
1

Next Generation
Shading and Rendering

Bryan Dudash
NVIDIA

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Session Overview

3.0 Shader Model Overview
ps.3.0 vs. ps.2.0
vs.3.0 vs. vs.2.0

Next-Gen Rendering Examples
Dynamic Water

Vertex Texture Fetch
Floating-point filtering / blending
GPU-based physics simulation

Volumetric Fog
MRT and branching for speed

Deferred Rendering
MRT and branching for speed

Geometry Instancing
Added visual complexity
Performance optimization

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader 3.0 Feature Comparison

Fewer artifacts, more dynamic rangefp32fp24Minimum
Precision

Allows two-sided lighting in a single
passYesNoBack-face

register

Developers can calculate the screen
space derivatives of any function,
allowing them to adjust shading
frequencies or over-sampling to
eliminate artifacts

Built-in
derivative
instructions

Not
supported

Shader anti-
aliasing

Saves performance by skipping
complex shading on irrelevant pixelsYesNoDynamic

branching

Allows more complex shading,
lighting, and procedural materials65535+96Shader length

DescriptionShader 3.0 Shader 2.0 Pixel Shader
Feature

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader 3.0 Feature Comparison

More per-pixel inputs allows more
realistic rendering, especially for skin108Texture

coordinate count

Shader Model 3.0 gives developers
full and precise control over specular
and fog computations, previously
fixed-function

Custom fp16-
fp32 shader
program

8-bit fixed
function
minimum

Fog and specular

Allows advanced lighting algorithms to
save filtering and vertex work – thus
more lights for minimal cost

4 requiredOptionalMultiple render
targets

Higher range and precision color
allows high-dynamic range lighting at
the vertex level

32-bit floating
point minimum

8-bit integer
minimum

Interpolated color
format

Allows two-sided lighting in a single
passYesNoBack-face register

DescriptionShader 3.0 Shader 2.0 Pixel Shader
Feature

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Vertex Shader 3.0 Feature Comparison

Allows many varied objects to be
drawn with only a single commandRequiredNoInstancing

support

Allows displacement mapping,
particle effects

Any number of
lookups from up
to 4 textures

NoVertex texture

Saves performance by skipping
animation and calculations on
irrelevant vertices

YesNoDynamic
branching

More instructions allow more
detailed character lighting and
animation

65535
instructions

256
InstructionsShader length

DescriptionShader 3.0Shader 2.0Vertex shader
feature

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

So what can we do with all this?
Dynamic Water Rendering

VS3.0 Vertex Texture Fetch
Floating-point filtering / blending
GPU-based physics simulation

Animated Volumetric Fog
Use polygon primitives to bound fog
MRT and branching for speed

Geometry Instancing
Draw many “instances” of a mesh with one draw call

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Typical Workflow

Simulate
Vertex

positions Render
to frame-buffer

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

CPUCPU

Simulate
Vertex

positions Render
to frame-buffer

GPUGPU

Typical Processing Allocation

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Simulating On the GPU?

GPUGPU

Simulate
Vertex

positions Render
to frame-buffer

GPUGPU

Read-back: BAD!

Use them programmable shaders!
The read-back can kill you
This is for PCI. PCI Express is better.

~100s~100s
MB/sMB/s

CPUCPU

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

“Render To Vertex Buffer”

Removes read-back from GPU to CPU

Render to
texture

Store vertices as
texture data

Read texture into
vertex shader

Simulate Texture Render
to frame-buffer

GPUGPU

~10s~10s
GB/sGB/s

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Examples

Cloth
Collide cloth against scene
Run cloth physics:
damped springs

Displacement Mapping
Displace vertices

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

More Examples

Snow/Sand accumulation
Simulate friction/sliding

Wind (simulation) bending grass

Particle Systems

Water waves/wakes

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Rendering Water – Algorithm Overview

Perform water simulation in pixel
shader

Render to texture
(D3DFMT_A16B16G16R16F)

Render refraction and reflection
maps

Render water surface
Use simulation results via VS3.0
vertex texture fetch
Compute perturbed texture
coordinates
Combine refraction and reflection
using Fresnel term

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Tessellated, flat plane for water

Rendering Water

Simulate Texture Render
to frame-buffer

GPUGPU

Solve wave-
equations

Store vertex
heights

Read height in vertex shader

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

How Does It Work?

