=G 2,94

Tutorial 5

/ Programming Graphics Hardware

Randy Fernando, Mark Harris,
Matthias Wloka, Cyril Zeller

ing

Morni

Overview of the Tutorial

Hardware

ICS

Programming Graph

ial 5:

G 2@@4 Tutor

Afternoon

Overview of the Tutorial

AR

e I

..ﬁ%
B
L3

T
py e
e el L3,
9 TR
R
b e e et e

G 2@@4 Tutor

Hardware

ICS

Programming Graph

ial 5:

EC 2,04

Tutorial 5: Programming Graphics Hardware

Introduction to
the Hardware Graphics Pipeline

Cyril Zeller /

Overview

< Concepts:

-

-

< Evolution of the PC hardware graphics pipeline:

-

-

-

-

-

-

Real-time rendering
Hardware graphics pipeline

1995-1998: Texture mapping and z-buffer

1998: Multitexturing

1999-2000: Transform and lighting

2001: Programmable vertex shader

2002-2003: Programmable pixel shader

2004: Shader model 3.0 and 64-bit color support

<~ PC graphics software architecture
< Performance numbers

cC 2

- 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

Real-Time Rendering

< Graphics hardware enables real-time rendering
< Real-time means display rate at more than 10 images per second

3D Scene = Image =
Collection of Array of pixels
3D primitives (triangles, lines, points) @

— N
:G 2 A 4 Tutorial 5: Programming Graphics Hardware BVIDIA.

Hardware Graphics Pipeline

Rasterization
Stage

Application Geometry

Stage

3D Triangles 2D Triangles Pixels

Stage

| For each
For each triangle:

triangle vertex:

—» Rasterize

—> Transform triangle

3D position —> Interpolate
into i
vertex attributes

screen position .
across triangle

—> Compute —> Shade

attributes pixels

—» Resolve

visibility

EG 2@@4 Tutorial 5: Programming Graphics Hardware

PC Architecture

Motherboard

Bus Port (PCl, AGP, PCle)

Video Board ' @

EG 2 £ 04 Tutorial 5: Programming Graphics Hardware OvibIA.

1995-1998: Texture Mapping and Z-Buffer

CPU GPU

Application / Geometry Stage Rasterization Stage

Rasterizer

2D Triangles
Bus .
Textures o) 2D Triangles
System Memory Video Memory

< PCI: Peripheral Component Interconnect
< 3dfx’s Voodoo

EC' 2@04 Tutorial 5: Programming Graphics Hardware

Raster
Operations
Unit

Textures

Texture Mapping

Triangle Mesh textured with Base Texture

S
N5
Vg

EG 2 O4 Tutorial 5: Programming Graphics Hardware ﬂVIDIA-

Texture Mapping: Texture Coordinates Interpolation

Screen Space Texture Space

Texel

X
(X1, y1)
y ‘
,;ifs,, T —: Pe\-spective-lnct
= 4w
(X0, Yo) a

Xy, y2)
o
'sfectin.Qg

]
:G 2@;04 Tutorial 5: Programming Graphics Hardware

Texture Mapping: Perspective-Correct Interpolation

Perspective-Incorrect

EC' 2@04 Tutorial 5: Programming Graphics Hardware

Texture Mapping: Magnification

Screen Space

Pixel

Texture Space

[Pixel’s texture footprint

Nearest-Point Sampling

Bilinear Filtering

EC' 2@04 Tutorial 5: Programming Graphics Hardware

Texture Mapping: Minification

Screen Space

Pixel

Texture Space

[Pixel’s texture footprint

EC' 2@04 Tutorial 5: Programming Graphics Hardware

Texture Mapping: Mipmapping

——————————————————————————

S
o
o
o
o
Y
o
o

or

]
:G 2{:}04 Tutorial 5: Programming Graphics Hardware

Texture Mapping: Anisotropic Filtering

' Bilinear Filtering |

Trilinear Filtering o

|
:G 2@ 04 Tutorial 5: Programming Graphics Hardware

BVIDIA.

Texture Mapping: Addressing Modes

e

IIIII
IIIIII
rrrrrrrrrrrrrrr

EG 2@@4 Tutorial 5: Programming Graphics Hardware

Texture Mapping: Addressing Modes

EC 2

&4

E A EEEER
L
L

Clamp

Tutorial 5: Programming Graphics Hardware

Border

<
RZVIDIA.

