
Secrets of the
NVIDIA Demo Team

GPU Jackpot
Las Vegas 2004

Introduction

Eugene d’Eon
NVIDIA Demo Team

©2004 NVIDIA Corporation. All rights reserved.

Outline

Our Demo Engine
Dawn
Vulcan
Nalu
Timburry
ClearSailing

©2004 NVIDIA Corporation. All rights reserved.

Disclaimers

We love pushing the boundaries back
We throw a lot of resources at a single scene

Not everything we get away with is necessarily
applicable to today’s games

No ogres, fairies, mermaids or were-wolfs were
harmed in the making of our demos. (but a few
artists were…)

©2004 NVIDIA Corporation. All rights reserved.

Our Engine - NVDemo

Custom scene description file format (editable
ascii, and binary versions)
Maya Exporter

we could support other packages
OpenGL and DirectX layers

Have used strictly OpenGL for the last 3 year
Custom Real-time Adaptive subdivision surface
engine
Cg

©2004 NVIDIA Corporation. All rights reserved.

Models

Polygons (and lines) only
Custom real-time subdivision surface
tessellation engine within NVDemo

Subdivides only visible geometry
Varies complexity based on how close the camera is
Catmull-Clark or Doo-Sabin
Works with skinning and Blend-Shapes

Create normal maps using Melody
Our artists use Photoshop, DeepPaint 3D,
ZBrush

©2004 NVIDIA Corporation. All rights reserved.

Animation

Simple transform animation
Blend shapes

CPU and GPU animation paths
Skinning

CPU and GPU skinning selectable per mesh
Mesh Keyframes

Good for small meshes with arbitrary rigs within any
animation package (Ogre)

We match Maya’s curve animation exactly
Procedural animation

©2004 NVIDIA Corporation. All rights reserved.

Physics

Custom physics solutions engineered as
needed (Nalu’s hair & fins, Pirate ship)
Bake dynamics from Maya or another package

Fairly limited and non-interactive
Novodex and Havok physics engines

©2004 NVIDIA Corporation. All rights reserved.

Shading

Extremely flexible shading environment
Cg

Hand editable shaders
Completely customizable lighting per object

Each shader can selectively reference lights in the
scene, adding new lighting as desired

Custom textures and procedural inputs
Color textures can be input to influence any piece of
the lighting equation

Sliders

©2004 NVIDIA Corporation. All rights reserved.

Lighting

We support an arbitrary number of point,
directional and spot lights

Limited only by performance and number of constant
shader inputs

Multiple shadow map lights
Ambient Occlusion

Pre-baked: XSI, Mentalray in Maya, Custom tools

©2004 NVIDIA Corporation. All rights reserved.

Post Processing

Specify arbitrary render passes within the
NVDemo scene files

Render from different cameras with different
geometry sets and store results to textures
Render subsequent passes which refer to those
textures

©2004 NVIDIA Corporation. All rights reserved.

Maya Exporter

Automatic shader generation
Limited to single phong, lambert, blinn shading
nodes
No shade trees supported yet
Procedural vertex shader generation for
BlendShapes, Skinning and combinations thereof

Shader “hijacking”
Use whatever shading you want within Maya
Every time you export, the correct Cg shader is put in
it’s place

Skinning and Blendshapes defined in Maya

The Making of The Making of
““DawnDawn””

©2004 NVIDIA Corporation. All rights reserved.

Fairy: Intro

Modeling, texturing and animation done in Maya
Hair created in Simon Green’s custom hair
combing tool
Ambient Occlusion (per-vertex data) from
custom raytracing tool
Motion capture performed by House of Moves

Mocap data refined in Maya to add hand, feet, and
facial motion, plus tweaking

©2004 NVIDIA Corporation. All rights reserved.

Animation details

50 faces
30 emotion faces (angry, happy, sad…)
20 modifiers (left eyebrow up, right smirk …)

Skinning also computed in a vertex shader on
the GPU
Ambient occlusion computed for each blend-
shape

©2004 NVIDIA Corporation. All rights reserved.

