=C 2{;;‘-,04
Tutorial 5: Programming Graphics Hardware
Optimizing
the Graphics Pipeline
Matthias M Wloka

Overview

< Underlying principles

< Identify the problems

< Learn how to fix the problems
< Questions and Answers

< Performance Lore

— =1 ’H-ﬂ'qr -
:@ 2 A 4 Tutorial 5: Programming Graphics Hardware ”VIDIA.

CPU and GPU: Dual-Processor System

App + L AGP/Video

Driver Memory g g > >
CPU GPU
< Do not synchronize them (read-back, locks, etc.)

EC 2,04

<

Tutorial 5: Programming Graphics Hardware ”VIDIA,

GPU Is A Pipeline Architecture

CPU =l Geometry | Geometry o| Rasterizer Fragment Frame
Storage Processor Processor buffer

. Texture

. Storage +

. GPU Filtering

< Each stage relies on previous stage to do its job

N
by
. <
3
2 A 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

]

= (

The Terrible Bottleneck

Limits the speed of the pipeline

— — [1]
CPU . Geometry L Geometry lep| Rasterizer Fragment . Frame
Storage Processor Processor buffer
< Optimal performance only S{gﬁ;z
when pipeline is balanced Filtering
<

- |
:G 2 A 4 Tutorial 5: Programming Graphics Hardware ”VIDIA*

First Rule of Optimization

< Profilel

< Optimizing parts that you think are problematic
< Fun, but
< Great waste of time

< How to identify bottlenecks?

»
A
| <
- |
:G 2 A 4 Tutorial 5: Programming Graphics Hardware ”VIDIA*

Bottleneck Identification T H]

< Modify workload of stages:
< Modify suspected bottleneck stage itself
< Rule out all other stages

< Under-clock various domains (CPU, FSB, AGP,
GPU)

<~ Tools
< CPU profilers: AMD CodeAnalyst
< GPU profilers: PIX, nvPerfHUD, nvShaderPerf
<

:3;:" 2 L 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Modify Suspected Bottleneck Stage

FPS — D h FPS

< If performance changes proportionally,
you found the bottleneck

< Careful not to alter workload of other stages!

— r_T I'-FF. ‘-"I
:if 2 - 4 Tutorial 5: Programming Graphics Hardware

<
BVIDIA.

Ruling Out Other Stages

FPS — FPS

< If performance doesn’t change significantly,
you found the bottleneck

< Careful not to alter workload of stage under
Investigation!

— .""= I’H-ﬂ'qr
:Qﬂ 2 - 4 Tutorial 5: Programming Graphics Hardware

<
#VIDIA.

Caveats T H]

< Changes to one stage often affect other stages

< Often requires multiple tests to pinpoint bottleneck

< See slide “Bottleneck Identification Flowchart” in
printed proceedings for this talk

< Need to guess right which stage is the bottleneck

< Let’s go over the various stages

<

| = & 2 ! 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t

CPU Bottleneck ikl

< Application
< Complex physics, Al, or logic
< Memory management (cache misses, disk)

< 3D APl Usage
< DirectX debug runtime: any errors or warnings?
< Thousands of draw calls per frame

<

:" 2 ;. 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Reducing CPU Workload T H]

< Turn off parts of the application
< Physics, Al, or logic
< But don’t change rendering workload

< Rule out GPU
< Skip all DrawPrimitive() calls!

m‘! Wrong: also reduces driver workload
< Driver also runs on the CPU

< Issue DrawPrimitive() calls as before
< But only draw first triangle with each call

<

:" 2 ;. 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

CPU Tools T H]

< Profile
< Where is CPU spending time?
< Mostly in busy-loop in driver? CPU is not bottleneck

< Under-clock GPU-core and -memory
< No change in performance? GPU not the bottleneck

< NVPerfHUD (more detalls later)

<

:" 2 L- 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Vertex Bottleneck

| I

< Transferring vertices (AGP bus, AGP cache)
< Per-vertex computations (vertex shader)
< Vertex cache misses (postTnL 24 entry fifo)

< Turning vertices into triangles (setup)

el “':
ES 2 N 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

Reducing Vertex Load [Iﬂj]

< Simpler vertex shader
< But still send all data to pixel shader

< Fewer triangles?
< Also affects pixel shader, texture, frame buffer...