Raster Operations Unit (ROP)

Texture
Unit

Rasterizer Fragments

Fragment

w tested against
Screen Position (x, y) .
scissor rectangle
tested against
Alpha Value a > .
reference value

tested against

m 4 z-buffer value at (x, y)

(visibility test)

blended with
color buffer value at (x, y):

Color (r, g, b) K, ¥ Color,,. + K, * Color,,

(src = fragment

dst = color buffer)

EC' 2@04 Tutorial 5: Programming Graphics Hardware

Raster

Operations

Unit

Scissor Test

Alpha Test

Stencil Test

Z Test

Alpha Blending

»

stencil buffer value

at (x, y)
tested against
reference value

Frame Buffer

Stencil Buffer

Color Buffer

V

AVIDIA.

—

1998: Multitexturing

CPU GPU

Application / Geometry Stage Rasterization Stage

! Raster
Rasterizer LI Operations

S Unit

2D Triangles
Bus - N Frame
S BuS | 2D Triangles Textures H;
System Memory Video Memory

< AGP: Accelerated Graphics Port
< NVIDIA’s TNT, ATI’s Rage

EC' 2@@4 Tutorial 5: Programming Graphics Hardware —

AGP

< PCIl uses a parallel connection
< AGP uses a serial connection
— Fewer pins, simpler protocol — Cheaper, more scalable

~ PCIl uses a shared-bus protocol
~ AGP uses a point-to-point protocol
— Bandwidth is not shared among devices

< AGP uses a dedicated system memory called AGP memory or
non-local video memory

< The GPU can lookup textures that resides in AGP memory
< Its size is called the AGP aperture

2 Bandwidth: AGP = 2 x PCI (AGP2x = 2 x AGP, etc.) <
| = & 2 ' 4 Tutorial 5: Programming Graphics Hardware ”VIDIA,

Multitexturing

EC 2

Base Texture

&4

Tutorial 5: Programming Graphics Hardware

modulated by

Light Map

—
T

|

R\ |’

from UT2004 (c)
Epic Games Inc.
Used with permission

<
BZVIDIA.

1999-2000: Transform and Lighting

CPU GPU “Fixed Function Pipeline”
Application Geometry Stage Rasterization Stage
Stage T £
seleting . ’ Register
and Combiner
Lighting
Unit Text%lre
Unit
3D Triangles
Textures Bus . Frame
3D Triangles Textures
(AGP) Buffer
System
Memory Video Memory
< Register Combiner: Offers many more texture/color combinations /

,-"’

< NVIDIA’s GeForce 256 and GeForce2, ATI’'s Radeon 7500, S3’s Savage3{|/), @:’ i

."/

EC' 2@04 Tutorial 5: Programming Graphics Hardware ; - MIA.

Transform and Lighting Unit (TnL)

Transform and Lighting Unit

Transform

Divisi
Matrix .
Viewport

l Model-View l
Matrix Matrix

Lighting

Material Properties

Light Properties

Vertex Color /

:G 2} 04 Tutorial 5: Programming Graphics Hardware

<

RVIDIA.

Bump Mapping

< Bump mapping is about fetching the normal from a texture (called a
normal map) instead of using the interpolated normal to compute
lighting at a given pixel

Normal Map

Diffuse light without bump Diffuse light w%nps

.-/f

EG 2 ?':“*;04 Tutorial 5: Programming Graphics Hardware | IA.
Y !

—

Cube T

exture Mapping

Cubemap
(covering

the six faces

of a cube)

EC 2,04

Cubemap lookup

(with direction (x, y, z))

Tutorial 5: Programming Graphics Hardware

Environment Mapping
(the reflection vector

is used to lookup
the cubemap)

Projective Texture Mapping

<

7ZVIDIA.

Projected Texture

(WW) Texture Projection

Projective Texture lookup @
E@ 2 :J4 Tutorial 5: Programming Graphics Hardware ”VIDIﬁu

2001: Programmable Vertex Shader

CPU

Application
Stage

3D Triangles

Textures

System
Memory

< Z-Cull: Predicts which fragments will fail the Z test and discards them
< Texture Shader: Offers more texture addressing and operations
< NVIDIA’s GeForce3 and GeForce4 Ti, ATI’s Radeon 8500

Bus
(AGP)

GPU

Geometry Stage

Vertex Shader Rasterizer
(no flow control) (with Z-Cull)

3D Triangles

Rasterization Stage

Register
Combiner

Texture
Shader

Video Memory

Textures

:G 2} 04 Tutorial 5: Programming Graphics Hardware

Raster

Operations
Unit

Frame
Buffer

<

RVIDIA.