Skin shader inputs

HDR Cubemap environment map
Multiple exposure shots in a forest with an IPIX
camera
Convolution operation computed Diffuse and
Specular Cubemaps

Fragment Shader texture inputs:
Normalization Cubemap (Procedural, indexed by any vector)
Diffuse Lighting Cubemap (HDRShop, indexed by normal)
Specular Lighting Cubemap (HDRShop, indexed by reflection)
Hilight Lighting Cubemap (Indexed by world eye direction)
Colormap/Specular (Texcoord, rgb = color, a = “front” specular)
Bumpmap/Specular (Texcoord, rgb = bump, a = “side” specular)
BloodColorMap (Texcoord, rgb = blood color)
BloodTransmissionMap (Texcoord)

©2004 NVIDIA Corporation. All rights reserved.

Ambient occlusion

custom ray-tracing tool (baked once offline)
casts 2048 rays from each of the 180,000 vertices in Dawn’s
mesh in a 180 degree hemisphere
Store the fraction of rays the are un-occluded by Dawn’s own
geometry. (value from 0.0 to 1.0)
This occlusion value weights the cube-map lighting
A uniform distribution was less noisy than the stochastic
method
Also computed for each blend-shape pose and the values were
blended between the rest pose and the blend-shape values (on
the GPU)
Helps a lot with facial features: nose, ears and mouth.
Subtle effect on the rest of the body: tend not to notice when it
doesn’t change with arm and leg animations.

©2004 NVIDIA Corporation. All rights reserved.

Skin Shader

Like anything, diddle the knobs until it’s pretty…
Our fairy shader ended up as:

worldNormal = TangentToWorldMatrix * BumpMap

diffuseLight = DiffuseLightCube(worldNormal)
specularLight = SpecularLightCube(ComputeReflection(worldEyeDir, worldNormal))
passThruLight = HilightCube(worldEyeDir)

bloodAmount = dot (BloodTransmissionMap, BloodTransmissionTerms)

diffuseColor = lerp(ColorMap, BloodColorMap, bloodAmount)
specularColor = lerp(frontSpecularMap, sideSpecularMap, BloodTransmissionVector.z)

return (occlusion*(diffuseLight *diffuseColor + specularLight *specularColor +
passThruLight))

Fire in the “Vulcan”
Demo

©2004 NVIDIA Corporation. All rights reserved.

Creating realistic flames

Considered two procedural methods
Fully procedural:

required little memory
required thousands of particles
heavy load on the CPU and GPU

2D image warping
Warp a fixed flame image to create motion
hard to integrate with arbitrary free camera motion
could not integrate smoke effectively

Neither procedural technique was ideal
Solution: video sprites

©2004 NVIDIA Corporation. All rights reserved.

Flame motion
The video sprites were bound to particles
Emitters placed on the Vulcan’s back and arms

could specifiy velocity and density of particles for each emitter

©2004 NVIDIA Corporation. All rights reserved.

Smoke

Particle system based – static sprites
rolling motion on the x axis to give appearance of self-
folding

©2004 NVIDIA Corporation. All rights reserved.

Flame Variety – the cheap way

©2004 NVIDIA Corporation. All rights reserved.

Particle motion

Required a fair bit of attention to get looking
good
All the detail is in the video. Used only a few
hundred particles
Bind particles to their emitters

if the emitter moves, the particle moves with it, but
it’s influence fades with time

Too few particles to notice the effects of fluid
dynamics

©2004 NVIDIA Corporation. All rights reserved.

The Making of
“Nalu”

Hubert Nguyen
Will Donnelly

NVIDIA Corporation

©2004 NVIDIA Corporation. All rights reserved.

Long, Blonde Hair Rendering

©2004 NVIDIA Corporation. All rights reserved.

Long, Blonde Hair Rendering

Long
Requires dynamic animation

Thus cannot bake lighting
Requires lots of it

Thus shading has to be fast

Blonde
Three visible highlights, black only has one
Shadows much more visible

©2004 NVIDIA Corporation. All rights reserved.

Acknowledgements

“Light Scattering from Human Hair Fibers”

By Steve Marschner, Henrik Wann
Jensen, Mike Cammarano, Steve Worley,
and Pat Hanrahan

SIGGRAPH 2003

©2004 NVIDIA Corporation. All rights reserved.

Paper Models three
Distinct Highlights

Uses path notation
R is reflection
T is transmission

Consider only 3 most
significant terms

R, TT, TRT

©2004 NVIDIA Corporation. All rights reserved.

TT Highlight

TT – strong forward scattering component
Important for underwater hair

©2004 NVIDIA Corporation. All rights reserved.

Why Opacity Shadow Maps?

Opacity Shadow Maps vs Shadow Maps
“What percentage of light is blocked from here?”

vs.
“Is the light blocked from here?”

