GPU Image Processing

SIGGRAPH 2004
Frank Jargstorff

Overview

* Image Processing
* GPU how?

° Blending

* Porter-Duff and beyond
* Painting

©2004 NVIDIA Corporation. All rights reserved.

Image Processing — Overview @%

Image Processing Is the creation of a new image
by processing the pixels of an existing image;
each pixel in the output image Is computed as a
function of one or several pixels in the original
Image.

A generic way to do image processing on GPUs
Color manipulation

Convolution Filters
* Separable Convolution Filters
* Performance tricks

©2004 NVIDIA Corporation. All rights reserved.

Getting Started <<%

* 3D APIs (OpenGL, Direct3D) don't allow reading
or writing of pixel values directly

* GPUs can only draw triangles ®

* Drawing is Processing Trick:

Modern GPUs can execute fragment program for every
pixel drawn on a screen.

Use input-image as texture.

Draw screen aligned quad the size of the original
image.

GPU executes fragment program for every pixel in the
output |mage

©2004 NVIDIA Corporation. All rights

Drawing Is Processing x

Draw quad (w,h)

&

Texture Fragment Program

// Edge detect

varying vec2 vUV;

uniform vec2 vDeltaU;
uniform vec2 vDeltaV;
uniform sampler2D olmage;
void main()

{

}

vec3 vEdgeU = texture2D(olmage,
- texture2D(olmage,
vec3 VvEdgeV = texture2D(olmage,
- texture2D(olmage,
gl_FragColor = abs(vEdgeU)+abs(vEdgeV);

vUV+vDeltal)
vUV-vDeltaV);
vUV+vDeltaV)
vUV-vDeltaV);

Output Image

©2004 NVIDIA Corporation. All rights reserved.

Fragment Programs

* Prior to programmable GPUs image
processing possible but tedious

°* Problems:
* Only small number of algorithms possible

* Each algorithm needs completely different render
setup

e Solution:
°* Fragment programs
* Increasingly flexible
* Same approach for most processing tasks

©2004 NVIDIA Corporation. All rights reserved.

Practical Issues | <%

* Traditionally texture-
sizes powers of two
ion: (w.h)
* Solution: o
* Use the next bigger
power-of-two sized

texture and store image in
lower left area.

Use one of the non-
power-of-two extensions:
- ARB_texture non_power_of two

- EXT_texture rectangle

©2004 NVIDIA Corporation. All rights reserved.

Non-Power-Of-Two <<%

* ARB_ texture non power_ of two

parametric addressing [0,1] x [0,1]

all wrap modes (clamp, u/v-wrap, etc.)
mipmaps

borders

e EXT_texture rectangle

* addressing [0,w] x [0,N]

° no mipmapping, border
* only clamp (no wrapping)

°* Only GL_NEAREST for 16 bit floating point
formats

©2004 NVIDIA Corporation. All rights reserved.

Simple Image Transforms <z

* Transformations like scale, rotate, skew, etc. are trivial
* Drawing is processing — GPU is good for drawing.

Rotat

For best image quality
use anisotropic
filtering and mipmaps.

©2004 NVIDIA Corporation. All rights reserved.

Manipulating Color <<%

Result is function of the input pixel’s color
Great example for “Drawing is Processing”

Very well suited for GPU. Huge performance
lead over CPU.

Three examples:

* De-Gamma

* Gamma

* Color response of film stock

©2004 NVIDIA Corporation. All rights reserved.

Example 1: De-Gamma <<%

* Stored images often gamma corrected (ready
for display)
° e.g. sRGB format (gamma = 2.2)

* |Image processing algorithms usually assume
linear color space

varying vec2 vPixel;
uniform sampler2D olmage;

void main()

{

vec3 vColor texture2D(olmage, vPixel);
o] IS g=Te[6fe] [o] g pow(vColor, vec3(2.2, 2.2, 2.2));

}

©2004 NVIDIA Corporation. All rights reserved.

Example 2. Monitor Gamma Correctiogg%

* Monitors expect Gamma Corrected Input
* In full-screen mode DACs can gamma correct

* Allow for separate gamma per color channel

varying vec2 vPixel;
uniform sampler2D olmage;
uniform vec3 vGamma;

void main()

{

vec3 vColor texture2D(olmage, vPixel);
gl_FragColor = pow(vColor, vGamma);

}

©2004 NVIDIA Corporation. All rights reserved.

Example 3: Film Stock Color Respons@%

* Physical film’'s color response for one color channel
depends on value of other color channels:

fi(r,g,b)
f R=R:| g |~ falry9,b)
Jo(7,9.0)

varying vec2 vPixel;
uniform sampler2D olmage;
uniform sampler3D oLookUpTable;

void main()

{

vec3 vColor texture2D(olmage, vPixel);
gl _FragColor texture3D(oLookUpTable, vColor);
+

©2004 NVIDIA Corporation. All rights reserved.

