Secrets of the
NVIDIA Demo Team

GPW.Jackpot
Las Vegas 2004

Introduction

Eugene d’Eon
NVIDIA Demo Team

Outline

® Our Demo Engine
® Dawn

® Vulcan

* Nalu

® Timburry

® ClearSailing

©2004 NVIDIA Corporation. All rights reserved.

Disclaimers S

® \We love pushing the boundaries back

® \We throw a lot of resources at a single scene

* Not everything we get away with is necessarily
applicable to today’s games

® No ogres, fairies, mermaids or were-wolfs were
harmed in the making of our demos. (but a few
artists were...)

©2004 NVIDIA Corporation. All rights reserved.

Our Engine - NVDemo <Z

® Custom scene description file format (editable
ascii, and binary versions)

® Maya Exporter
* we could support other packages

® OpenGL and DirectX layers
® Have used strictly OpenGL for the last 3 year
® Custom Real-time Adaptive subdivision surface
engine
. Cg

©2004 NVIDIA Corporation. All rights reserved.

Models /(Z

® Polygons (and lines) only

® Custom real-time subdivision surface
tessellation engine within NVDemo

® Subdivides only visible geometry

® Varies complexity based on how close the camera is
e Catmull-Clark or Doo-Sabin
* Works with skinning and Blend-Shapes

® Create normal maps using Melody

® Our artists use Photoshop, DeepPaint 3D,
ZBrush

©2004 NVIDIA Corporation. All rights reserved.

Animation

® Simple transform animation

® Blend shapes
* CPU and GPU animation paths

® Skinning

e CPU and GPU skinning selectable per mesh

® Mesh Keyframes

® Good for small meshes with arbitrary rigs within any
animation package (Ogre)

® \We match Maya’s curve animation exactly
® Procedural animation

©2004 NVIDIA Corporation. All rights reserved.

Physics "%

® Custom physics solutions engineered as
needed (Nalu’s hair & fins, Pirate ship)

® Bake dynamics from Maya or another package

* Fairly limited and non-interactive
® Novodex and Havok physics engines

©2004 NVIDIA Corporation. All rights reserved.

Shading "%

® Extremely flexible shading environment
& Cg

® Hand editable shaders

® Completely customizable lighting per object

® Each shader can selectively reference lights in the
scene, adding new lighting as desired

® Custom textures and procedural inputs

® Color textures can be input to influence any piece of
the lighting equation

® Sliders

©2004 NVIDIA Corporation. All rights reserved.

Lighting "Z

® \We support an arbitrary number of point,
directional and spot lights

® Limited only by performance and number of constant
shader inputs

® Multiple shadow map lights

® Ambient Occlusion
® Pre-baked: XSI, Mentalray in Maya, Custom tools

©2004 NVIDIA Corporation. All rights reserved.

Post Processing <§

® Specify arbitrary render passes within the
NVDemo scene files

® Render from different cameras with different
geometry sets and store results to textures

® Render subsequent passes which refer to those
textures

©2004 NVIDIA Corporation. All rights reserved.

Maya Exporter <Z

® Automatic shader generation

* Limited to single phong, lambert, blinn shading
nodes

* No shade trees supported yet

® Procedural vertex shader generation for
BlendShapes, Skinning and combinations thereof

® Shader “hijacking”
* Use whatever shading you want within Maya

® Every time you export, the correct Cg shader is put in
it's place

® Skinning and Blendshapes defined in Maya

©2004 NVIDIA Corporation. All rights reserved.

RS
\ RVIDIA.
\oy | Sl

Fairy: Intro <Z

® Modeling, texturing and animation done in Maya

® Hair created in Simon Green’s custom hair
combing tool

® Ambient Occlusion (per-vertex data) from
custom raytracing tool

® Motion capture performed by House of Moves

® Mocap data refined in Maya to add hand, feet, and
facial motion, plus tweaking

©2004 NVIDIA Corporation. All rights reserved.

Animation details <Z

® 50 faces

* 30 emotion faces (angry, happy, sad...)
* 20 modifiers (left eyebrow up, right smirk ...)

® Skinning also computed in a vertex shader on
the GPU

® Ambient occlusion computed for each blend-
shape

©2004 NVIDIA Corporation. All rights reserved.