Vertex Shader

ion

ing processor for any per-vertex computat

< A programm

Hardware

ICS

Programming Graph

ial 5

G 2 @04 Tutor

Volume Texture Mapping

Volume Texture [Noise Perturbation /

(3D Noise) / J

Volume Texture lookup QO
- (with position (x, y, z)) =
:G 29} 04 Tutorial 5: Programming Graphics Hardware ”WIDIA.

—

Hardware Shadow Mapping

Shadow Map Computation

The shadow map contains
the depth z/w of the 3D points visible

from the light’s point of view Spot
light

Shadow Rendering

A 3D point (x, y, z, w) is in shadow if:

z/w < value of shadow map at (x/w, y/w)
A hardware shadow map lookup Spot
returns the value of this comparison light

between 0 and 1

— ™
:G 2 o/ 4 Tutorial 5: Programming Graphics Hardware nVIDIA.

Antialiasing: Definition

< Aliasing: Undesirable visual artifacts due to
insufficient sampling of:

< Primitives (triangles, lines, etc.) — jagged edges
<~ Textures or shaders — pixelation, moiré patterns
Those artifacts are even more noticeable on animated
Images
< Antialiasing: Method to reduce aliasing

< Texture antialiasing is largely handled by proper
mipmapping and anisotropic filtering

< Shader antialiasing can be tricky (especially with
conditionals)

<

B 2 4 Tutorial 5: Programming Graphics Hardware ”VI DIA

Antialiasing: Supersampling and Multisampling

< Supersampling:

Compute color and Z at
higher resolution and
display averaged color to
smooth out the visual
artifacts

) Multisampling:

Same thing except only Z
is computed at higher
resolution

< As a result, multisampling

performs antialiasing on
primitive edges only

:G 2 04 Tutorial 5: Programming Graphics Hardware

/—[Pixel Center]

-

LA
LA
.

il

> AVIDIA.

~ ..
—~—
‘..
~.
I~
Y
\.
.
.
\.
.

2002-2003: Programmable Pixel Shader

CPU GPU
Application Geometry Stage Rasterization Stage
Stage)
Vertex Shader - Pixel Shader Raster
. . Rasterizer _ :
(static and dynamic (with Z-Cull) (static Operatlons
flow control) flow control only) Unit
3D Triangles
Textures . Frame
Bus 3D Triangles Textures
(AGP) Buffer
System
Memory Video Memory

< MRT: Multiple Render Target /
< NVIDIA’s GeForce FX, ATI’'s Radeon 9600 to 9800 and X600 to X800

E C' 2@94 Tutorial 5: Programming Graphics Hardware - MIA.

ixel Shader

P
< A programm

ion

| computat

pixe

ing processor for any per-

Hardware

ICS

Programming Graph

ial 5:

G 2 @04 Tutor

Shader: static vs. Dynamic Flow Control

namic Flow Contro
(condition varies
per vertex or pixel)

EG 2@@4 Tutorial 5: Programming Graphics Hardware

2004: Shader Model 3.0 and 64-Bit Color Support

CPU GPU
Application Geometry Stage Rasterization Stage
Stage

Vertex Shader

(static and dynamic
flow control)

Pixel Shader _
(static and dynamic » Operations

flow control)

Rasterizer
(with Z-Cull)

3D Triangles

fexiures Bus 3D Triangles Textures it
(PCle) Buffer

System

Memory Video Memory

<~ PCle: Peripheral Component Interconnect Express /

< NVIDIA’s GeForce 6 Series (6800 and 6600) J @

EC' 2@94 Tutorial 5: Programming Graphics Hardware

PCle

< Like AGP:

< Uses a serial connection — Cheap, scalable
< Uses a point-to-point protocol — No shared bandwidth

< Unlike AGP:
< General-purpose (not only for graphics)
< Dual-channels: Bandwidth is available in both direction

< Bandwidth: PCle = 2 x AGP8x

o
| (2
:" 2), 4 Tutorial 5: Programming Graphics Hardware ”VIDIA,

Multi-GPU Architecture

< NVIDIA’s Scalable Link Interface multi-GPU technology takes
advantage of the increased bandwidth of the PCI Express to
automatically accelerates applications through a combination
of intelligent hardware and software solutions

MULTI-GPU
v TECHNOLOGY

EG 2 04 Tutorial 5: Programming Graphics Hardware ﬂVIDIA.