Create a vertex-mesh for water
surface

e.g. 128 by 128 vertices
Encode vertex’s mesh-position as
uv-coordinates

(0,0) (1,0)(.25,0) (.5,0) (.75,0)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Vertex Shader Work
Read ‘height-map’

Floating-point texture
Read texture at vertex’s uv

Add result to vertex’s y

Transform/Project vertex vertex.y += tex(u, v)
Out.pos = WorldViewProj * vertex

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Height-Map Is Dynamic

Updated every frame
With GPU via render-to-
texture

Verlet integration

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Verlet you say?
A = ∑ (neighbors) – 4 Hn

Hn+1 = Hn +(Hn – Hn-1) + A
Hn+1 = (2*Hn – Hn-1) + A

Operates on positions only
No need to store velocity or acceleration

Compute normal from positions:
N = Normalize(S x T)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Fetch (VS3.0)

Vertex shader reads simulation result with vertex
texture fetch

Simulation Texture Applied Height Map

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Add Disturbances to Height Map

Blend displacements into the water
For example: the boat, rocks, shore

Verlet-integration integrates it next frame

Yes, floating-point render-target blending

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Refraction Map

Render scene from camera
viewpoint

Render what is on other side
of the water

Use water plane to clip geometry
If camera is above water

Render under water geometry
If camera is under water

Render above water geometry

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Reflection Map

Render scene from reflected
camera viewpoint

Reflect view transform about
water plane

Again clipped using water
plane
Render what is on the same
side of the water

If camera is underwater
Render underwater geometry

If camera is above water
Render above water geometry

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Fresnel Reflection Term

Determines amount of reflection / refraction
Roughly pow((1 - dot(eye, normal)), p)

Fresnel term = 0 => all refraction
Fresnel term = 1 => all reflection

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Advantages

Fast!
Simulation happens on 128x128 texture
Small by GPU standards
Frame-rate unaffected by simulation

Reasonable geometric complexity
128x128 is 16k vertices

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

VTF Demo

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Translucency and Scattering
All materials are translucent

Depends on light wavelength
Light penetrates all surfaces to some degree

Different wavelengths have
Different penetration depths
Different falloff vs. depth

If not absorbed or reflected, the light might
scatter and exit somewhere else

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Translucency Basics
Optical Properties

Absorption (probability vs. distance)
Scattering (probability vs. distance & angle)
Impedance changes (reflection and refraction)

Optical impedance determines the index of refraction

Everything absorbs and scatters
fluids, solids, gasses, even pure clean air

Opacity, transparency, and translucency
Vary in the probability of absorption & scattering

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Opactiy
High probability of absorption
& scattering
Light takes short paths
Light comes from surface, not
interior

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Transparency

Low probability of absorption and scattering

Images courtesy of Leigh Van Der Byl

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Translucency

Low probability of absorption
High probability of scattering

Leigh Van Der Byl

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Real-Time Attitude

Get the look. Forget the math
See Hoffman & Preetham for good scattering math

Various techniques
Depth-map rendering for thickness & scattering
Texture-space diffusion

Requirements
Artist friendly, content friendly
Fast as blazes
Fallbacks
Animate-able lighting and self-shadowing

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Depth Maps
Fog is an ordinary
polygon model
Render-to-texture
passes used to
calculate distance
through fog object
ps.1.3
ps.2.0 is faster
ps.3.0 is faster++

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Volume Fog Technique

Inspired by Microsoft’s “Volume Fog” DXSDK
demo (Dan Baker)
Inspired by [Mech01]
Compute thickness through ordinary polygon
objects from camera’s P.O.V.