Skin shader inputs

® HDR Cubemap environment map

* Multiple exposure shots in a forest with an IPIX
camera

® Convolution operation computed Diffuse and
Specular Cubemaps

® Fragment Shader texture inputs:

Normalization Cubemap (Procedural, indexed by any vector)

Diffuse Lighting Cubemap (HDRShop, indexed by normal)

Specular Lighting Cubemap (HDRShop, indexed by reflection)

Hilight Lighting Cubemap (Indexed by world eye direction)
Colormap/Specular (Texcoord, rgb = color, a = “front” specular)
Bumpmap/Specular (Texcoord, rgb = bump, a = “side” specular)
BloodColorMap (Texcoord, rgb = blood color)
BloodTransmissionMap (Texcoord)

©2004 NVIDIA Corporation. All rights reserved.

Ambient occlusion

® custom ray-tracing tool (baked once offline)

casts 2048 rays from each of the 180,000 vertices in Dawn’s
mesh in a 180 degree hemisphere

Store the fraction of rays the are un-occluded by Dawn'’s own
geometry. (value from 0.0 to 1.0)

This occlusion value weights the cube-map lighting

A uniform distribution was less noisy than the stochastic
method

Also computed for each blend-shape pose and the values were
blended between the rest pose and the blend-shape values (on
the GPU)

Helps a lot with facial features: nose, ears and mouth.

Subtle effect on the rest of the body: tend not to notice when it
doesn’t change with arm and leg animations.

©2004 NVIDIA Corporation. All rights reserved.

Skin Shader

® Like anything, diddle the knobs until it's pretty...
® QOur fairy shader ended up as:

worldNormal = TangentToWorldMatrix * BumpMap

diffuseLight = DiffuseLightCube(worldNormal)

specularLight = SpecularLightCube(ComputeReflection(worldEyeDir, worldNormal))
passThruLight = HilightCube(worldEyeDir)

bloodAmount = dot (BloodTransmissionMap, BloodTransmissionTerms)

diffuseColor = lerp(ColorMap, BloodColorMap, bloodAmount)
specularColor = lerp(frontSpecularMap, sideSpecularMap, BloodTransmissionVector.z)

return (occlusion*(diffuseLight *diffuseColor + specularLight *specularColor +
passThrulLight))

©2004 NVIDIA Corporation. All rights reserved.

Fire i:n the “ Vulcan”
¢ Demo

Creating realistic flames

® Considered two procedural methods

Fully procedural:
® required little memory
® required thousands of particles
* heavy load on the CPU and GPU
2D image warping
* Warp a fixed flame image to create motion
* hard to integrate with arbitrary free camera motion
* could not integrate smoke effectively
Neither procedural technique was ideal
® Solution: video sprites

©2004 NVIDIA Corporation. All rights reserved.

Flame motion @;

® The video sprites were bound to particles

® Emitters placed on the Vulcan’s back and arms
* could specifiy velocity and density of particles for each emitter

©2004 NVIDIA Corporation. All rights reserved.

Smoke /(2

® Particle system based — static sprites

® rolling motion on the x axis to give appearance of self-
folding

©2004 NVIDIA Corporation. All rights reserved.

Flame Variety — the cheap way

©2004 NVIDIA Corporation. All rights reserved.

Particle motion <§

® Required a fair bit of attention to get looking
good

® All the detail is in the video. Used only a few
hundred particles
® Bind particles to their emitters

* if the emitter moves, the particle moves with it, but
it's influence fades with time

® Too few particles to notice the effects of fluid
dynamics

| — T - —
' ' 1 T I L L L
1 b »
. L] l
r - - - b
¥
- +
[
L b 4
f : J 4 |
[IT =y H = h.“. - H_. 1 (
ik 1 -t
- — ! - . " | .
. 4 s SR B | * .
b =1 | &
. - - F
: . e —
- y
= o _I[
r miiE -—
= TIT e r
! ’ - r
-
‘.
. iy
- \)
- 3 I
- . — e o
: ‘ T _— 1 B
i (. ni
L 1 M
R - ERE “I 1
I _ y g
- 4 " P) t -
i | —H

The Making of
“Nalu”

Hubert Nguyen
Wil"Dennelly
NVIDIA Corporation

Long, Blonde Hair Rendering <Z

©2004 NVIDIA Corporation. All rights reserved.

Long, Blonde Hair Rendering <Z

® | ong
® Requires dynamic animation
® Thus cannot bake lighting
® Requires lots of it
® Thus shading has to be fast

® Blonde
® Three visible highlights, black only has one
® Shadows much more visible

Acknowledgements @Z

® “Light Scattering from Human Hair Fibers

® By Steve Marschner, Henrik Wann
Jensen, Mike Cammarano, Steve Worley,
and Pat Hanrahan

® SIGGRAPH 2003

Paper Models three
Distinct Highlights

® Consider only 3 most
significant terms
R, TT, TRT

©2004 NVIDIA Corporation. All rights reserved.

