertex shader:

Dist is hair distance from light source
Depth1 is distance of first 4 planes packed in a float4
inverseDeltaD is 1/(distance between planes)
OSM[2-4]weight calculated similarly

OSM1weight = max(0, 1 – abs(dist – depth1)*inverseDeltaD);