<« Decrease AGP aperture?
< Use NVPerfHUD to verify not AGP texturing

N
.
_. <
Ex/! 2 A ;4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Vertex Optimizations

| I

< Transferring vertices

< Sort vertex buffer to be as linear-access as possible

< Make vertex size smallest multiple of 32
- 56 byte vertex slower than 64 byte vertex

< Single stream vertices

< Minimize vertex shader
< Move constant operations to CPU

< Maximize postTnL cache hits
< nvTriStrip, ID3DXMesh::Optimize()

:1;." 2 b 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

Raster Bottleneck UIIE

< Rarely the bottleneck
< Spend your time testing other stages first

< Unless alpha, stencil, or depth tests cull majority of
pixels

»
A
| <
- |
:G 2 A 4 Tutorial 5: Programming Graphics Hardware ”VIDIA*

Texture Bottleneck

< Texture cache misses

<~ Randomized texture accesses
(also called environment mapping)

< Image processing w/ large kernels

< Huge textures
< Bandwidth

< Texturing out of AGP

:" 2 e 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

Reducing Texture Workload lﬂ

< Use 2x2 textures
< If using texture-alpha test, make sure proportion of
alpha-pass texels is roughly equivalent

< Use mipmaps
< Turn off anisotropic filtering

< Use compressed formats

<

:" 2 ;. 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Fragment Bottleneck

< Expensive pixel shader
< Check nvShaderPerf

< Rendering more fragments than necessary

cEC 2

< High depth complexity
< Poor z-cull

4

Tutorial 5: Programming Graphics Hardware

<
RVIDIA.

Reducing Fragment Load

< Output solid color
< No work per fragment
< But also eliminates texture load: rule out texture first

< Simplified math
< Make sure new math indexes into textures as before

<

g ‘-\'I -
- 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

ni
™
)
N

Fragment Optimizations

< Simplify pixel shader
< Move linearizable computations to vertex shader

< Choose lowest pixel shader version that works
< prefer ps.1.1 over ps.1.4 over ps.2.0 over ps.3.0

< Save computations via Algebra
< Replace complex functions with texture look-ups

< Render front-to-back

< Lay down depth or stencil surfaces up front
< Disable color-writes

<

= C 2 \ 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Frame Buffer Bottleneck

< Writing the same pixel multiple times

< Tons of alpha blending

< Using too big a buffer

eC 2

< Don’t allocate stencil if you don’t use it

< R5G6B5 color sufficient for dynamic reflection maps

N 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

Reducing Frame Buffer Load ﬂl

< Use 16-bit color buffer instead of 32-hit

< Use a 16-bit depth buffer instead of 32-bit
depth/stencil

< Disable alpha-blending

»
A
| <
— o
:@ 2 A 4 Tutorial 5: Programming Graphics Hardware ”VIDIA.

Enough Theory, Let’s Talk Tools

< Any questions on

< Bottleneck identification?

2 Optimizations? /

"

— ™S
:G 2 LJ4 Tutorial 5: Programming Graphics Hardware mVID IA:

Tools Overview

< nvPerfHUD

< http://developer.nvidia.com/object/nvperfhud home.
html

< nvShaderPerf

< http://developer.nvidia.com/object/nvshaderperf ho
me.html

< Integrated into FX Composer
http://developer.nvidia.com/object/fx composer ho
me.html

<

:3;:" 2 - 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

More Tools

< CPU Profiler, e.g., AMD’s CodeAnalyst

< Download free from www.developwithamd.com

< Email codeanalyst.support@amd.com

< Under-clocking utilities

G 2

< BIOS
< For CPU clock, FSB clock, AGP speed

< NVIDIA control panel
< For GPU core- and memory-clocks

N 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

NVPerfHud

< Freel

< Batches
< GPU idle
< Total time

< Time CPU waits for
GPU

< Driver time

< Solid color pixel
shaders

< 2X2 textures

B.82 fps (J06%572), XBRBGERE (D16)
HAL (pure hw vp}: NVIDIA GeForce FX 5800 Ultra

= Mz pex frame Driver time

— s
:G 2 1"--'--“4' Tutorial 5: Programming Graphics Hardware

CFlwaits for GPU

= GPU idle

<
BYVIDIA.

