
Transforming Production Workflows
with the GPU

Kevin Bjorke, NVIDIA
SIGGRAPH 2004

©2004 NVIDIA Corporation. All rights reserved.

Overview

• Games, Films, TV Production
• All are getting rapidly more

complex and more expensive
(and producers are getting
increasingly risk-averse), but
standard price is still $39.95

• All are intertwining: games of
movies, movies from games, and
audiences expect similar looks
between them

“MRT” visualization
of texture coordinates

©2004 NVIDIA Corporation. All rights reserved.

The Core Takeway Information:

• http://developer.nvidia.com/

©2004 NVIDIA Corporation. All rights reserved.

Four Stages of Knowledge

• What
• About
• How
• Why

©2004 NVIDIA Corporation. All rights reserved.

Realities of Production

• Cinematic Effects, via
Programmable Shading,
are the Most Powerful
Artistic Tool Yet for
Games

• But it’s an Uphill Battle
• Hard to implement and

experiment
• Hard to get into game

engines
• Even harder to debug

*Part I available at http://developer.nvidia.com/

“Thad” from Animatrix – Character © Silver Pictures

©2004 NVIDIA Corporation. All rights reserved.

Applying GPU Power

• Shader development is increasing in importance
for anyone who works with pixels
• Game Makers
• Animators
• Lighting TDs
• Compositors

• Shader Metaformats: FX and CgFX
• Tools and Methods to Harness the GPU for

everyone

©2004 NVIDIA Corporation. All rights reserved.

Programmable Shading: When
to Add to Your Production Pipeline?

• Every studio will have its own “break even”
point

Time

Programmer BenefitsArt BenefitsImplementation Effort

E
ff

or
t

Market Size

2002 2003 2004 2005

©2004 NVIDIA Corporation. All rights reserved.

Look Development

• “Look Development” is
when we decide what’s
important (and what’s not),
and lay down the elements
of style for any project (or
part of a project)

• The earlier in development
that the “look” is
determined, the better it is
(and the cheaper it is to
use)

©2004 NVIDIA Corporation. All rights reserved.

Look Development in Games

• In gaming, look is often a byproduct of engine design
• Hard for Artists to Guess at anything other than “Lowest

Common Denominator,” or what they saw in the last demo
• Design tends to be conservative and safe
• Concerned with technical limitations

• In films, development is usually done initially without
slavish attention to implementation “details” like budget
• Artists completely free
• Concerned with story

Test from Animatrix – © Silver Pictures

©2004 NVIDIA Corporation. All rights reserved.

Developing Shaders: Programmers

• Shading tools are important for both Programmers and
Designers

• To be complete for modern game engines, tools have
to support ideas like:
• Render-To-Texture (RTT)
• Multiple Render Targets (MRT)
• Render States like stencil, alpha blend, etc.
• Custom Texture Maps (e.g. Normalization cubes, noise)
• SHIrradiance and PRT
• Management details to make sure complex ordering matches any specific

game engine’s render loop

• How to get results in and out of your game engine or
application, at every stage of production?

©2004 NVIDIA Corporation. All rights reserved.

Developing Shaders: Artists

• Artists want to see what they design when they design
it, not just guess at what it might look like later

• Not just seeing the correct models, but also the correct
lighting environment, so that the shaders viewed
and/or developed can really be the ones used in-game.

• Implementations are typically different in each different
DCC application (Maya versus Max versus XSI
versus….)

• We want to accommodate console-game designers,
too: “What might my model look like on Playstation?”

©2004 NVIDIA Corporation. All rights reserved.

HLSL FX Metaformat

• A Tool Built for the Task
• Easily swappable for artists and

programmers
• Already a part of DirectX and

XNA – no external SDK required
• Some viewing support already in

XSI, 3DStudio Max, and Maya
• Already used in shipping, high-

performance games

01

©2004 NVIDIA Corporation. All rights reserved.