Thus supports AA edges and volumetric
rendering

Regular shadow maps alias around edges
Hair is 100% edges!

©2004 NVIDIA Corporation. All rights reserved.

Results from Kim & Neumann

No Shadows 15 slices

©2004 NVIDIA Corporation. All rights reserved.

OSM Creation

Render hairs to 16 slices
Original implementation : 16 render passes (RP)

Can use lower hair LOD
1 2 3

4 5 6

… up to 16

©2004 NVIDIA Corporation. All rights reserved.

In the demo…

Hair WITHOUT Shadows Hair WITH Shadows

©2004 NVIDIA Corporation. All rights reserved.

Shafts of Light : “God Rays”

©2004 NVIDIA Corporation. All rights reserved.

Shafts Are Based on a
Radial Blur Effect

Radial Blur

©2004 NVIDIA Corporation. All rights reserved.

“God Rays” in the Demo

©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry & Dynamics

©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry: Overview
4095 individual hairs driven by 762 “control hairs”

“Control hairs “
Set of hairs that is really driven by dynamics/collisions
Based on a particle system, where particles are connected by
distance constraints.
Grown from a reference geometry

“Fine hair” geometry is created by smoothing &
interpolating the “control hair”.

©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry: Layout & Growth

“Control hair” grows from a dedicated geometry

©2004 NVIDIA Corporation. All rights reserved.

Hair Geometry: Control Hairs
(left image)

Physics/dynamics/collisions are performed on
the control hairs

Control Hair Fine Hair

©2004 NVIDIA Corporation. All rights reserved.

Compute tangents

Tessellate

Interpolate

3D API

Hair Geometry : Lifecycle (per frame)
Dynamics

©2004 NVIDIA Corporation. All rights reserved.

Hair Dynamics

Based on a particle system
Uses the “Verlet” integration

previous frame position to compute velocity

.
2'

*

2*

xx
axxx

=

∆⋅+−= t

Reference: “Advanced Character Physics”
Thomas Jakobsen, IO Interactive, Denmark.

©2004 NVIDIA Corporation. All rights reserved.

Hair Dynamics: Constraints

Two constraint types:
Infinite mass: applied to the “hair root” particles. Allows the
head to “pull” the hair.
Distance constraints: forces “control hair” segments length to
stay constant

.

Desired
length

Too long,
contract

Too short,
expand

If we apply those constraints iteratively, the particles will
globally converge to the desired solution

©2004 NVIDIA Corporation. All rights reserved.

Fins

Fins are a cloth simulation.
Any mesh can be turned into a cloth by using triangle
edges as constraints

©2004 NVIDIA Corporation. All rights reserved.

Soft Shadows

Based on
“Texture Space Diffusion” see “GPU Gems”:

Do the regular shadow mapping computations
But render in Texture Space

Using the UV coordinates as Vertex Shader Output Position

Blur the Texture Space B&W shadow result
Use the blurred shadow result in place of shadow
compare when rendering the character

©2004 NVIDIA Corporation. All rights reserved.

Soft Shadows: Visualizations

UV Space rendering

©2004 NVIDIA Corporation. All rights reserved.

Soft Shadows: Challenges
Unfold character in UV Space
Visible Seams were UV
are not continuous

©2004 NVIDIA Corporation. All rights reserved.

Outtakes

The Making of
“Timbury”

Ryan Geiss

NVIDIA Corporation

©2004 NVIDIA Corporation. All rights reserved.

Full Name: Timbury Entonin Mudgett
Born: Cleveland, England, 1896
Profession: Entomologist
His deal: He’s off to do “science.”

©2004 NVIDIA Corporation. All rights reserved.

Technologies & Effects Used

High Dynamic Range (HDR) lighting
allows very high-precision lighting computations
Automatic Gain Control: camera responds to bright
light

look at bright light -> normal objects become silhouettes
“regular” white tones (like a shirt) actually darken, but
saturated whites (like the sun) stay bright

Environmental lighting with fp16 cubemaps
Post-processing “softening” of the image
Animation: Skinning & Blendshapes
Adaptive Subdivision Surfaces
“Soft” (multi-tap) shadows
Refractive Eyeglasses

©2004 NVIDIA Corporation. All rights reserved.