Practice

< Sample problems

< Can you find what the problem is?

< How would you fix it?

< Using NVPerfHUD to help

EC 2

&4

Tutorial 5: Programming Graphics Hardware

<
RVIDIA.

Practice: Clean the Machine!

< Is your profiling machine equivalent to target?

< Using your 3GHz CPU for profiling application
supposed to run well on a 2GHz CPU is pointless

< Latest drivers of everything?
< No control panel anisotropic filtering or anti-aliasing
< Make sure v-sync is off

< Use the DirectX Release runtime
< Debug runtime good for errors and warnings check

< Use release/optimized build of application
<

| = & 2 ! 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t

Example 1

< A seemingly simple scene runs horribly slow
< Zero in on the bottleneck

19.54 fps (1280x948), XBREGERS (D16)
AL (pure hw vp)BNVIDIA GeForce FX 5900 Ultra

<

| = & 2 4 Tutorial 5: Programming Graphics Hardware ﬂVIDIA

Example 1 Code

< Uses a dynamic vertex buffer
<~ Bad creation flags

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),
0, /[declares as static&read&write
PARTICLE_VERT:FVF,
D3DPOOL_DEFAULT,
&m_pVB,
NULL);

<

:" 2 - 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Set Proper Creation Flags

< Tell runtime and driver as much as possible

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),
D3DUSAGE_DYNAMIC |
D3DUSAGE_WRITEONLY,
PARTICLE VERT:FVF,
D3DPOOL_DEFAULT,
&m_pVB,
NULL);
| <
EGC 24 tuworia s Programming Graphics Hardware BYVIDIA.

Locking Flags?

m_pVB->Lock(0, O,(void**)&quadTris, 0);

< No flags at all? That can’t be good...

< Means you will read...
< And write

< Potentially anywhere on the buffer
< Driver must copy the buffer for you

< Potentially wait for GPU to finish using it first
< Synchronizes CPU and GPU

| = & 2 - 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

Set Proper Locking Flags

m_pVB->Lock(0, O,(void**)&quadTris,
D3DLOCK NOSYSLOCK | D3DLOCK_DISCARD);

< Use D3DLOCK_DISCARD first time you lock a
vertex buffer each frame

< And again when that buffer is full
< Otherwise use NOSYSLOCK | NOOVERWRITE

»
A
| <
— o
:@ 2 A 4 Tutorial 5: Programming Graphics Hardware ”VIDIA.

Example 2: Another Slow Scene

EC 2

&4

9.55 fps (1280x948), XBRBGEBRBE (D16)
HAL (pure hw vp): NVIDIA GeForce FX'6900 Ultra

Tutorial 5: Programming Graphics Hardware

<
RVIDIA.

Texture Bandwidth Overkill

< Use mipmaps

< Use dxtl if possible
< Some cards store compressed data in cache

< Use smaller textures when possible
< Do grass blades really need 1024x1024 textures?

<

:" 2 - 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

And Another One

cC 2

4

9.41 fps (1280x948), XBR8GEBS8 (D16)
HAL (pure hw vp): NVIDIA GeForce FX 5900 Ultra

Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

Expensive Pixel Shader

< Only 3 verts, but maybe a million pixels
< That’s only 1024x1024

Look at all those pixels!!

»
A
| <
- |
:G 2 A 4 Tutorial 5: Programming Graphics Hardware ”VIDIA*

nvShaderPerf

< 36 cycles!

