
CEDEC 2004
GoForce 3D: Coming to a Pixel Near You

NVIDIA Actively Developing
Handheld Solutions

Exciting and Growing Market

Fully Committed to developing World Class
graphics products for the mobile

Already in active development

Why Make Games For Handheld
Devices?

Emerging Market
Ubiquitous Mobile Devices

500+ Million Units Worldwide
3 billion dollars in ringtone downloads
45 Million of 60 Million gamers have used handset for
games

Casual Gamers and Enthusiasts

Why Make Games For Handheld
Devices?

Technological Innovation raising the bar
Real-time 3D
Wireless Connectivity

Worldwide Potential to Make Money

Challenges...

Limited System Resources

Non-Homogenous Development Space
Diversity

... and more challenges

Publishing and Distribution

Digital Rights Management

Unique Market Dynamics
Service Providers and ARPU
Increasing focus on DATA and Mobile Entertainment

Introducing... GoForce 3D

Licensable 3D Core for Mobile Devices

OpenGL ES / Direct3Dm compliant
Low Power Architecture
Integrated Unified SRAM
Up to VGA resolution
Modern Feature Set

Targeted to run complex games at 30+Hz

GoForce 3D Feature Set

Geometry Engine (float and fixed point)
16-bit color w/ 16-bit Z
40-bit color (internal)
Multi-texturing w/ up to 4 simultaneous textures
Bilinear / Trilinear Filtering
Flexible Texture Formats

4-bit/8-bit palletized, DXT1 compression, more
Fully Perspective Correct (color included)
Sub-Pixel Accuracy
Per-Pixel Fog
Alpha Blending

Traditional Architecture
Setup/Raster

Texture Addr

Texture

Fog

AlphaTest

DepthTest

AlphaBlend

Mem Write

Deep pipeline (200 stages)

Always have to go through all stages

Optimized for OpenGL-style fast texturing

Pipelines always clocking

Fast, but too much power consumption

~750mW per 100M pixel/sec

(~200 pipe stages)

A Completely New Architecture
for Ultra Low Power

Transform/Setup

Raster

Texture

Fragment ALU

Data Write

Flexible Fragment ALU

Raster – fragment generation and loop
management

Pipelines only trigger on activity

Low Power

< 50 mW per 100M pixel/sec

During actual gameplay

Very scalable architecture(~50 pipe stages)

Why Geometry?
Current state of Handheld Processor

Arm 7/Arm 9/+
Clock rates: 50Mhz – 400Mhz
No floating point
Host bus is shared with dram bus
Limited system memory

Move as much processing onto the GPU
More power efficient
Better performance

Reduced pipeline for power savings

Depth Complexity = 1
Textured
No blend
No Z

Depth Complexity = 4
1. Textured tri, no blend
2. Textured tri, no blend with Z
3. Textured tri, no blend with Z
4. Textured tri, blend, with Z

Simple scenes don’t require
fog, blending, alpha test, and
even depth comparison for
every triangle.

Rich 2D Features
Solid color fill
Source copy
Alpha blending

Fixed alpha value for all pixels
16x16 Pattern fill
Line draw

Sub-Pixel accurate
Clipping & Transparency

Inside or outside clipping supported

nPower Technology

Automatic power-down of unused pipelines
Normal, standby, and sleep modes Architecture-
level power management
Multiple Levels of Advanced Power Management
Low-Voltage operation

Java Programming Model

JSR 184 JSR 239

OpenGL-ES EGL

GoForce 3D Hardware

App

Native Programming Model

OpenGL-ES EGL

GoForce 3D Hardware

D3Dm

App

Middleware Programming Model

OpenGL-ES EGL

GoForce 3D Hardware

A
ud

io

Middleware

N
et

w
or

ki
ng

App

O
th

er

OpenGL ES 1.0 vs. OpenGL

Roughly OpenGL 1.3
Removes

Display List
glBegin/glEnd
Texgen
Environment Maps
Evaluators

Adds
Fixed Point type/entry points
Byte type more universal

OpenGL ES 1.1 vs. OpenGL

Based on OpenGL 1.5 spec.

