
Tutorial 5: Programming Graphics Hardware

Optimizing
the Graphics Pipeline

Optimizing
the Graphics Pipeline

Matthias M Wloka

Tutorial 5: Programming Graphics Hardware

Overview

Underlying principles

Identify the problems

Learn how to fix the problems

Questions and Answers

Performance Lore

Tutorial 5: Programming Graphics Hardware

CPU and GPU: Dual-Processor System

Do not synchronize them (read-back, locks, etc.)

AGP/Video
Memory

App +
Driver

CPU GPU

Tutorial 5: Programming Graphics Hardware

GPU Is A Pipeline Architecture

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

GPU

Each stage relies on previous stage to do its job

Tutorial 5: Programming Graphics Hardware

The Terrible Bottleneck

Limits the speed of the pipeline

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Optimal performance only
when pipeline is balanced

Tutorial 5: Programming Graphics Hardware

First Rule of Optimization

Profile!

Optimizing parts that you think are problematic
Fun, but
Great waste of time

How to identify bottlenecks?

Tutorial 5: Programming Graphics Hardware

Bottleneck Identification

Modify workload of stages:
Modify suspected bottleneck stage itself
Rule out all other stages

Under-clock various domains (CPU, FSB, AGP,
GPU)

Tools
CPU profilers: AMD CodeAnalyst
GPU profilers: PIX, nvPerfHUD, nvShaderPerf

Tutorial 5: Programming Graphics Hardware

Modify Suspected Bottleneck Stage

FPS FPS

If performance changes proportionally,
you found the bottleneck

Careful not to alter workload of other stages!

Tutorial 5: Programming Graphics Hardware

Ruling Out Other Stages

FPS

If performance doesn’t change significantly,
you found the bottleneck

Careful not to alter workload of stage under
investigation!

FPS

Tutorial 5: Programming Graphics Hardware

Caveats

Changes to one stage often affect other stages

Often requires multiple tests to pinpoint bottleneck
See slide “Bottleneck Identification Flowchart” in
printed proceedings for this talk
Need to guess right which stage is the bottleneck

Let’s go over the various stages

Tutorial 5: Programming Graphics Hardware

CPU Bottleneck

Application
Complex physics, AI, or logic
Memory management (cache misses, disk)

3D API Usage
DirectX debug runtime: any errors or warnings?
Thousands of draw calls per frame

Tutorial 5: Programming Graphics Hardware

Reducing CPU Workload

Turn off parts of the application
Physics, AI, or logic
But don’t change rendering workload

Rule out GPU
Skip all DrawPrimitive() calls!

Wrong: also reduces driver workload
Driver also runs on the CPU

Issue DrawPrimitive() calls as before
But only draw first triangle with each call

Tutorial 5: Programming Graphics Hardware

CPU Tools

Profile
Where is CPU spending time?
Mostly in busy-loop in driver? CPU is not bottleneck

Under-clock GPU-core and -memory
No change in performance? GPU not the bottleneck

NVPerfHUD (more details later)

Tutorial 5: Programming Graphics Hardware

Vertex Bottleneck

Transferring vertices (AGP bus, AGP cache)

Per-vertex computations (vertex shader)

Vertex cache misses (postTnL 24 entry fifo)

Turning vertices into triangles (setup)

Tutorial 5: Programming Graphics Hardware

Reducing Vertex Load

Simpler vertex shader
But still send all data to pixel shader

Fewer triangles?
Also affects pixel shader, texture, frame buffer…

Decrease AGP aperture?
Use NVPerfHUD to verify not AGP texturing

Tutorial 5: Programming Graphics Hardware

Vertex Optimizations

Transferring vertices
Sort vertex buffer to be as linear-access as possible
Make vertex size smallest multiple of 32

56 byte vertex slower than 64 byte vertex
Single stream vertices

Minimize vertex shader
Move constant operations to CPU

Maximize postTnL cache hits
nvTriStrip, ID3DXMesh::Optimize()

Tutorial 5: Programming Graphics Hardware

Raster Bottleneck

Rarely the bottleneck
Spend your time testing other stages first

Unless alpha, stencil, or depth tests cull majority of
pixels

Tutorial 5: Programming Graphics Hardware

Texture Bottleneck

Texture cache misses
Randomized texture accesses
(also called environment mapping)
Image processing w/ large kernels