Shader Perf

TestFXCheapVsl = p0 + Pixel Shader ~ GeForceFX 5950 -

”
Target: GeForceFX 5350 (NV38) :: Unified Compiler: v5&.53 i
‘ Cycles: 36 :: # R Registers: 4

GPU Utilization: 54.00%

A large number of registers are being used which are causing register file stalls

PS5 Instructions: 45

==
EC 2,04

Tutorial 5: Programming Graphics Hardware nVID IA;

Optimizing the Pixel Shader

< Move math that is constant across triangle into
vertex shader

< Use ‘half’ instead of ‘float’

< Get rid of unnecessary normalize()s

- See also Normalization Heuristics
http://developer.nvidia.com/object/normalization he
uristics.html

<

:3;:" 2 - 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

11 Cycles Is Better!

Shader Perf

TestFXCheapVsl = p0 + Pixel Shader -

TR DA D D D D D D D D D D D D e e B I I R I e I M -

|\ || Target: GeForceFX 5950 (NV38) :: Unified Compiler: v56.58 i
. Cydes: 11 :: # R Reqgisters: 2

GPU Utlization: 54.00%:

DA% D D 0D DA D D D D D D D T D D D D D D D D D D D D e B e

PS5 Instructions: 26

GeForceFX S95C -

:G 2{;; 04 Tutorial 5: Programming Graphics Hardware

BZVIDIA.

Last Example

47.26 fps (1280x948), XBRBGEESB (D16)
HAL (pure hw vp): NVIDIA GeForce FX 5900 Ultra

y

<

EG 29} 04 Tutorial 5: Programming Graphics Hardware nVIbIA.

Too Many Batches

< Every quad uses its own Draw() call

< Pack all quads into one big vertex buffer

-/ Send Wlth one DraW() Ca” Humber of DF calls: 2004

< What if quads use different textures?

EC 2

< Pack textures into atlases

< Change texture coordinates on quads accordingly
< See NVIDIA SDK 7, Atlas Comparison Viewer

™S
- 4 Tutorial 5: Programming Graphics Hardware

<
AVIDIA.

Balancing the Pipeline

< Once satisfied with performance
<~ Balance pipeline:

< make more use of non-bottlenecked stages
< Careful not to make too much use of them

il §

FPS

- |

el “':
ES 2 N 4 Tutorial 5: Programming Graphics Hardware

FPS

<

BVIDIA.

Summary

< Graphics is a multi-processor pipeline

< Bottlenecks rule pipeline architectures

< Don’t waste time optimizing stages needlessly
< ldentify bottlenecks with quick tests

< Use NVPerfHUD to analyze your pipeline

< Use Fxcomposer to help tune your shaders

< Check your performance early and often
< Don’t walit until a week before ship!

<

| = & 2 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

More Information

< http://developer.nvidia.com
The Source for GPU Programming

< NVIDIA GPU Programming Guide

http://developer.nvidia.com/object/gpu programmi

ng quide.html

< Matthias Wloka (mwloka@nvidia.com)

- 2 N 4 Tutorial 5: Programming Graphics Hardware

<

BVIDIA.

developer.nvidia.com
The Source for GPU Programming

< Latest documentation
< SDKs
< Performance analysis tools

< Content creation tools

< Hundreds of effects

< Video presentations and tutorials
< Libraries and utilities

< News and newsletter archives

<

— s
:G 2 1'---'-"‘ﬁl- Tutorial 5: Programming Graphics Hardware ﬂVID IA:

Performance Lore

< Collected advice from various developers

< S0 you don’t have to discover it the hard way

EC 2

&4

Tutorial 5: Programming Graphics Hardware

>
RVIDIA.

Performance Lore

Use low resolution (<256x256) 8-bit normalization
cube-maps. Quality isn’t reduced since 50% of
texels in high resolution cube-map are identical;
you are only getting nearest filtering
< http://developer.nvidia.com/object/normalization _he
uristics.html

< Use oblique frustum clipping to clip geometry for
reflection instead of a clip plane
< http://www.developer.nvidia.com/object/sdk _home.h

tml
<
ZVIDIA.

| = & 2 - 4 Tutorial 5: Programming Graphics Hardware

Performance Lore

< Re-use vertex buffers for streaming geometry.
Never create and delete vertex buffers every frame
If they are re-usable

< Search for “vertex buffer lock” on
http://Iwww.developer.nvidia.com/

< Use multiples of 32 byte sized vertices for transfer
over AGP

<

= C 2 \ 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Performance Lore

< Use Occlusion Query to render object’s bounding
box this frame. Use the result only *next* frame to
decide whether to draw the real object.