Convolution Filter <2

Belong into class of linear filters

Interesting because amenable to Fourier analysis
Described by filter kernel K;; (discrete case)
Example kernel size (2r+1) x (2r+1) indices

L,j in {-r,...,r}.

Ii:i = Z Z Kyplitugro

U=—r g=—v

Example: r = 2 -> 5x5 filter kernel

©2004 NVIDIA Corporation. All rights reserved.

Convolution Filter Implementation @%

* Nalve implementation

varying vec2 vPixel;

uniform sampler2D olmage;
uniform sampler2D oKernel;
uniform vec2 vlmageScale;
uniform vec2 vWeightScale;

void main() {

vecd4 vSum = vec4(0.0, 0.0, 0.0, 0.0);

vec2 vOffset;

for(int 1 = -N_RADIUS; 1 < N_RADIUS; i++)
for (int jJ = -N_RADIUS; jJ < N_RADIUS; j++) {
vOffset = vec2(i, });
vSum += texture2D(olmage, vPixel + viImageScale*vOffset)

* texture2D(oKernel, vec2(N_RADIUS + 1, N _RADIUS + 1)
+ vWeightScale*vOffset);

+
gl FragColor = vSum;

}

©2004 NVIDIA Corporation. All rights reserved.

Problems with Naive Implementation @%

* QOther than GeForce 6 Series GPUs unroll the
nested loops

* Max instruction count limits filter size
* GeForce FX GPUs have 1000 instructions
* ... other DX9 cards have 96 instructions

* Relatively slow

©2004 NVIDIA Corporation. All rights reserved.

Minor Improvements

* Symmetrical filter
° Ny = ST S
* Single lookup into K per four pixel lookups.
* Ki;j=K,jorK;=K_
* Single lookup into K per two pixel lookups.
* Using NV_rectangle with non-parametric
texture addressing simplifies texture
coordinate calculation.

* Doesn’t really change O(n%) complexity.

©2004 NVIDIA Corporation. All rights reserved.

Separable Convolution Filter <2

e 2D filter is separable if outer product of two 1D filters:
e S:‘.j — A Bj
° (Gaussian filter is separable:

. _ - —E—,u2
(f_?*])(h fj))Ho_ = 20 < — ‘
i L .

g1ip(x) - g1p(y)

©2004 NVIDIA Corporation. All rights reserved.

Separable Filters Implementation @%

* Complexity reduced to O(2n)
* Shorter programs allow for larger filter kernels

* But implementation requires two passes:
* OpenGL various options:

©2004 NVIDIA Corporation.

glCopyTexSublmage() copy frame-buffer data to texture.
Render-to-texture P-Buffers

Whitepaper “Using P-Buffers for Off-Screen Rendering in
OpenGL” (Chris Wynn) available at
http://developer.nvidia.com

All rights reserved.

Performance Tricks @;

Texture filtering math is free

Can do bi-linear interpolation of 4 texel values per texture
access.

One-dimensional example:

° Naive implementation: W, W,

= Z w, I, .,

l'!_ -
= —1

* Using GL_L INEAR filtering hardware calculates
[(z)=(l—a); +al;y; with:= |z]| and a ==z — 1

@
a |[(1-a)

©2004 NVIDIA Corporation. All rights reserved.

Texture Filtering @;

* Idea: Position sample location according to weights w,
and w,,

* Half the number of texture lookups!

H

Wi W41

Wog —r41
Wak—r + W2k —r41

/

©2004 NVIDIA Corporation. All rights reserved.

Image Processing Summary @%

* Powerful fragment programs allow

° Implementation of wide variety of image processing
task

* unified approach to GPU image processing.

©2004 NVIDIA Corporation. All rights reserved.

Demo

* SDK Example available at developer.nvidia.com
* FX Composer image processing examples

@ NVIDIA SDK Browser - SDK 8.0
Fil= Help

developer.nvidia.com

Samples | Effects | Toale | Search

Files Run

Image Processing G=-FORCE X OpenGL

This sample app utilizes the nv_image_processing framework, The sample app executes
image processing filkers compeletely on the GPLU. Examples filters are Gaussian blurr
(naive implementation and two-pass separated). The sample got its name from the
scotopic vision filter that is an advanced version of "Hollywood night". It turns daytime
iIrmages into night scenes.,

User Guide Whitepaper Files Run

Blending on the GPU

* Blending in OpenGL
* Simple Porter-Duff blending
° Blend modes in OpenGL 1.5

* "Manual Blending” in Fragment Program

©2004 NVIDIA Corporation. All rights reserved.