® Uses path notation
® R is reflection
e T is transmission

TT Highlight

® TT — strong forward scattering component
® |Important for underwater hair

©2004 NVIDIA Corporation. All rights reserved.

Why Opacity Shadow Maps? "%

® Opacity Shadow Maps vs Shadow Maps
“What percentage of light is blocked from here?”
VS.
“Is the light blocked from here?”

® Thus supports AA edges and volumetric
rendering

® Regular shadow maps alias around edges
® Hair is 100% edges!

Results from Kim & Neumann

12

/

RS
-
Ay
% |

No Shadows 15 slices

OSM Creation @;

® Render hairs to 16 slices
® Original implementation : 16 render passes (RP)

® Can use lower hair LOD
2

9

©2004 NVIDIA Corporation. All rights reserved.

NG
2

In the demo...

Hair WITH Shadows Hair WITH Shadows

©2004 NVIDIA Corporation. All rights reserve

Shafts of Light : “God Rays”

Shafts Are Based on a @2
Radial Blur Effect |

' 7 ,f'fl
4 f Radial Blur y ‘
. » _

“God Rays” in the Demo

©2004 NVIDIA Corporation. All rights reserved.

©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry: Overview X

® 4095 individual hairs driven by 762 “control hairs”

® “Control hairs “
» Set of hairs that is really driven by dynamics/collisions

* Based on a particle system, where particles are connected by
distance constraints.

* Grown from a reference geometry

® “Fine hair’ geometry is created by smoothing &
interpolating the “control hair”.

©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry: Layout & Growth @;

® “Control hair” grows from a dedicated geometry

!
!
!
@

©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry: Control Hairs fcz
(left image)

® Physics/dynamics/collisions are performed on
the control hairs

Control Hair Fine Hair

Hair Geometry : Lifecycle (per frame)@%
~

Compute tangents

e

Interpolate

()
.-——.
Tessellate l

/

©2004 NVIDIA Corporation. All rights reserved.

Hair Dynamics

® Based on a particle system

® Uses the “Verlet” integration
® previous frame position to compute velocity

X=2X—X +a-At’

X =X

Reference: “Advanced Character Physics”
Thomas Jakobsen, 10 Interactive, Denmark.

©2004 NVIDIA Corporation. All rights reserved.

Hair Dynamics: Constraints X

® T[wo constraint types:
® Infinite mass: applied to the “hair root” particles. Allows the
head to “pull” the hair.
e Distance constraints: forces “control hair” segments length to
stay constant

\,\
Desired
length

® [f we apply those constraints iteratively, the particles will
globally converge to the desired solution

©2004 NVIDIA Corporation. All rights reserved.

Fins @;

® Fins are a cloth simulation.

* Any mesh can be turned into a cloth by using triangle
edges as constraints

©2004 NVIDIA Corporation. All rights reserved.

Soft Shadows

® Based on
“Texture Space Diffusion” see “GPU Gems’:

® Do the regular shadow mapping computations

® But render in Texture Space
» Using the UV coordinates as Vertex Shader Output Position

® Blur the Texture Space B&W shadow result

® Use the blurred shadow result in place of shadow
compare when rendering the character

©2004 NVIDIA Corporation. All rights reserved.

Soft Shadows: Visualizations @;

.’ﬁ

UV Space rendering

Soft Shadows: Challenges

® Unfold character in UV Space

® Visible Seams were UV
are not continuous

©2004 NVIDIA Corporation. All rights reserved.

Outtakes

T

©2004 NVIDIA Corporation. All rights reserved.

The Making of
“Timbury”

Ryan Geiss

NVIDIA Corporation

-

Full Name: Timbury Entonin Mudgett
Born: Cleveland, England, 1896
Profession: Entomologist

His deal: He's off to do “science.”

©2004 NVIDIA Corporation. All rights reserved.

Technologies & Effects Used <§

® High Dynamic Range (HDR) lighting
® allows very high-precision lighting computations

* Automatic Gain Control: camera responds to bright
light
* look at bright light -> normal objects become silhouettes

* “regular” white tones (like a shirt) actually darken, but
saturated whites (like the sun) stay bright

® Environmental lighting with fp16 cubemaps
® Post-processing “softening” of the image

® Animation: Skinning & Blendshapes

® Adaptive Subdivision Surfaces

® “Soft” (multi-tap) shadows

® Refractive Eyeglasses

©2004 NVIDIA Corporation. All rights reserved.