< Avoid synchronizing CPU and GPU

< For ARB fragment programs use
ARB_precision_hint_fastest

< Use 16-bit 565 cube-maps for dynamic reflections
on cars. Don’t need 32-bit reflections

<

- 2 ' 4 Tutorial 5: Programming Graphics Hardware ;2‘71]:)11\,t

Performance Lore

< Blend out small game objects and don’t render
them when they are far away. Reduces number of
Draw() calls.

< Use half instead of float early and often in
development.

< Use texture atlases to combine objects into a
single batch.

<

= C 2 \ 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Performance Lore

-

-

-/

cC 2

If rendering multiple passes, lay down depth first,
then render your expensive pixel shaders. Cuts out
depth complexity.

If rendering multiple passes, later additive passes
can set alphator + g + b, and use alpha test to cut
out fill.

Terrain rendering in 4 passes in psl.1 dueto
texture limits can render in 1 pass in ps2.0.

<

' 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Performance Lore

< Tell IHVs about your problem; sometimes it really
Isn’t your code and we can fix driver bugs!

< Use anisotropic filtering only on textures that need
It. Don’t just set it to default on.

< Don’t lock static vertex buffers multiple times per
frame. Make them dynamic.

< Sorting the scene by render target can be a
performance boost. @%

| = & 2 ' 4 Tutorial 5: Programming Graphics Hardware ;2‘71]:)11\,t

Performance Lore

< When locating the bottleneck, divide and conquer.

-

-/

cC 2

Lower resolution first, cuts the problem almost in
half. Rules out just about everything fill and pixel
related.

Use float4 to pack multiple float2 texture
coordinates.

Optimize your index and vertex buffers to take
advantage of the cache.

<

' 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Performance Lore

< Move per object calculations out of the vertex
shader and onto the CPU.

< Move per triangle calculations out of the pixel
shader and into the vertex shader.

< Use swizzles and masks in your vertex and pixel
shaders: Value.xy = register.wz

<

= C 2 \ 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

Performance Lore

< Use the API to clear the color and depth buffer.

< Don’t change the direction of your z test mid frame
< Going from > ...to... >= ...to... =is fine
< Don’t go from > ...to... <

< Don’t use polygon offset if something else works.

< Don’t write depth in your pixel shader if you don’t

have to.
<
= C 2 ! 4 Tutorial 5: Programming Graphics Hardware ?Z'VI]:)11\,t

Performance Lore

< Use mipmaps. If they are too blurry for you, use
anisotropic filtering: Better quality than LOD bias.

< Rarely is there a single bottleneck in a game. If you
find a bottleneck and fix it, and performance
doesn’t improve more than a few fps, don’t give
up. You've helped yourself by making the real
bottleneck apparent. Keep narrowing it down until
you find it.

<

- 2 4 Tutorial 5: Programming Graphics Hardware ”VIDIA:

GPU Gems: Programming Techniques, @@UGems

Programming Technigues, Tips, and

Tips, and Tricks for Real-Time Graphics il

< Practical real-time graphics techniques

< Contributions from experts at leading
corporations and universities

< Full color (300+ diagrams and screenshots)
< Hard cover, 816 pages < i sy

Chind Scimntint, MVTOLE Corporatian

For more, ViSIt: “This collection of articles is

http://developer.nvidia.com/GPUGems particularly impressive for its depth and
breadth. The book includes product-
oriented case studies, previously
unpublished state-of-the-art research,
comprehensive tutorials, and extensive
code samples and demos throughout.”

Eric Haines
Author of Real-Time Rendering

@

EG 2:} 04 Tutorial 5: Programming Graphics Hardware nVIbIA.

“GPU Gems is a cool toolbox of advanced graphics
techniques. Novice programmers and graphics gurus
alike will find the gems practical, intriguing, and
useful.”

Tim Sweeney
Lead programmer of Unreal at Epic Games

Bottleneck Identification Flowchart

Vary FB FB
bit-depth limited

—

Vary texture Texture
sizeffiltering limited

Fragment
limited

Var
Vary Yes y
: fragment
resolution . :
instructions

Vary
vertex
instructions

] ¥

Transform
limited

ver:/;(r);ize/ Transfer
firmi
AGP rate imited

<
AVIDIA.

- ~
:G 2 - 4 Tutorial 5: Programming Graphics Hardware