FX Composer

• The Gold Standard in
FX editing tools, with
more complete support
than any other

• Combine & customize
shaders

• Extensible
• Use any 3D model
• Performance tuning
• Works with RTZen etc
• http://www.fxcomposer.com/

01

E
ve

rq
ue

st
®

 C
on

te
nt

 C
ou

rte
sy

S
on

y
O

nl
in

e
E

nt
er

ta
in

m
en

t I
nc

.

©2004 NVIDIA Corporation. All rights reserved.

A Shading Sketchbook

• FX Composer gives artists and programmers an
environment to play with complex ideas, without
needing to write a whole C++ game engine to try
them out!

©2004 NVIDIA Corporation. All rights reserved.

Building a Library of Shaders

• FX Composer ships with lots of sample shaders
• Any HLSL FX shader can be used, from other shader tools

too (e.g., RTZen)

• Do experiments, save them and keep them around –
even mistakes – you’ll use them someday!

• Save, trade, and collect ‘em

R
us

ki
n’

s
Sh

ad
in

g
Ex

er
ci

se
s,

 1
87

7

B
jo

rk
e’

s
D

um
b

M
is

ta
ke

, 2
00

3

©2004 NVIDIA Corporation. All rights reserved.

Turning Pencil Sketches into Shaders

• Side Note:
• A shaded sphere is trivial to turn into a shader

(See 2001 Siggraph: “The Lit Sphere”
http://portal.acm.org/citation.cfm?id=781004&dl=ACM&coll=portal)

• Useful as color reference
• Beware tiny details (like JPEG noise), they smear

02

©2004 NVIDIA Corporation. All rights reserved.

Fanciful examples

• Photos will distort
• Soccer balls are probably rarely useful, but cheap –

only ONE cycle
• Can we do something generically useful with this?

03

©2004 NVIDIA Corporation. All rights reserved.

Does the shape have to be a sphere?

• Not if we’re willing to do some work with
Photoshop
• I like “Liquify” and the Smudge/Stamp Tools

04

©2004 NVIDIA Corporation. All rights reserved.

Refining the Color

• Gaussian Blur in the texture to isolate the color
• Great to mix with other shading models, this is so

cheap

05

Render Pipelines
Identification and Feeding

©2004 NVIDIA Corporation. All rights reserved.

Render Pipeline: The “A-B-C” Model

• Many programs still use the simplest possible Z-
culled double-buffered pipeline:
• Clear to BG Color
• Render Object A
• Render Object B
• Render Object C
• Render Object D…
• Display complete scene!

• Examples include many older games and most
all DCC and CAD applications.

©2004 NVIDIA Corporation. All rights reserved.

Programmable Shading in A-B-C

• The method used by 3DStudio Max DirectX9
Materials and in the CgFX plugins for Maya etc
• Clear to BG Color
• Render Object A (potentially in multiple passes)
• Render Object B (potentially in multiple passes)
• Render Object C (potentially in multiple passes)
• Render Object D…
• Display complete scene!

• A great improvement in appearance, but still no
render-to-texture effects etc. – so shaders may
or may not be the “real” final shaders

©2004 NVIDIA Corporation. All rights reserved.

Going Beyond A-B-C

• More complex rendering, like that in the Maya
Hardware Render Device, or modern game
engines, uses a rich mixture of 3D and 2D
operations
• Textures created on the fly
• Special masks for compositing
• Stencil
• Glints and glows
• Etc…

©2004 NVIDIA Corporation. All rights reserved.

A Simple Complex Pipeline….

• (this is a simplified example):
• Deep clear (floating point image)
• Render object D & B into one shadow map
• Deep clear (floating point image)
• Render object C into another shadow map
• Clear to bg texture
• Render MRTs – object A and depth using previous shadow passes
• Render objects D&B using shadow passes
• Save to texture
• Blur vertically
• Blur again, horizontally
• Restore unaltered BG image
• Add part of blurred image to create bloom in brightest areas
• Render object C using blurred bg texture as refraction
• Add textured fog based on MRT depth samples
• Display complete scene

©2004 NVIDIA Corporation. All rights reserved.