The Rendering of a Frame

Render scene to a texture
Analyze how bright it was
Make a copy and blur it profusely
Mix the crisp and blurred together (to soften the
image);
Darken it (based on light analysis);
Draw final image to the screen.

©2004 NVIDIA Corporation. All rights reserved.

Rendering (More Detail)

First, render entire scene to a big fp16 texture.
Render that to a 256x128 texture, sampling 3x3 source
texels per (destination) pixel.
Four more passes, all on 256x128 fp16 textures:

blur on x
blur on y
blur on x
blur on y

(creates a nice near-gaussian blurred image) (but fast!)
For final render pass, average this blurred image with
the original crisp image for a nice, soft, cinematic look.

©2004 NVIDIA Corporation. All rights reserved.

• original blur/x blur/y

• blur/x (2) blur/y (2) mixed

©2004 NVIDIA Corporation. All rights reserved.

Automatic Gain Control (AGC)

Mimics what a camcorder or human eye does in
response to too much light: shrinks the aperture.
The really bright part of our scene is the sun

about 40 times brighter than most colors in scene
Looking around the scene, you can see the
aperture open/close in response to how much
light is coming in.
Look at the sun → aperture shrinks, turning most
objects into silhouettes.

©2004 NVIDIA Corporation. All rights reserved.

AGC Example

regular lighting looking into the sun

©2004 NVIDIA Corporation. All rights reserved.

log-sum & tone mapping: linear sum &
simple scaling:

(-) poor contrast (+) good contrast

(+) good distrib. of luminances (-) poor distrib. of luminances

©2004 NVIDIA Corporation. All rights reserved.

Adaptive Subdivision Surfaces

Work by Michael Bunnell of Nvidia
Goal: adaptively subdivide polygons to keep meshes
looking good & drawing efficiently.

add polygons as you zoom in, as an elbow bends (increasing
curvature), etc.

Original mesh: prefer quads, but triangles work too
should be low-resolution, but still just high enough to describe
essential features of the model (...see next slide).

At startup, convert it entirely to Catmull-Clark patches
(quads).
Goal: each frame, adaptively subdivide polygons until
the screen-space “error” is <= 1.0 pixels.

©2004 NVIDIA Corporation. All rights reserved.

original control meshes for arm, hand

original control mesh for head

©2004 NVIDIA Corporation. All rights reserved.

Adaptive Subdivision Surfaces (2)

The “error” is how far the edges are from the
ideal, smoothed surface.

Specifically, the error is the distance from the center
of each edge, to the center of the ideal curved edge,
in world space.
Project that distance value into screen space – this is
the error, in pixels.

If two opposite sides of a quad have high error,
tessellate along those edges. likewise for the
other two edges.

For things like cylinders or arms, produces
tessellation in the direction where it’s needed most.

©2004 NVIDIA Corporation. All rights reserved.

Outtakes

©2004 NVIDIA Corporation. All rights reserved.

Outtakes

The Making of
“Clear Sailing”

Joe Demers
NVIDIA Corporation

©2004 NVIDIA Corporation. All rights reserved.

Ocean Simulation and Rendering

Our goal was to create a realistic looking ocean
with choppy waves and a ship sailing on it
This required us to:

simulate choppy ocean waves
tessellate the ocean surface
render ocean water (and foam)
calculate physics for the ship from the waves
render spray where the ship meets the waves

©2004 NVIDIA Corporation. All rights reserved.

Ocean Simulation and Rendering

©2004 NVIDIA Corporation. All rights reserved.

Ocean Simulation

The two common models in high-end ocean simulation
are the Gerstner wave model and FFT-based statistical
models
We chose the Gerstner wave model for its simplicity
and non-periodicity
The Gerstner wave model moves points on the surface
of the ocean in circles parallel to the direction of travel
of the wave, allowing for ‘cusping’ as the wave height
increases
We found 45 Gerstner waves on a 150x150 grid gave
us the best quality/performance tradeoff for the Clear
Sailing demo

©2004 NVIDIA Corporation. All rights reserved.

Ocean Tessellation

Most previous techniques create regular grids of
vertices in world space, and either tile the grid,
or apply dense fog after the grid, or both
We tessellated in eye space, mapping a regular
grid to the intersection of the ocean plane and
the camera viewport
This allows us to only simulate and render
geometry that is seen, and tessellate more finely
in the foreground than the background

©2004 NVIDIA Corporation. All rights reserved.