Render the depths of an object’s front and back faces
Derive color from thickness
Great method for single scattering

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Single Scattering

Light bounces once from
source to eye
Light contribution from
scattering is proportional to
thickness

View point

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Rendering Thickness Per-Pixel

View
point

distance

pixels

thickness

translucent object

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Thickness From Distances

distance

pixels thickness

FRONT
BACK

THICKNESS = BACK - FRONT

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Rendering Thickness Per-Pixel

distance

∑∑ −= FrontBackThickness

pixels

Thickness for any uniform density object is easy
No Z-Buffer. Use additive blending

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Convert Thickness to Color

Thickness * scale è TexCoord.x
Color ramp texture: Artistic or math
Easy to control the look

thickness

Color Ramp
Texture

0.0

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

What About Intersection?

Need depth to solid object
Not depth to volume object faces

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Intersection Solution

Need depth of nearest solid object
Render it to a texture
Read the texture in a pixel shader

As you render each of the volume object’s faces
Pixel shader outputs lesser of

Depth of volume object triangle being drawn
Solid object depth (from texture) at pixel being drawn

Disable depth testing
Additive blend the output depth into the framebuffer

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Intersection Solution

Volume Geometry
Solid Objects

Rendered Depths

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Intersection Method Advantages

Advantages
Does not require stencil
Does not require multi-pass

Disadvantages
Must render depth of

Anything intersecting the volumes
Anything that can occlude the volumes

Can be avoided depending on the scene

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Steps: Pixel Shader 2.0

1. Render solid objects to backbuffer
Ordinary rendering

2. Render depth of solid objects that might
intersect the fog volumes

To ARGB8 texture, “S”
RGB-encoded depth. High precision!

3.Render fog volume backfaces
To ARGB8 texture, “B”
Additive blend to sum depths
Sample texture “S” for intersection

S

O

B

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Steps: PS.2.0 contd.

4. Render fog volume front faces
To ARGB8 texture, “F”
Additive blend to sum depths
Sample texture “S” for intersections

5.Render quad over backbuffer
Samples “B” and “F”
Computes thickness at each pixel
Converts thickness to color using fog color
ramp texture
Blends color to the scene
5 instruction ps.2.0 shader

Final

F

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

PS.3.0 HW Improvements

Front / back facing register
Multiple Render Targets (MRT)
Floating-point framebuffer blending

Fewer passes
Fewer render-target textures

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

PS.3.0 vs. PS.2.0

ps.2.0
HW

RT-Tex ‘O’ RT-Tex ‘B’ RT-Tex ‘F’ BackbufferBackbuffer

5 Passes

ps.3.0
HW

RT-Tex ‘O’ Floating point
RT-tex

RT-Tex

3 Passes

MRT

Backbuffer

ps.1.3
HW

6

F/B register

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Volume Fog Demo

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Deferred Rendering

What is it?
Render simple calculated parameters to offscreen
buffers

Normal, Eye, Light vectors, etc

Integrate in a final lighting pass
Why defer your rendering?

Overdraw with complex shaders is a performance
nightmare
Final pass has a depth complexity of 1

PS3.0 branching for increased performance gain
MRT to output all lighting data in one pass

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

DX9 Instancing API

What is it?
Allows a single draw call to draw multiple instances
of the same model
Allows you to avoid DIP calls and minimize
batching overhead

What is required to use it?
DX 9.0c
VS/PS 3.0 capable graphics device

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Why use it?
Speed.

The single most common performance bottleneck in most games
today is draw calls

Yeah. We all know draw calls are bad.
But world matrices often force us to separate draw calls

The instancing API pushes the per instance draw logic
down into the driver/hardware

Saves draw call overhead in both D3D and Driver
Allows the driver to ensure minimal state changes
between instances

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Example using Instancing

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

When to use instancing?