Complex Pipelines

• Game pipelines are becoming as complex as
film-production pipelines, which may have
dozens or hundreds of composited elements,
each broken into multiple passes for shadowing,
glows, diffuse/specular separation and
balancing, live-action BG plates, etc.

©2004 NVIDIA Corporation. All rights reserved.

Complex Pipelines for Games

• While film pipelines use multiple rendering and
compositing tools, interactive applications have
to do rendering and compositing operations in
the same app – and fast

• Game appearances may require different
handling depending on the hardware – high
end, low end, or console (potentially multiples)

©2004 NVIDIA Corporation. All rights reserved.

Managing Complexity

• Programmability lets us bundle ideas together
and control them flexibly

• Programmability up and down the entire chain:
• GPU shading units
• Graphics API state
• Tracking of basics like mouse, object transforms, etc
• High-level scene building, control, data import and

export

©2004 NVIDIA Corporation. All rights reserved.

Managing Scale

• Films have Massive Scale
• Lots of Models
• Lots of Polygons
• Lots of Shaders

• Toy Story: 1300
• Bugs: Double
• Monsters Inc: “thousands”

• Lots of Compositing Layers (sometimes
hundreds)

• Long Schedules
• Instant Rendering shaves off some schedule…

©2004 NVIDIA Corporation. All rights reserved.

Long Schedules

• Movies have lots of money and time, so they have the
potential to develop cool technologies

• BUT: Those technologies need to be locked down
early enough so that shots delivered on the last day of
production look like they belong with shots delivered
on the first day of production

• Fastest turnaround in innovation: TV Commercials

Nike.Com campaign, Weiden + Kennedy, Dir Neill Blomkamp http://www.theembassyvfx.com/

©2004 NVIDIA Corporation. All rights reserved.

Not-Atypical Production

• Waterfall
Concept Art

Modelling/Texture

Animation

Level Build

Engine/Playable

Ship

©2004 NVIDIA Corporation. All rights reserved.

Artists Working Blind

• Often they can only guess at what the final
playable engine will look like

• Can’t build/try ideas for rendering alternatives
by themselves

• Safest bet: lowest-common-denominator assets

©2004 NVIDIA Corporation. All rights reserved.

Mid-Production Changes

• Shader changes may come late – art staff might
be gone (or certainly busy on something else)
by the time new ideas come up or new
hardware features are available

• Crossing those gaps is difficult and expensive
(Tools like Melody are also aimed at this
problem)

• We want formats that let us move forward and
backward through the production chain, easily

©2004 NVIDIA Corporation. All rights reserved.

Potential Scope of HLSL Usage

• Wherever there’s a pixel….
Concept Art

Modelling/Texture

Animation

Level Build

Engine/Playable

Ship

©2004 NVIDIA Corporation. All rights reserved.

Sharing FX Files Helps Close Gaps

• Having a single common shading representation
lets artists see real shaders on their models

• Changes made late in production can still be
art-previewed

• FX Programmability gives the capacity for it to
genuinely run the same shader at all different
levels of production

©2004 NVIDIA Corporation. All rights reserved.

Layers of HLSL Programmability

• HLSL Pixel and Vertex shaders
• HLSL VM functions for the CPU
• HLSL VM Texture functions (“texture shaders”)
• HLSL DXSAS scripting for render-loop control
• HLSL DXSAS scripting for layering
• HLSL technique validation for varying GPUs
• In FX Composer:

• Windows Common Language Runtime (CLR)
• C#
• VB.NET

• FX Composer SDK

©2004 NVIDIA Corporation. All rights reserved.