Porter-Duff Blending Algebra <<%

“Compositing Digital Images”, Thomas Porter
and Tom Duff, Siggraph 1984

Color C=(r,g,b) plus coverage a represented
as pre-multiplied color c=(ra, ga, ba, a)

Various advantages:
* Ready for display

* anti-aliased image on black background.
* Simple blending equation:
® Co=FaCp* FgCp
* Porter-Duff operators set F,and Fgt0 0, 1, 0,5,
and 1- a,5

©2004 NVIDIA Corporation. All rights reserved.

Blending in OpenGL

/ '!‘L'.,FH + T';)FD \

i Equation: UHF —- Jp F"r)
)HE; 2 i bf’)Ff

\ asFS + apFP)

{: 0 —

* Specify blend factors via:
e glBlendFunc(source, destination);
* GL_ZERO, GL_ONE
® GL_SRC_ALPHA, GL_ONE_MINUS SRC_ALPHA
e GL_DST _ALPHA, GL_ONE_MINUS DST_ ALPHA

e GL_SRC_COLOR, GL_ONE MINUS_SRC_COLOR
e GL_DST COLOR, GL_ONE MINUS_DST COLOR

©2004 NVIDIA Corporation. All rights reserved.

More Flexibility—OpenGL 1.5 <<%

°* OpenGL 1.5 integrated several extensions into
the standard:
® EXT _blend color
 EXT _blend equation_separate
e EXT _blend_minmax
® EXT blend subtract

©2004 NVIDIA Corporation. All rights reserved.

EXT blend color <<%

* Specify a fixed blend factor (F.F,Fy,Fg)
e glBlendColor(r,g,b,a)

* Blend factors tokens:
e GL_CONSTANT COLOR
e GL_ONE_MINUS CONSTANT COLOR
® GL CONSTANT ALPHA
e GL _ONE MINUS CONSTANT ALPHA

°* Example:
* Simulate photographic color filters

* Blend between complete images without touching
the image data’s alpha.

©2004 NVIDIA Corporation. All rights reserved.

EXT blend equation_ separate <<%

* Specify different blend-factors for color and
alpha

e glBlendFuncSeparate(srcRGB, dstRGB,
srcAlpha, dstAlpha)

©2004 NVIDIA Corporation. All rights reserved.

EXT blend minmax & il
EXT blend subtract @%

* Change the underlying blend equation:
® GL_FUNC_ADD sets default: C=C.S + C,D
® GL_FUNC_SUBTRACT sets: C=C.S-C,D
® GL_FUNC_REVERSE_SUBTRACT sets: C=C D - C.S
* GL_MIN sets: C = min(C; C)
* GL_MAXsets: C = max(Cg C,)

©2004 NVIDIA Corporation. All rights reserved.

What More Could You Want? <%

16 bit floating-point blending only available on GeForce 6
Series

32 bit floating-point blending not available yet
Example: Adobe’s “basic” compositing formula

C,=(1- L) x Cy + e X [(1 —ap) X Cs 4+ ap X B(Cy, Cy)]
QO 0,

B(C,, C,) determines blending modes like ColorDodge,

etc.
* see PDF Reference Manual

©2004 NVIDIA Corporation. All rights reserved.

Blending using Fragment Shader

* Complex math no problem but...
* Shader can’t access frame-buffer

* Workaround:
* Copy FB to texture.
* Use texture to get FB data.
* Catch: slower than native blending

©2004 NVIDIA Corporation. All rights reserved.

Normal Blending <<%

°* Normal draw loop (GPU takes care of blending):

clearBuffer(backgroundColor);
for all Object In Scene:

setBlendFunc(Object.blendFunc);

render(Object);
displayBuffer();

©2004 NVIDIA Corporation. All rights reserved.

“Manual” Blending /(z

Texture Buffer clearBuffer(background) ;
A copyBuffer(bufferSize, texture);

i <ARR Ay for all Object In Scene:
setShader(Object.blendShader);
- bind(texture);
render(Object);
unbind(texture);
copyBuffer(Object.boundingBox,
oTexture);

render J&

©2004 NVIDIA Corporation. All rights reserved.

Conclusion @%

* GPUs natively support Porter-Duff blending
* Additional flexibility:

* Source/destination color, constant color and alpha
as blend factors

* Subtraction, min/max blend functions
* Fragment shader blending
* Total flexibility

* More programming overhead
* Performance penalty

©2004 NVIDIA Corporation. All rights reserved.