Shader Model 3.0

< Shader Model 3.0 means:

< Longer shaders — More complex shading

< Pixel shader:
< Dynamic flow control — Better performance
< Derivative instructions — Shader antialiasing
< Support for 32-bit floating-point precision — Fewer artifacts
< Face register — Faster two-sided lighting

< Vertex shader:
< Texture access — Simulation on GPU, displacement mapping
< Vertex buffer frequency — Efficient geometry instancing

<

B 2 4 Tutorial 5: Programming Graphics Hardware ”VI DIA

Shader Model 3.0 Unleashed

fps = 37.7

UABEEY = yes fwidt

Image used with permission from Pacific Fighters.
© 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

<
BVIDIA.

— r~
= G 2 L-} Tutorial 5: P

64-Bit Color Support

< 64-bit color means one 16-bit floating-point value per
channel (R, G, B, A)

< Alpha blending works with 64-bit color buffer

(as opposed to 32-bit fixed-point color buffer only)
< Texture filtering works with 64-bit textures

(as opposed to 32-bit fixed-point textures only)

< Applications:
<~ High-precision image compositing
< High dynamic range imagery @:‘;;;;ﬂJ

B 2 4 Tutorial 5: Programming Graphics Hardware ”VIDIA

High Dynamic Range Imagery

> The dynamic range of a scene is the ratio of the highest

to the lowest luminance

> Real-life scenes can have high dynamic ranges of

several millions

' Display and print devices have a low dynamic range of

around 100

Tone mapping is the process of displaying high dynamic
range images on those low dynamic range devices

High dynamic range images use floating-point colors

OpenEXR is a high dynamic range image format that is
compatible with NVIDIA’s 64-bit color format
<2

2 4 Tutorial 5: Programming Graphics Hardware ”VI DIA

Real-Time Tone Mapping

< The image is entirely computed in 64-bit color
and tone-mapped for display

y

From low to high exposure image of the same scene @
Lo

— ™S
:G 2 - 4 Tutorial 5: Programming Graphics Hardware mVIDIA.

PC Graphics Software Architecture

CPU GPU Vertex Pixel
Application Program Program
BUS
3D API Commands .
(OpenGL or DirectX) Vertex Pixel
Programs Shader Shader
Geometry
Driver (triangles,
vertices,
normals,
etc...)
System Memo Video Memo
y Yy Textures Yy

< The application, 3D API and driver are written in C or C++

« The vertex and pixel programs are written in a high-level shading language
(Cg, DirectX HLSL, OpenGL Shading Language)
>

EG 2 04 Tutorial 5: Programming Graphics Hardware ‘VIDIA.

Evolution of Performance

- / e
1000 e

Mvertices/s

Mtransistors

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

C 2@64 Tutorial 5: Programming Graphics Hardware

The Future

< Unified general programming model at primitive,
vertex and pixel levels

<~ Scary amounts of:
< Floating point horsepower
< Video memory
< Bandwidth between system and video memory

< Lower chip costs and power requirements to make
3D graphics hardware ubiquitous:

< Automotive (gaming, navigation, heads-up displays)
< Home (remotes, media center, automation)
< Mobile (PDAs, cell phones ;

= C 2 ® 4 Tutorial 5: Programming Graphics Hardware BVIDIA.

References

< Tons of resources at http://developer.nvidia.com:

< Code samples

< Programming guides

< Recent conference presentations

< A good website and book on real-time rendering:

http://www.realtimerendering.com

:G 2 - 4 Tutorial 5: Programming Graphics Hardware

<
BVIDIA.

Questions

< Support e-mail:

< devrelfeedback@nvidia.com [Technical Questions]
< sdkfeedback@nvidia.com [Tools Questions]

EC 2

04

Tutorial 5: Programming Graphics Hardware

<
BVIDIA.