Only in DirectX FX:

• HLSL Pixel and Vertex shaders
• HLSL VM functions for the CPU
• HLSL VM Texture functions (“texture shaders”)
• HLSL DXSAS scripting for render-loop control
• HLSL DXSAS scripting for layering
• HLSL technique validation for varying GPUs
• In FX Composer:

• Windows Common Language Runtime (CLR)
• C#
• VB.NET

• FX Composer SDK

©2004 NVIDIA Corporation. All rights reserved.

Only in FX Composer so far:

• HLSL Pixel and Vertex shaders
• HLSL VM functions for the CPU
• HLSL VM Texture functions (“texture shaders”)
• HLSL DXSAS scripting for render-loop control
• HLSL DXSAS scripting for layering
• HLSL technique validation for varying GPUs
• In FX Composer:

• Windows Common Language Runtime (CLR)
• C#
• VB.NET

• FX Composer SDK

©2004 NVIDIA Corporation. All rights reserved.

Innermost Layer:
HLSL Pixel and Vertex Shaders

• Vertex Shader: called for each vertex to define
its screen position and potentially other data,
which will be passed to the…

• Pixel Shader: called for each individual
rendered pixel, it assigns output colors

• Both written in the same unified language: HLSL
• Not teaching HLSL langauge in this talk: Microsoft is running

Introductory and Advanced HLSL workshops in Room 402A.
(If you know a little C/Java/Cg/etc, you’re fine here)

©2004 NVIDIA Corporation. All rights reserved.

FX Files Unify Pixel & Vertex Shaders

• FX files let us store/define both pixel and vertex
shaders together, in context with their tweakable
controls and resource definitions (textures,
lights, etc)

• FX Files define render state flags such as ZCull,
AlphaBlend, texture address modes, etc.

• FX Files are the natural fundamental shading
unit for HLSL applications

©2004 NVIDIA Corporation. All rights reserved.

HLSL Virtual Machine Functions

• If the results of HLSL code are constant for an
entire frame, we can separate that code and let
it be run on the CPU once per frame.

• Written in the same HLSL language
• Examples:

• matrix inversion and creation
• Radian/degree conversions
• Precalculated trig for spotlight cone angles

©2004 NVIDIA Corporation. All rights reserved.

HLSL VM Texture Functions

• We can read a texture from a disk image, or
generate the texture procedurally on the CPU

• Again, the generator function is written in the
same HLSL language

• FXComposer-only variation:
• We can generate textures on the CPU or GPU, and

save them to disk

©2004 NVIDIA Corporation. All rights reserved.

DXSAS

• DXSAS stands for “DirectX Standard
Annotations and Semantics”

• DXSAS is part of DirectX 9.0c and XNA
• Semantics and Annotations can be assigned to

global tweakables, global “untweakable” tracked
values, to individual render-pass definitions, to
render techniques, and to the FX file as a whole.

• DXSAS includes a script for defining complex
render loops.

©2004 NVIDIA Corporation. All rights reserved.

DXSAS Renderloop Scripting

• Scripts are stored in string annotations
• Scripts can be part of passes, techniques, and

the global FX scope
• Technique scripts can call pass scripts
• Global scripts can call technique or pass scripts
• DXSAS Script is our window to:

• Render to Texture (RTT)
• Multiple Render Targets (MRT)
• Conditional Rendering
• Layer of FX effects

©2004 NVIDIA Corporation. All rights reserved.

Technique Validation

• Happens behind the scenes
• Lets us create a hierarchy of techniques for

different platforms
• Lets us create multiple techniques to emulate

lower-powered platforms, consoles, etc
• Doesn’t validate texture formats

• They typically fall back to 8-bit

©2004 NVIDIA Corporation. All rights reserved.

FX Composer Scripting

• FX Composer is built as a .NET application
• Most controls are .COM assemblies
• Scriptable from within FX Composer – no additional

program needed
• C# and VB.NET supported via Common Language Runtime

(CLR)
• Other CLR languages, such as Managed C++ or Jscript, could

be made available if someone really needed them
• Fast!