Huge textures

Bandwidth

Texturing out of AGP

Tutorial 5: Programming Graphics Hardware

Reducing Texture Workload

Use 2x2 textures
If using texture-alpha test, make sure proportion of
alpha-pass texels is roughly equivalent

Use mipmaps

Turn off anisotropic filtering

Use compressed formats

Tutorial 5: Programming Graphics Hardware

Fragment Bottleneck

Expensive pixel shader
Check nvShaderPerf

Rendering more fragments than necessary
High depth complexity
Poor z-cull

Tutorial 5: Programming Graphics Hardware

Reducing Fragment Load

Output solid color
No work per fragment
But also eliminates texture load: rule out texture first

Simplified math
Make sure new math indexes into textures as before

Tutorial 5: Programming Graphics Hardware

Fragment Optimizations

Simplify pixel shader
Move linearizable computations to vertex shader
Choose lowest pixel shader version that works

prefer ps.1.1 over ps.1.4 over ps.2.0 over ps.3.0
Save computations via Algebra
Replace complex functions with texture look-ups

Render front-to-back
Lay down depth or stencil surfaces up front

Disable color-writes

Tutorial 5: Programming Graphics Hardware

Frame Buffer Bottleneck

Writing the same pixel multiple times

Tons of alpha blending

Using too big a buffer
Don’t allocate stencil if you don’t use it
R5G6B5 color sufficient for dynamic reflection maps

Tutorial 5: Programming Graphics Hardware

Reducing Frame Buffer Load

Use 16-bit color buffer instead of 32-bit

Use a 16-bit depth buffer instead of 32-bit
depth/stencil

Disable alpha-blending

Tutorial 5: Programming Graphics Hardware

Enough Theory, Let’s Talk Tools

Any questions on

Bottleneck identification?

Optimizations?

Tutorial 5: Programming Graphics Hardware

Tools Overview

nvPerfHUD
http://developer.nvidia.com/object/nvperfhud_home.
html

nvShaderPerf
http://developer.nvidia.com/object/nvshaderperf_ho
me.html
Integrated into FX Composer
http://developer.nvidia.com/object/fx_composer_ho
me.html

Tutorial 5: Programming Graphics Hardware

More Tools

CPU Profiler, e.g., AMD’s CodeAnalyst
Download free from www.developwithamd.com
Email codeanalyst.support@amd.com

Under-clocking utilities
BIOS

For CPU clock, FSB clock, AGP speed

NVIDIA control panel
For GPU core- and memory-clocks

Tutorial 5: Programming Graphics Hardware

NVPerfHud

Free!

Batches
GPU idle
Total time
Time CPU waits for
GPU
Driver time
Solid color pixel
shaders
2x2 textures

Tutorial 5: Programming Graphics Hardware

Practice

Sample problems
Can you find what the problem is?
How would you fix it?

Using NVPerfHUD to help

Tutorial 5: Programming Graphics Hardware

Practice: Clean the Machine!

Is your profiling machine equivalent to target?
Using your 3GHz CPU for profiling application
supposed to run well on a 2GHz CPU is pointless
Latest drivers of everything?
No control panel anisotropic filtering or anti-aliasing
Make sure v-sync is off

Use the DirectX Release runtime
Debug runtime good for errors and warnings check

Use release/optimized build of application

Tutorial 5: Programming Graphics Hardware

Example 1

A seemingly simple scene runs horribly slow
Zero in on the bottleneck

Tutorial 5: Programming Graphics Hardware

Example 1 Code

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),
0, // declares as static&read&write
PARTICLE_VERT::FVF,
D3DPOOL_DEFAULT,
&m_pVB,
NULL);

Uses a dynamic vertex buffer
Bad creation flags

Tutorial 5: Programming Graphics Hardware

Set Proper Creation Flags

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),
D3DUSAGE_DYNAMIC |
D3DUSAGE_WRITEONLY,
PARTICLE_VERT::FVF,
D3DPOOL_DEFAULT,
&m_pVB,
NULL);

Tell runtime and driver as much as possible

Tutorial 5: Programming Graphics Hardware

Locking Flags?

m_pVB->Lock(0, 0,(void**)&quadTris, 0);

No flags at all? That can’t be good...