The Rendering of a Frame <Z

® Render scene to a texture
® Analyze how bright it was
® Make a copy and blur it profusely

® Mix the crisp and blurred together (to soften the
image),

® Darken it (based on light analysis);

® Draw final image to the screen.

Rendering (More Detalil) <Z

® First, render entire scene to a big fp16 texture.

® Render that to a 256x128 texture, sampling 3x3 source
texels per (destination) pixel.

® Four more passes, all on 256x128 fp16 textures:
® blur on x

® blurony
® bluron x
® blurony

® (creates a nice near-gaussian blurred image) (but fast!)

® For final render pass, average this blurred image with
the original crisp image for a nice, soft, cinematic look.

©2004 NVIDIA Corporation. All rights reserved.

¢ ' '

e original blur/x blurly

e ' 'a

* blur/x (2) blurly (2)

©2004 NVIDIA Corporation. All rights reserved.

Automatic Gain Control (AGC) <§

® Mimics what a camcorder or human eye does In
response to too much light: shrinks the aperture.

® The really bright part of our scene is the sun
® about 40 times brighter than most colors in scene
® | ooking around the scene, you can see the
aperture open/close in response to how much
light is coming in.
® | ook at the sun — aperture shrinks, turning most
objects into silhouettes.

AGC Example

-,

) p

(A~

regular lighting

©2004 NVIDIA Corporation. All rights reserved.

looking into the sun

log-sum & tone mapping:

(+) good distrib. of luminances

-

(/)

(-) poor contrast

©2004 NVIDIA Corporation. All rights reserved.

4

[inear sum &

simple scaling: @D\a

(-) poor distrib. of luminances
— - . &

n

- .
=)"'

-

L™

(+) good contrast

Adaptive Subdivision Surfaces "%

® Work by Michael Bunnell of Nvidia

® Goal: adaptively subdivide polygons to keep meshes
looking good & drawing efficiently.

* add polygons as you zoom in, as an elbow bends (increasing
curvature), etc.

® Original mesh: prefer quads, but triangles work too

* should be low-resolution, but still just high enough to describe
essential features of the model (...see next slide).

® At startup, convert it entirely to Catmull-Clark patches
(quads).

® Goal: each frame, adaptively subdivide polygons until
the screen-space “error” is <= 1.0 pixels.

©2004 NVIDIA Corporation. All rights reserved.

original control meshes for arm, hand

original control mesh for head

©2004 NVIDIA Corporation. All rights reserved.

Adaptive Subdivision Surfaces (2) 62

® The “error’ is how far the edges are from the
ideal, smoothed surface.

® Specifically, the error is the distance from the center
of each edge, to the center of the ideal curved edge,
iIn world space.

® Project that distance value into screen space — this is
the error, in pixels.
® |[f two opposite sides of a quad have high error,
tessellate along those edges. likewise for the
other two edges.

® For things like cylinders or arms, produces
tessellation in the direction where it's needed most.

©2004 NVIDIA Corporation. All rights reserved.

Outtakes

©2004 NVIDIA Corporation. All rights reserved.

Outtakes

©2004 NVIDIA Corporation. All rights reserved.

The Making of
“Clear Salling”

Joe Demers
NVIDIA Corporation

Ocean Simulation and Rendering <%

® QOur goal was to create a realistic looking ocean
with choppy waves and a ship sailing on it

® This required us to:
® simulate choppy ocean waves
® tessellate the ocean surface
® render ocean water (and foam)
® calculate physics for the ship from the waves
® render spray where the ship meets the waves

©2004 NVIDIA Corporation. All rights reserved.

©2004 NVIDIA Corporation. All rights reserved.

Ocean Simulation <%

The two common models in high-end ocean simulation
are the Gerstner wave model and FFT-based statistical
models

We chose the Gerstner wave model for its simplicity
and non-periodicity

The Gerstner wave model moves points on the surface
of the ocean in circles parallel to the direction of travel
of the wave, allowing for ‘cusping’ as the wave height
Increases

We found 45 Gerstner waves on a 150x150 grid gave
us the best quality/performance tradeoff for the Clear
Sailing demo

©2004 NVIDIA Corporation. All rights reserved.

Ocean Tessellation <%

® Most previous techniques create regular grids of
vertices in world space, and either tile the grid,
or apply dense fog after the grid, or both

® \Ve tessellated in eye space, mapping a regular
grid to the intersection of the ocean plane and
the camera viewport

® This allows us to only simulate and render
geometry that is seen, and tessellate more finely
In the foreground than the background

Ocean Tessellation

Screen-filling tessellation

Freezing the geometry and pulling the
camera back allows us to see the
actual geometry being drawn

©2004 NVIDIA Corporation. All rights reserved.