• “Nv_sys” library can be browsed in the OLE Viewer
• Most operations can be done using this API
• Can talk to external DCC apps, SQL DBs, etc

©2004 NVIDIA Corporation. All rights reserved.

FXComposer Plugin SDK

• Plugins are written externally in an environment
like Visual Studio

• Compiled and then installed in the Plugin
directory

• FX Composer’s SDK is mainly designed for
object import and material export (the CLR API
is also good at export)

FX Files
What’s Really Inside

©2004 NVIDIA Corporation. All rights reserved.

FX File Anatomy Lesson

Global Variables
Constants
User Tweakables
“Untweakables”
Texture Declarations

Functions
CPU Functions
Vertex Shaders
Pixel Shaders

Techniques
Passes

• FX files are text
program files

• There must be at
least one technique
with at least one
pass

• Everything else is
optional (though
usually needed)

• Order is flexible,
like C++ etc

©2004 NVIDIA Corporation. All rights reserved.

FX Global Variables

Global Variables
Constants
User Tweakables
“Untweakables”
Texture Declarations

Functions
CPU Functions
Vertex Shaders
Pixel Shaders

Techniques
Passes

• Controls for the
shader(s) are
declared as globals

• They will be either
user controls in the
parameters panel,
or automatically
assigned by FX
Composer

©2004 NVIDIA Corporation. All rights reserved.

Semantics

• Variables often have an attached SEMANTIC:
float3 SurfColor : DIFFUSE = {1,1,1};

• Semantics hint to the application that this variable maps
to a standard part of the scene graph or application
environment.

• DirectX scene values such as projection matrices,
texture assignments, specularPower, light positions, etc
can be given semantics.

• Some applications-specific semantics include TIME and
MOUSE connections.

• Semantics can define GPU register assignments.

©2004 NVIDIA Corporation. All rights reserved.

Annotations

• Annotations enhance semantics by giving more
instance-specific info, such as “position of which
light?”

• Annotations describe UI details, such as the
range of scalars, the sorts of UI widgets to use
(if any), and the displayed names in the
Parameters panel.

• DXSAS scripts are also stored as annotations
(more on these later).

©2004 NVIDIA Corporation. All rights reserved.

Tweakables and Un-Tweakables

• User-accessible controls are tweakable:
float3 SurfColor : Diffuse <

string UIName = "Surface";
string UIWidget = "Color";

> = {1.0f, 0.7f, 0.3f};

• Automatically-assigned values are un-
tweakable, so we hide their display:
float4x4 ViewProjXf : ViewProjection <

string UIWidget="None";
>;

• Note that untweakables can ignore their default
values.

©2004 NVIDIA Corporation. All rights reserved.

FX Functions

Global Variables
Constants
User Tweakables
“Untweakables”
Texture Declarations

Functions
CPU Functions
Vertex Shaders
Pixel Shaders

Techniques
Passes

• HLSL functions can
be executed on
vertex shader nit,
pixel shader unit,
or the CPU,
depending on
context

©2004 NVIDIA Corporation. All rights reserved.

Function Semantics

• Semantics attached to a function’s returned
values define the type of function

• If a function returns “: HPOSITION” it’s a vertex
shader

• If a function returns “: COLOR” it’s a pixel
shader (or texture function -- next slide)

• All other functions are general-use

©2004 NVIDIA Corporation. All rights reserved.

Texture Functions

• Textures can be initialized by DirectX on the
CPU at shader-load time by texture functions

• We write a function that returns a “: COLOR”
value based on an input “: POSITION” value
(1D, 2D, 3D)

• We assign the function to the texture declaration
via a “function” annotation

• More on uses for this later….

©2004 NVIDIA Corporation. All rights reserved.

FX Techniques

Global Variables
Constants
User Tweakables
“Untweakables”
Texture Declarations

Functions
CPU Functions
Vertex Shaders
Pixel Shaders

Techniques
Passes

• A technique
bundles-up a
complete set of
shading
instructions, and
may define one or
many passes

• Passes can be
executed in default
order, or explicitly
scripted

©2004 NVIDIA Corporation. All rights reserved.