Painting

Basic idea

Simple Soft-Brush
Clone Brush
Liquefy Brush

Basic Idea <<%

* Use over-operator to compose brush with
background.

* Brush could be:

* (Geometric primitive
* Texture

* Fractional alpha-values: Anti-Aliasing

©2004 NVIDIA Corporation. All rights reserved.

Soft-Edged Circular Brush @Z

* Brush has “hardness”
control (h)

©2004 NVIDIA Corporation. All rights reserved.

Soft-Edged Circular Brush

°* X < h brush completely
opaque

* x> 1 fully transparent
* smooth fall-off

a(z) = 1 — smoothstep(h, 1, z)

smoothstep{a, b, 2) = gfﬁ 3

©2004 NVIDIA Corporation. All rights reserved.

Drawing the Brush <<%

* |If blend mode supported by HW simply draw
o[VELe

varying vec2 vUV;
uniform sampler2D oBrush;
uniform vec4 vColor;

void main()

{
gl _FragColor = vColor * texture2D(oBrush, vUV).a;

}

©2004 NVIDIA Corporation. All rights reserved.

“Manually Blending” the Brush <<%

varying vec2 vBrushuv;
varying vec2 vBackgroundUV;

uniform sampler2D oBrush;
uniform sampler2D oBackground;

uniform vecd4 vColor;

void main()

{
float nAlpha = texture2D(oBrush,vBrushUV).a;

gl _FragColor nAlpha * vColor
(1-nAlpha) * texture2D(oBackground,
vBackgrounduV) ;

}

©2004 NVIDIA Corporation. All rights reserved.

Clone Brush "2

* Manual Blending gives access to “background”
* Use background twice, as source AND destination

varying vec2 vBrushuvV;
varying vec2 vDstUV;
varying vec2 vSrcUV;

uniform sampler2D oBrush;
uniform sampler2D olmage;

uniform vec4 vColor;

void main()

{
float nAlpha

gl FragColor

texture2D(oBrush,vBrushuV) .a;
nAlpha * texture2D(olmage, vSrcUV)
+ (1-nAlpha) * texture2D(olmage, vDstUV);

}@2004 NVIDIA Corporation. All rights reserved.

Liquefy Brush @Z

* Liquefy Brush drags colors with it
* new pixel-values found in opposite direction as brush stroke.

©2004 NVIDIA Corporation. All rights reserved.

Liqguefy Brush (cont’d)

ldea: Don’t manipulate
Image but paint (store)
brush stokes in
separate offset
texture.

* offset texture in
floating point format

* paint x-motion in red
channel, y-motion in
green channel.

* Use original image
and offset texture to
render final image.

©2004 NVIDIA Corporation. All rights reserved.

Liquefy Shader

varying vec2 vUV;

uniform sampler2D olmage;
uniform sampler2D oOffset;

uniform Float nScale;

void main()

{
vec2 vOffset = nScale * texture2D(oOffset, vUV);

gl_FragColor = texture2D(olmage, vUV - vOffset);
¥

©2004 NVIDIA Corporation. All rights reserved.

Conclusion

* Painting is Compositing
* Example brushes

* simple fragment programs
* used “manual blending” for clone brush

©2004 NVIDIA Corporation. All rights reserved.

Paint Demo

Courtesy of Simon Green

“3 NVIDIA SDK Browser - SDK 8.0
Fil= Help

developer.nvidia.com

Samples | Effects | Toolz | Search

Whitepaper Files FRFun

HDR Paint G=FORCE X OpeniGL

This example demonstrates the use of floating point textures and render-to-texture to
implement interacktive high dynamic range painting. It uses fragment prorams to
implement several different display and brush modes. The application is resolution-
independent - all rendering is performed to an offscreen floating point pbuffer, which can
then be displaved at any size or position. Each brush stroke is rendered as a single
textured quad, Floating point blending is implemented in the shader using two pbuffers
which are alternated between each brush stroke., One is used as the source buffer and
the other is the destination. The modified area is copied back from the destination to the
source for the next frame.

Files Run

Apple Motion

©2004 NVIDIA Corporation. All rights reserved.

Questions

©2004 NVIDIA Corporation. All rights reserved.

Blending using Buffer-Ping-Ponging éa

Texture Buffer clearBufferl(backgroundColor) ;
- | | clearBuffer2(backgroundColor);

pActive = Bufferl;
pTexture = Buffer2;

for all Object i1n Scene:
setShader(Object.blendShader);
bind(pTexture);
render(Object);
swap(pActive, pTexture);
setShader (copyShader) ;
bind(pTexture)
render(Object.boundingBox);

display(pActive)

©2004 NVIDIA Corporation. All rights reserved.