K2

Ocean Rendering

® Rendering deep water involves multiple sources of
lighting
* sunlight (directional light) reflected off the surface
* sky light (cubemap texture light) reflected off the surface
® scattered light (constant term) from below the water surface

® \We can blend between the reflected and scattered terms
using a simple fresnel function

® Unfortunately, fresnel exponents that look good along
the surface tend to wash out the ocean when looking
straight down, so a fairly low exponent works best when
all viewing angles are possible

©2004 NVIDIA Corporation. All rights reserved.

Reflecting the Ship <2

® The ship occludes reflected light in two ways
® sunlight is occluded by using z-buffer shadows

® skylight is occluded by ray casting into a 2d
geometry imposter for the ship

® A little per-pixel noise breaks up the reflection
and gives the illusion of higher frequency waves

©2004 NVIDIA Corporation. All rights reserved.

Reflecting the Ship

©2004 NVIDIA Corporation. All rights reserved.

Rendering Foam <2

® Foam is effectively a semi-transparent layer
above the water surface

® Foam is generated (i.e. the foam layer is made
opaque) where waves cusp, and also along the
wake lines behind the ship

® \We used render to texture with some additive
blending to allow the foam to fade off over time

Rendering Foam

D NETD

©2004 NVIDIA Corporation. All rights reserved.

Ship Physics <z

The ship is thrown about by the waves, but doesn't
affect the water

The ship moves up and down, and pitches and rolls, but
doesn’t slide along the ocean surface or turn left or right

Above the water, the ship is affected by gravity and wind

Below the water, the ship is affected by friction and a
buoyancy proportional to the amount of water displaced

The physics requires a lot of tuning/tweaking to get it to
look right, but having tuning sliders also means you can
have lots of fun

* the ship moves like a toy boat if you increase the wave speed
and decrease the scale that physics is computed at (effectively
scaling the universe)

©2004 NVIDIA Corporation. All rights reserved.

Ship Lighting S |

® The ship is lit from 4 light sources
® direct sunlight, shadowed via z-buffer shadows
* sky lighting, via diffuse and specular cubemaps
* ambient light, baked global illumination from the sky
® reflected light, a directional bluish light from below

® A diffuse color map gives the ship color

® Bump maps and specular maps give the ship
more detail and give the appearance of more
geometric complexity than there really is

©2004 NVIDIA Corporation. All rights reserved.

Ropes & Salls <%

The salils are two-sided, and softly glow when the sun is
behind them

It's very important for the facing-the-sun and away-from-
sun shaders match when the normal is perpendicular to

the sun, otherwise you'll see seams

Ropes are drawn using lines, which change thickness
depending upon distance from the viewer

You can get a nice antialiasing effect by fading their
transparency when the line thickness falls below 1 pixel

Using alpha-to-coverage means you don’t even need to
sort!

©2004 NVIDIA Corporation. All rights reserved.

Ropes & Salls

i
Th.
(1]
Al
, U

O
LBL T B oahoh LR WA W
VoW oy Lwm RN

-
Mad 1l imy m
i B \ W s wn wy AR

R T BT

©2004 NVIDIA Corporation. All rights reserved.

Splashes and Spray

® Splashes

* emit particles when cannonballs hit water

* render large particles with a texture of many small droplets
® Spray

* when the ribs (or keel) of the ship move down through the water
surface, emit particles between those ribs

* faster motion generates more spray thrown further (higher)

©2004 NVIDIA Corporation. All rights reserved.

Splashes and Spray

©2004 NVIDIA Corporation. All rights reserved.

Smoke and Splinters

® Smoke

* when the ship’s cannons fire, emit fairly large particles along
the path of fire with animated textures (using a 3d texture)

* smoke particles start moving very quickly, but then dampen
their motion almost immediately, and slowly grow and fade

* smoke particles "lit" by darkening lower half - cheesy, but looks
good

® Splinters
* when cannonballs hit the ship, generate lots of little triangles
* move and tumble them with simple (but fast) verlet dynamics

©2004 NVIDIA Corporation. All rights reserved.

Smoke and Splinters

©2004 NVIDIA Corporation. All rights reserved.

Post Processing <%

® HDR-style glow
® using a simple 8-bit single channel hdr effect
® render overbrightness into the alpha channel
® blur the alpha and add it back into the scene

® A little fog helps integrate the water, sky and
boat together into the scene

©2004 NVIDIA Corporation. All rights reserved.

Post Processing

©2004 NVIDIA Corporation. All rights reserved.

Questions?

©2004 NVIDIA Corporation. All rights reserved.

