Seamless Modeling and Texturing

Steve Burke NVIDIA Demo Team

More and more, game art is about Art

Early graphics

Know your tools but put your energy into the art itself

NVIDIA PROPRIETARY

Infinite Resolution

Low Frequency as defined by geometry Medium Frequency Model or Texture High Frequency pores and veins

Three levels of resolution are seamlessly blended to create apparent infinite resolution

Materials Implied by Model Construction

It is clear these models are comprised of different materials

Model Edges Vary More Than Surfaces

Most surfaces are generally smooth with the edges doing much to describe form

Small Details are Important to a Model

and shouldn't automatically be replaced with bump maps

Curved Surfaces Look Better

NVIDIA

Comparison of Two Similar Models

NVIDIA PROPRIETARY

Resolution adds realism

More resolution minimizes smoothing errors and creates a model which responds better to light and shadow

Creating a Highest Level LOD

Subdivision is a quick way to increase the resolution of your mesh

The Humble and Enigmatic Pink Marker

Even the simplest objects can be too complex for traditional methods of modeling

Vertices, Faces, and Edges

Edges highlight the relationship of one vertex to another

NVIDIA

Primitives

These standard primitives provide a great starting point for most any model

The Sphere: You Can't Fight Perfection!

A sphere is not a good starting point . . . most anything you do to a sphere will destroy its simple beauty

The World is a Cylinder

Cylinders are a good foundation for most any organic shape

Rule of 4's: Objects Divisible into Quarters

Non-uniform Vertex Scaling

Scaling down in a single axis minimizes differences along that axis, eventually that distance becomes nil

Extruding Edges

Extruding edges can be used to solve some tricky modeling dilemnas such as predictably capping a hole or creating curved section of pipe.

Beveling

Beveling is one of the most powerful polygonal modeling tools

Sculpting Terrain

Mechanical vs. Organic

Require different methods

NVIDIA.

Mechanical vs. Organic

Mechanical

- 1. Build basic form at full-resolution
- 2. Shape and substitute parts
- 3. Add curvature

Organic

- 1. Build model at low-resolution
- 2. Subdivide to final resolution

There are two discreet types of models

Organic Modeling Process

Subdivision gives polygonal models much of the flexibility of patches and other high-level modeling methods

Edges as Flowlines

Flowlines should be smooth, predictable, and clean

Flowlines form the contours of your model

NVIDIA.

Reading Vertex Positions in Perspective

Perspective

Viewport

Correctly orienting a vertex in an orthographic viewport means that only the third axis is undefined Errant verts can be fixed by transforming them along the remaining axis

Understanding vertex relationships in a perspective viewport is critical to modeling complex objects

Moving Verts in Perspective

If vert is aligned in X and Z planes (front view) then move the vert in Y until it fits the flow of other verts

Creating Different Types of Edges

Edge Transitions

Varying edge distance creates more natural edges in organic models.

Cutting Flowlines

NVIDIA

Cut flowlines across the surface of the model and use these flowlines to sculpt form

Cutting Flowlines

A more uniform mesh will give you cleaner and more predictable results when subdividing

Mechanical Modeling Process

with polygons

Deformation Lattices

Deformation lattices are a workhorse of any type of polygonal modeling.

Deformation Lattices: 2 x 2

A 2x2 lattice is good for TAPERING and LINEAR deformations

Deformation Lattices: 3 x 3

A 3 x 3 lattice can deform and add CURVATURE to a model

Deformation Lattices: 4 x 4

A 4 x 4 lattice can deform with more precision and the deformation can be more localized, in this case, to some edges

Still More on Deformation Lattices

A 4 x 4 lattice can deform with more precision and the deformation can be more localized, in this case, to some edges

Final Result

A hole that fits within a single polygon

Building a Hole

Starting Point Simple 16-sided cylinder Top of cylinder beveled outward

Once complete, the hole detail fits within a single polygon and can therefore be substituted for any polygon in your model

Building Up

Many objects can be derived from stitching together smaller sections of geometry

Building Up: Adding Detail

degree section, and then rebuilt

Building Up: Screw Example

Complex objects like screws can be built by building up from smaller components

Screw Contiuned

NVIDIA PROPRIETARY

Screw Top

NVIDIA

A 24 sided sphere is used so that the edges of the sphere align to the base screw object which was built from a 24 sided cylinder

Chamfered Box Example

The chamfered box is a great starting point. It has bevels and the flat sides make the verts easy to transform

Intersecting Objects

Stitching object together is one method of creating intersecting objects without using booleans

Quick Modeling

The tenets of modeling for speed

- Approximate shapes
- Build what's easy (i.e. primitives with bevels)
- Give every object a little bit of love
- Put special care into just a few objects
- Don't be careless . . . just efficient

Streamline by avoiding costly modeling challenges that don't provide a substantial benefit.