Ocean Tessellation

Freezing the geometry and pulling the
camera back allows us to see the
actual geometry being drawn

Screen-filling tessellation Zoom out to see tessellation

©2004 NVIDIA Corporation. All rights reserved.

Ocean Rendering

Rendering deep water involves multiple sources of
lighting

sunlight (directional light) reflected off the surface
sky light (cubemap texture light) reflected off the surface
scattered light (constant term) from below the water surface

We can blend between the reflected and scattered terms
using a simple fresnel function
Unfortunately, fresnel exponents that look good along
the surface tend to wash out the ocean when looking
straight down, so a fairly low exponent works best when
all viewing angles are possible

©2004 NVIDIA Corporation. All rights reserved.

Reflecting the Ship

The ship occludes reflected light in two ways
sunlight is occluded by using z-buffer shadows
skylight is occluded by ray casting into a 2d
geometry imposter for the ship

A little per-pixel noise breaks up the reflection
and gives the illusion of higher frequency waves

©2004 NVIDIA Corporation. All rights reserved.

Reflecting the Ship

©2004 NVIDIA Corporation. All rights reserved.

Rendering Foam

Foam is effectively a semi-transparent layer
above the water surface
Foam is generated (i.e. the foam layer is made
opaque) where waves cusp, and also along the
wake lines behind the ship
We used render to texture with some additive
blending to allow the foam to fade off over time

©2004 NVIDIA Corporation. All rights reserved.

Rendering Foam

©2004 NVIDIA Corporation. All rights reserved.

Ship Physics

The ship is thrown about by the waves, but doesn’t
affect the water
The ship moves up and down, and pitches and rolls, but
doesn’t slide along the ocean surface or turn left or right
Above the water, the ship is affected by gravity and wind
Below the water, the ship is affected by friction and a
buoyancy proportional to the amount of water displaced
The physics requires a lot of tuning/tweaking to get it to
look right, but having tuning sliders also means you can
have lots of fun

the ship moves like a toy boat if you increase the wave speed
and decrease the scale that physics is computed at (effectively
scaling the universe)

©2004 NVIDIA Corporation. All rights reserved.

Ship Lighting

The ship is lit from 4 light sources
direct sunlight, shadowed via z-buffer shadows
sky lighting, via diffuse and specular cubemaps
ambient light, baked global illumination from the sky
reflected light, a directional bluish light from below

A diffuse color map gives the ship color
Bump maps and specular maps give the ship
more detail and give the appearance of more
geometric complexity than there really is

©2004 NVIDIA Corporation. All rights reserved.

Ropes & Sails

The sails are two-sided, and softly glow when the sun is
behind them
It’s very important for the facing-the-sun and away-from-
sun shaders match when the normal is perpendicular to
the sun, otherwise you’ll see seams
Ropes are drawn using lines, which change thickness
depending upon distance from the viewer
You can get a nice antialiasing effect by fading their
transparency when the line thickness falls below 1 pixel
Using alpha-to-coverage means you don’t even need to
sort!

©2004 NVIDIA Corporation. All rights reserved.

Ropes & Sails

©2004 NVIDIA Corporation. All rights reserved.

Splashes and Spray

Splashes
emit particles when cannonballs hit water
render large particles with a texture of many small droplets

Spray
when the ribs (or keel) of the ship move down through the water
surface, emit particles between those ribs
faster motion generates more spray thrown further (higher)

©2004 NVIDIA Corporation. All rights reserved.

Splashes and Spray

©2004 NVIDIA Corporation. All rights reserved.

Smoke and Splinters

Smoke
when the ship’s cannons fire, emit fairly large particles along
the path of fire with animated textures (using a 3d texture)
smoke particles start moving very quickly, but then dampen
their motion almost immediately, and slowly grow and fade
smoke particles "lit" by darkening lower half - cheesy, but looks
good

Splinters
when cannonballs hit the ship, generate lots of little triangles
move and tumble them with simple (but fast) verlet dynamics

©2004 NVIDIA Corporation. All rights reserved.

Smoke and Splinters

©2004 NVIDIA Corporation. All rights reserved.

Post Processing

HDR-style glow
using a simple 8-bit single channel hdr effect
render overbrightness into the alpha channel
blur the alpha and add it back into the scene

A little fog helps integrate the water, sky and
boat together into the scene

©2004 NVIDIA Corporation. All rights reserved.

Post Processing

©2004 NVIDIA Corporation. All rights reserved.

Questions?