Scene contains many instances of the same model
Forest of Trees, Particles, Sprites, Soldiers

Instances move or change
Thus a static buffer isn’t feasible

Less useful if your batch size is large
>1k polys per draw is less draw call bound
There is some fixed overhead to using instancing

Extra vertex attributes
Extra Vertex Shader operations

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

How does it work?
DX Instancing API uses the vertex stream frequency
divider (VSF) API

Primary stream is a single copy of the model data
Secondary stream(s) contain per instance data
and stream pointer is advanced each time the primary
stream is rendered.

Uses IDirect3DDevice9::SetStreamSourceFreq entry point

Stream 0

Stream 1

Vertex Data

Per instance data

Vertex
Shader

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

How does it work? (2)

Modulus on #0, Divider on #1
Loops over stream 0

Each loop represents one “instance”
Divides stream 1

This means it only increments after each “instance”

Stream 0

Stream 1

V1 V2 V3 V4

M1 M2 M3

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Simple Instancing Example

100 poly trees
Stream 0 contains just the one tree model
Stream 1 contains model WVP transforms

Possibly calculated per frame based on the instances in the view
Vertex Shader is the same as normal, except you use the matrix
from the vertex stream instead of the matrix from VS constants

If you are drawing 10k trees that’s a lot of draw
call savings!

You could manipulate the VB and pre-transform verts, but it’s
often tricky, and you are replicating a lot of data

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

The Million Poly Test

A real test that draws instances of a mesh.
The changing axis is the # of polygons per mesh.
The scene total poly count is fixed at 1 million triangles

Thus as the mesh size goes up, the # of instances goes down.
Very simple shaders

More complex shaders will change the behavior of the scene.
Big pixel shaders may become bottleneck at a certain mesh size, thus
making instancing always at least as fast as single DIP.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Million Poly Test Results

Instancing versus Single DIP calls

3 6 12 24 48 96 192 384 768 1536 2256
Batch Size

FP
S

Instancing
No Instancing

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Million Poly Test Results 2

For small batch sizes, can provide an extreme win as it
gives savings PER DRAW CALL.

There is a fixed overhead from adding the extra data into
the vertex stream.

Vertex attribute fetch is often a limiting factor
More than doubled our vertex stride

This overhead may or may not be an issue depending on other
bottlenecks in the system

The sweet spot will change based on many factors (CPU
Speed, GPU speed, engine overhead, etc)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Other Ideas

Use VS constants
Break up VS constant memory into sections of data used
by each instance.
Encode an “index” in the instance stream to offset into
this section of constant memory.
This will help alleviate the performance hit of too many vertex
shader attributes.

Differently textured instances
Bind multiple textures and use instance data to lerp between
them.
Use texture pages, and put UV offsets into 2nd stream

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Other Ideas(2)

Colored Instances
Push down instance coloring and vary the
vertex colors of each instance

<your idea here>
If you can reduce draw calls, you’ll be sitting pretty. Remember
to be aware of extra overhead like shader
muls and vertex attributes!

Remember that you don’t have to reduce your
scene to one draw call.

If you can batch every 4 instances together, then
you’ve ¼’d your # of draw calls!

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Instancing Demo
Space scene with 500+ ships, 4000+ rocks
Complex lighting, post-processing

Some CPU collision work as well
actually becomes limiting factor

Dramatically faster with instancing

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

More Instancing Performance

Instancing Considerations whitepaper
A more complete discussion of performance considerations
using instancing
http://developer.nvidia.com
Talks about other methods of reducing draw calls
Lots of graphs. :P

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://developer.nvidia.com
http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

Questions?

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

More info?

http://developer.nvidia.com
NVIDIA SDK
bdudash@nvidia.com

Feel free to ask me questions in English or日本語.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://developer.nvidia.com
mailto:bdudash@nvidia.com
http://www.pdffactory.com

©2004 NVIDIA Corporation. All rights reserved.

References

[Mech01] Radomir Mech, “Hardware-Accelerated Real-Time Rendering of
Gaseous Phenomena.”

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