Building What's Easy

Use the faces and edges already built into a model as a means to add quick detail

Give Every Object a Little Bit of Love

Any surface that can be easily described by the viewer ceases to be interesting.

Give Every Object a Little Bit of Love

Subtle curves and asymmetry can make a simple object more interesting.

Special Care in a Few Objects

Using too many simple objects in a single model would become uninteresting.

Cinematic Texturing

Strategies and techniques for creating cinematic quality textures

Purpose of Texture Maps

- **1.** Enhance the resolution of the model
 - Opacity maps
 - Bump and normal maps
- 2. Control color and value of surfaces
 - Diffuse color maps
 - specular, self-illumination maps, etc.

Contrasts should be managed at a scene level, model level, and texture level

Value and Color

Value and color need to be controlled for each model and across each scene or game level

Defining Value in 3D; the Easy Case

White, matte surfaces offer complete control over surface value and color with the use of lighting

Defining Value in 3D; Shader Problems

Shaders with sharp falloffs can create disjointed scenes since the light does not disperse far across the surface of the objects

Defining Value in 3D; Texture Value

Texture value places an upper limit on how bright a surface will be under full illumination

Defining Value in 3D; Ambient Light

Ambient lighting helps a little but doesn't solve the underlying value problem

Defining Value in 3D; Normalizing Darks

Normalize surfaces so that they respond more evenly to lighting. Dark objects are given a high specular level with low glossiness

Defining Value in 3D; Normalizing Brights

Normalize bright areas by using a shader to reduce the light on their surface

Defining Value in 3D; Backgrounds

Put dark values behind bright objects and bright values behind dark objects for maximum impact

Defining Value in 3D; Rim Lighting

Rim light helps to further links objects together visually and to further separate them from the background

Defining Value in 3D; Shadows

Shadows help to tie all of the objects together and show how the objects relate to their environment

Impediments to Managing Value

Compensate and possibly avoid some of these situations or you may have to resort to awful ambient lighting

Manage Color on a Global Scale

Define a strategy for managing color combinations per object, scene, and on a global level

Juxtaposition of Opposites

- Busy calm
- warm cool
- rough smooth
- shiny dull
- clean dirty

Mask used to define //

Manipulating the distribution of opposing surface qualities gives life to surfaces

Creating Selection Masks

Use Layers and Layer Masks to for blending layers using selection masks in Photoshop

Juxtaposition of Opposites

Subtle or obvious contrasts can be made with the same underlying mask

Photographic Texture Sources

The most practical way to build a large texture library

Textures as Patterns

Textures are just color and value combinations, the same texture can be used in many different ways

NVIDIA PROPRIETARY

Photographic Reference

Build your reference library continuously with anything you find interesting

Photographic Reference

Even random things that pass you on the road can provide a twisted kernel of inspiration

Using Art Reference

Art reference is valuable far beyond a literal description of how things look

A Good Picture is Worth a Dollar!

SPECIAL ODYSSE

EVENTINES

EVELIDS OF MORNING

A book with 20 pictures that inspire you is worth 20 dollars

EYEWITNESS BOOKS

NVIDIA PROPRIETARY

Draw Inspiration From the Real World

NVIDIA.

Personalizing Your Work

Old saying, "The more personal you make it, the more universal it becomes"

Remember These

- 2. Give it History
- **3.** How Does it Feel?

Moody is a Good Thing

Use mood to steer the emotional content of your art and influence your choices in color, lighting, and textures

Do Everything Well (Except this slide)

- Modeling
- Texturing
- Lighting
- Effects

You cannot fix a deficiency in one area of your work by compensating in another area

Spiders Look Evil...Even Spiders Think So

Nature provides several universally understood cues about an organism

First Impressions

Real people evoke nuanced first impressions, so should everything you build

Words to Know That Begin with 'P'

Prosaic:

Lacking in imagination and spirit; dull

Pedestrian:

Undistinguished; ordinary

Platitudinous:

A trite or banal remark or statement, especially one expressed as if it were original or significant

The American Heritage® Dictionary of the English Language, Fourth Edition

Ensure that none of these words apply to your artwork

Adjectives are Texture Enhancers

Boring	Not Boring!
metal	rough, crusty, roguish METAL
rock	Buttery smooth, sun-warmed rock
cloth	Pestilent shards of mummy wrap

NVIDIA.

Thanks! Questions?

The Source for GPU Programming

developer.nvidia.com

- Latest News
- Developer Events Calendar
- Technical Documentation
- Conference Presentations
- GPU Programming Guide
- Powerful Tools, SDKs and more ...

2VIDIA

Join our FREE registered developer program for early access to NVIDIA drivers, cutting edge tools, online support forums, and more.

developer.nvidia.com

= 2004 NVIDIA Corporation. NVIDIA, and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation. Nalu is = 2004 NVIDIA Corporation. All rights reserved.