Means you will read…
And write

Potentially anywhere on the buffer
Driver must copy the buffer for you

Potentially wait for GPU to finish using it first
Synchronizes CPU and GPU

Tutorial 5: Programming Graphics Hardware

Set Proper Locking Flags

m_pVB->Lock(0, 0,(void**)&quadTris,
D3DLOCK_NOSYSLOCK | D3DLOCK_DISCARD);

Use D3DLOCK_DISCARD first time you lock a
vertex buffer each frame

And again when that buffer is full
Otherwise use NOSYSLOCK | NOOVERWRITE

Tutorial 5: Programming Graphics Hardware

Example 2: Another Slow Scene

Tutorial 5: Programming Graphics Hardware

Texture Bandwidth Overkill

Use mipmaps

Use dxt1 if possible
Some cards store compressed data in cache

Use smaller textures when possible
Do grass blades really need 1024x1024 textures?

Tutorial 5: Programming Graphics Hardware

And Another One

Tutorial 5: Programming Graphics Hardware

Expensive Pixel Shader

Only 3 verts, but maybe a million pixels
That’s only 1024x1024

Look at all those pixels!!

Tutorial 5: Programming Graphics Hardware

nvShaderPerf

36 cycles!

Tutorial 5: Programming Graphics Hardware

Optimizing the Pixel Shader

Move math that is constant across triangle into
vertex shader

Use ‘half’ instead of ‘float’

Get rid of unnecessary normalize()s
See also Normalization Heuristics
http://developer.nvidia.com/object/normalization_he
uristics.html

Tutorial 5: Programming Graphics Hardware

11 Cycles Is Better!

Tutorial 5: Programming Graphics Hardware

Last Example

Tutorial 5: Programming Graphics Hardware

Too Many Batches

Every quad uses its own Draw() call

Pack all quads into one big vertex buffer
Send with one Draw() call

What if quads use different textures?
Pack textures into atlases
Change texture coordinates on quads accordingly
See NVIDIA SDK 7, Atlas Comparison Viewer

Tutorial 5: Programming Graphics Hardware

Balancing the Pipeline

Once satisfied with performance
Balance pipeline:

make more use of non-bottlenecked stages
Careful not to make too much use of them

FPS FPS

Tutorial 5: Programming Graphics Hardware

Summary

Graphics is a multi-processor pipeline
Bottlenecks rule pipeline architectures
Don’t waste time optimizing stages needlessly
Identify bottlenecks with quick tests
Use NVPerfHUD to analyze your pipeline
Use Fxcomposer to help tune your shaders
Check your performance early and often

Don’t wait until a week before ship!

Tutorial 5: Programming Graphics Hardware

More Information

http://developer.nvidia.com
The Source for GPU Programming

NVIDIA GPU Programming Guide
http://developer.nvidia.com/object/gpu_programmi
ng_guide.html

Matthias Wloka (mwloka@nvidia.com)

Tutorial 5: Programming Graphics Hardware

developer.nvidia.comdeveloper.nvidia.com
The Source for GPU Programming

Latest documentation
SDKs
Performance analysis tools
Content creation tools
Hundreds of effects
Video presentations and tutorials
Libraries and utilities
News and newsletter archives

EverQuest® content courtesy Sony Online Entertainment Inc.

Tutorial 5: Programming Graphics Hardware

Performance Lore

Collected advice from various developers

So you don’t have to discover it the hard way

Tutorial 5: Programming Graphics Hardware

Performance Lore

Use low resolution (<256x256) 8-bit normalization
cube-maps. Quality isn’t reduced since 50% of
texels in high resolution cube-map are identical;
you are only getting nearest filtering

http://developer.nvidia.com/object/normalization_he
uristics.html

Use oblique frustum clipping to clip geometry for
reflection instead of a clip plane

http://www.developer.nvidia.com/object/sdk_home.h
tml

Tutorial 5: Programming Graphics Hardware

Performance Lore

Re-use vertex buffers for streaming geometry.
Never create and delete vertex buffers every frame
if they are re-usable

Search for “vertex buffer lock” on
http://www.developer.nvidia.com/

Use multiples of 32 byte sized vertices for transfer
over AGP

Tutorial 5: Programming Graphics Hardware

Performance Lore

Use Occlusion Query to render object’s bounding
box this frame. Use the result only *next* frame to
decide whether to draw the real object.