Adds functionality to ES 1.0
Vertex Buffer Objects
Automatic Mipmap Generation
Enhanced Texture Combine Operations
User-defined clip planes
Point Sprites and Point Sprite arrays
Queries of dynamic states

Direct3Dm

Not public yet
Working w/ Microsoft

NVIDIA Handheld SDK

Demos
OpenGL ES (101)
Feature Demos

Porting layer
OpenGL-ES to OpenGL
Runs on PC
Get developers new to embedded up and running

NVIDIA HHDK (cont.)

.NET Demo Wizard
Builds skeleton app w/ both x86 Windows and
ARM Linux targets

Tools and Libraries
DXT1 compression tools
DXT1 image loading library
Fixed point math library – optimized ARM math

Documentation – GoForce 3D Overview

Development Kits

Coming soon!

Register for NVIDIA Handheld Developer Program
http://developer.nvidia.com

Email
handset-dev@nvidia.com

Case Study: Bubble

Originally authored for GeForce 256 desktop GPU
(circa 2000)

Deforming, Reflecting Surface
Spring-based physics
Environment mapping

Ported to GoForce 3D
Goal: Understand the feasibility of implementing
native graphics apps on GoForce 3D

Case Study: Bubble

Demo

Bubble: Overview

Sphere Model – Set of Vertices and Edges
Set of forces

Impulse “Poke” Force
“Homeward” Force
Elasticity “Edge” Force
Outward “Swelling” Force

Forces influence – velocity, position, and normal

Bubble: Deformation

Simulation in Floating Point – VERY slow
Profiler to identify problem areas
Switched to integer math (s15.16)

Fixed Point – range vs. precision tradeoff
Alternate formats or rescaling

Integer bits
Fractional bits

Bubble: Environment Mapping

Original used Cube Mapping and Reflection Texgen
No support for either in ES 1.0

Dual-Paraboloid Mapping w/ Manual Texture
Coordinate Generation (fixed point)

Bubble: Texture Memory Usage

Each scene uses 8 textures
2 – 256x256 textures (mip-mapped)
6 – 256x256 textures (non-mipmapped)

R5G6B5 – 16-bits/texel = 786432 + 349524 = 1.08Mb
DXT1 – 4-bits/texel = 196608 + 87381 = 0.27Mb

DXT1 is high quality and 25% the cost of R5G6B5

Bubble: Quality

Bilinear Trilinear
Trilinear w/
LOD clamp

High frequency High frequency near
silhouette

Best Quality *

* Using SGIS_texture_lod

NVIDIA 3D Quality Demos

Running on OpenGL-ES
wrapper for x86/Windows

Emulates what GoForce 3D
hw handset graphics can
generate.

NVIDIA Developer Site

Register for NVIDIA Handheld Developer Program

developer.nvidia.com

Questions?

Handset-Dev@nvidia.com

Bubble: How it Works

Sphere Model – Set of Vertices and Edges

Vertex
Position
Normal
Velocity
Average Velocity – average “neighborhood” velocity
Home Position – vertex “home” resting position

Edge
Pair of vertex indices
Home Length – initial edge length

Bubble: How it Works

Deformation – apply forces to update model

Vertex
Position
Normal
Velocity
Average Velocity
Home Position

Edge
Pair of vertex indices
Home Length

Multi-Step Process...

Bubble: Deformation

Step 1 – Updating the Velocities

Adjust based on spring forces
“Homeward” force
“Outward” force
“Edge” force (i.e. elasticity)

foreach vertex
vel += HomeForce(home – pos)
vel += OutwardForce(normal)

foreach edge
vert[v0].vel += EdgeForce(vert[v0].pos – vert[v1].pos)
vert[v1].vel += EdgeForce(vert[v1].pos – vert[v0].pos)

Bubble: Deformation

Step 2 – Filter Velocities
Compute Average Velocities
Apply Filter – vel = 0.9 * vel + 0.1 * avg

Step 3 – Update Positions
Step 4 – Apply Drag to Velocities

Step 5 – Compute Normals
Iterate over all triangles, use cross-product of edges

Bubble: Poking

Requires Instantaneous velocity update
Find closest point to “pick ray”

Eye Pos: (0,0,0)
Pick Ray: (screen_x,screen_y, -near)

Apply inward pulse force based on distance

p.vel += PulseForce(distance(closest.pos, p.pos))

where PulseForce(d) = k1 * Pow(d, -20)

Bubble: Deformation (revisited)

Step 2 – Filter Velocities
What happens if we don’t filter the velocities?

Simulation becomes unstable.

