
1

Next Generation
Shading and Rendering

Bryan Dudash
NVIDIA

©2004 NVIDIA Corporation. All rights reserved.

Session Overview

3.0 Shader Model Overview
ps.3.0 vs. ps.2.0
vs.3.0 vs. vs.2.0

Next-Gen Rendering Examples
Dynamic Water

Vertex Texture Fetch
Floating-point filtering / blending
GPU-based physics simulation

Volumetric Fog
MRT and branching for speed

Deferred Rendering
MRT and branching for speed

Geometry Instancing
Added visual complexity
Performance optimization

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader 3.0 Feature Comparison

Fewer artifacts, more dynamic rangefp32fp24Minimum
Precision

Allows two-sided lighting in a single
passYesNoBack-face

register

Developers can calculate the screen
space derivatives of any function,
allowing them to adjust shading
frequencies or over-sampling to
eliminate artifacts

Built-in
derivative
instructions

Not
supported

Shader anti-
aliasing

Saves performance by skipping
complex shading on irrelevant pixelsYesNoDynamic

branching

Allows more complex shading,
lighting, and procedural materials65535+96Shader length

DescriptionShader 3.0 Shader 2.0 Pixel Shader
Feature

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader 3.0 Feature Comparison

More per-pixel inputs allows more
realistic rendering, especially for skin108Texture

coordinate count

Shader Model 3.0 gives developers
full and precise control over specular
and fog computations, previously
fixed-function

Custom fp16-
fp32 shader
program

8-bit fixed
function
minimum

Fog and specular

Allows advanced lighting algorithms to
save filtering and vertex work – thus
more lights for minimal cost

4 requiredOptionalMultiple render
targets

Higher range and precision color
allows high-dynamic range lighting at
the vertex level

32-bit floating
point minimum

8-bit integer
minimum

Interpolated color
format

Allows two-sided lighting in a single
passYesNoBack-face register

DescriptionShader 3.0 Shader 2.0 Pixel Shader
Feature

©2004 NVIDIA Corporation. All rights reserved.

Vertex Shader 3.0 Feature Comparison

Allows many varied objects to be
drawn with only a single commandRequiredNoInstancing

support

Allows displacement mapping,
particle effects

Any number of
lookups from up
to 4 textures

NoVertex texture

Saves performance by skipping
animation and calculations on
irrelevant vertices

YesNoDynamic
branching

More instructions allow more
detailed character lighting and
animation

65535
instructions

256
InstructionsShader length

DescriptionShader 3.0Shader 2.0Vertex shader
feature

©2004 NVIDIA Corporation. All rights reserved.

So what can we do with all this?
Dynamic Water Rendering

VS3.0 Vertex Texture Fetch
Floating-point filtering / blending
GPU-based physics simulation

Animated Volumetric Fog
Use polygon primitives to bound fog
MRT and branching for speed

Geometry Instancing
Draw many “instances” of a mesh with one draw call

©2004 NVIDIA Corporation. All rights reserved.

Typical Workflow

Simulate
Vertex

positions Render
to frame-buffer

©2004 NVIDIA Corporation. All rights reserved.

CPUCPU

Simulate
Vertex

positions Render
to frame-buffer

GPUGPU

Typical Processing Allocation

©2004 NVIDIA Corporation. All rights reserved.

Simulating On the GPU?

GPUGPU

Simulate
Vertex

positions Render
to frame-buffer

GPUGPU

Read-back: BAD!

Use them programmable shaders!
The read-back can kill you
This is for PCI. PCI Express is better.

~100s~100s
MB/sMB/s

CPUCPU

©2004 NVIDIA Corporation. All rights reserved.

“Render To Vertex Buffer”

Removes read-back from GPU to CPU

Render to
texture

Store vertices as
texture data

Read texture into
vertex shader

Simulate Texture Render
to frame-buffer

GPUGPU

~10s~10s
GB/sGB/s

©2004 NVIDIA Corporation. All rights reserved.

Examples

Cloth
Collide cloth against scene
Run cloth physics:
damped springs

Displacement Mapping
Displace vertices

©2004 NVIDIA Corporation. All rights reserved.

More Examples

Snow/Sand accumulation
Simulate friction/sliding

Wind (simulation) bending grass

Particle Systems

Water waves/wakes

©2004 NVIDIA Corporation. All rights reserved.

Rendering Water – Algorithm Overview

Perform water simulation in pixel
shader

Render to texture
(D3DFMT_A16B16G16R16F)

Render refraction and reflection
maps

Render water surface
Use simulation results via VS3.0
vertex texture fetch
Compute perturbed texture
coordinates
Combine refraction and reflection
using Fresnel term