Avoid synchronizing CPU and GPU

For ARB fragment programs use
ARB_precision_hint_fastest

Use 16-bit 565 cube-maps for dynamic reflections
on cars. Don’t need 32-bit reflections

Tutorial 5: Programming Graphics Hardware

Performance Lore

Blend out small game objects and don’t render
them when they are far away. Reduces number of
Draw() calls.

Use half instead of float early and often in
development.

Use texture atlases to combine objects into a
single batch.

Tutorial 5: Programming Graphics Hardware

Performance Lore

If rendering multiple passes, lay down depth first,
then render your expensive pixel shaders. Cuts out
depth complexity.

If rendering multiple passes, later additive passes
can set alpha to r + g + b, and use alpha test to cut
out fill.

Terrain rendering in 4 passes in ps1.1 due to
texture limits can render in 1 pass in ps2.0.

Tutorial 5: Programming Graphics Hardware

Performance Lore

Tell IHVs about your problem; sometimes it really
isn’t your code and we can fix driver bugs!

Use anisotropic filtering only on textures that need
it. Don’t just set it to default on.

Don’t lock static vertex buffers multiple times per
frame. Make them dynamic.

Sorting the scene by render target can be a
performance boost.

Tutorial 5: Programming Graphics Hardware

Performance Lore

When locating the bottleneck, divide and conquer.
Lower resolution first, cuts the problem almost in
half. Rules out just about everything fill and pixel
related.

Use float4 to pack multiple float2 texture
coordinates.

Optimize your index and vertex buffers to take
advantage of the cache.

Tutorial 5: Programming Graphics Hardware

Performance Lore

Move per object calculations out of the vertex
shader and onto the CPU.

Move per triangle calculations out of the pixel
shader and into the vertex shader.

Use swizzles and masks in your vertex and pixel
shaders: Value.xy = register.wz

Tutorial 5: Programming Graphics Hardware

Performance Lore

Use the API to clear the color and depth buffer.

Don’t change the direction of your z test mid frame
Going from > ...to... >= ...to... = is fine
Don’t go from > ...to... <

Don’t use polygon offset if something else works.

Don’t write depth in your pixel shader if you don’t
have to.

Tutorial 5: Programming Graphics Hardware

Performance Lore

Use mipmaps. If they are too blurry for you, use
anisotropic filtering: Better quality than LOD bias.

Rarely is there a single bottleneck in a game. If you
find a bottleneck and fix it, and performance
doesn’t improve more than a few fps, don’t give
up. You’ve helped yourself by making the real
bottleneck apparent. Keep narrowing it down until
you find it.

Tutorial 5: Programming Graphics Hardware

GPU Gems: Programming Techniques, GPU Gems: Programming Techniques,
Tips, and Tricks for RealTips, and Tricks for Real--Time GraphicsTime Graphics

Practical real-time graphics techniques
Contributions from experts at leading
corporations and universities
Full color (300+ diagrams and screenshots)
Hard cover, 816 pages

“GPU Gems is a cool toolbox of advanced graphics
techniques. Novice programmers and graphics gurus
alike will find the gems practical, intriguing, and
useful.”
Tim Sweeney
Lead programmer of Unreal at Epic Games

“This collection of articles is
particularly impressive for its depth and
breadth. The book includes product-
oriented case studies, previously
unpublished state-of-the-art research,
comprehensive tutorials, and extensive
code samples and demos throughout.”
Eric Haines
Author of Real-Time Rendering

For more, visit:For more, visit:
http://http://developer.nvidia.com/GPUGemsdeveloper.nvidia.com/GPUGems

Tutorial 5: Programming Graphics Hardware

Bottleneck Identification Flowchart

Run App Vary FB
bit-depth

FPS
varies?

FB
limited

Vary texture
size/filtering

FPS
varies?

Vary
resolution

FPS
varies?

Texture
limited

Vary
fragment

instructions

FPS
varies?

Vary
vertex

instructions

FPS
varies?

Transform
limited

Vary
vertex size/
AGP rate

FPS
varies?

Transfer
limited

Fragment
limited

Raster
limited

CPU
limited

Yes

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