Multiple Techniques

• Some FX files may have multiple techniques for
the same appearance

• Reasons include:
• HW sensitivity – an FX file might contain techniques

that can only run on high-end hardware, so
additional “fallback” techniques are included

• Alternate emulations – an FX file might contain
versions of an appearance for high-end PCs, low-
end PCs, and multiple game consoles. All can be
compared “live” and can be driven/tested from one
set of art assets during development

©2004 NVIDIA Corporation. All rights reserved.

FX Passes

Global Variables
Constants
User Tweakables
“Untweakables”
Texture Declarations

Functions
CPU Functions
Vertex Shaders
Pixel Shaders

Techniques
Passes

• Each pass can
define vertex and
pixel shaders and
their shading-
model profiles;
render states such
as alpha blend;
and can optionally
aim at any render
target(s) – textures
or the framebuffer

©2004 NVIDIA Corporation. All rights reserved.

Technique and Pass Annotations

• Techniques and Passes can be annotated, mostly to allow the presence of DXSAS
script commands

technique hotTech <
string Script = "Pass=p0;";

> {
pass p0 <

string Script = "Draw=geometry;";
> {

VertexShader = compile vs_2_0 mainVS();
ZEnable = true;
ZWriteEnable = true;
CullMode = None;
AlphaBlendEnable = false;
PixelShader = compile ps_2_a hotPS();

}
}

• (In this case, this is the default – annotations could have been skipped)

Examples
Yeah!

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: VBomb

• Shows:
• General HLSL functions
• Vertex Shader
• Texture Declaration
• TIME semantic and

vertex animation
• Vertex Perf Panel
• Pixel Perf Panel
• vbomb.fxcomposer

05

©2004 NVIDIA Corporation. All rights reserved.

VBomb: Looking at the Perf Window

• FX Composer’s Shader
Perf window lets us see
the exact running ASM
code as compiled by
DirectX

• Selectable by specific
pass: vertex or pixel
shaders

• Selectable by GPU
model

©2004 NVIDIA Corporation. All rights reserved.

Vertex Animation and TIME

• The simple TIME sematic on a global variable
lets us update continuously:

float Timer : TIME < string UIWidget=“none”;>;

• We can then use it in the vertex or pixel shaders
(or anywhere) just like any other variable

• TIP: The existence of a TIME variable causes FX Composer to be
redrawing constantly – be aware of it!

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Spot-Early

• Shows:
• Shader Model Profiles
• Technique Selection
• VM functions for CPU

06

©2004 NVIDIA Corporation. All rights reserved.

Spot-Early: Profile Selection

technique PS3 <
string Script = "Pass=drawPass;";

> {
pass drawPass < string Script = "Draw=geometry;"; > {

VertexShader = compile vs_3_0 mainCamVS();
ZEnable = true;
ZWriteEnable = true;
CullMode = None;
PixelShader = compile ps_3_0 spotLightPS(

cos(SpotLightCone*(float)(3.141592/180.0)));
}

}

technique PS2 <
string Script = "Pass=drawPass;";

> {
pass drawPass < string Script = "Draw=geometry;"; > {

VertexShader = compile vs_2_0 mainCamVS();
ZEnable = true;
ZWriteEnable = true;
CullMode = None;
PixelShader = compile ps_2_a spotLightPS(

cos(SpotLightCone*(float)(3.141592/180.0)));
}

}

©2004 NVIDIA Corporation. All rights reserved.

Spot-Early: Technique Selection

• Technique selection is via DXSAS script
• “: STANDARDSGLOBAL” variable should appear before

techniques begin

float Script : STANDARDSGLOBAL <
string UIWidget = "none";
string ScriptClass = "object";
string ScriptOrder = "standard";
string ScriptOutput = "color";
string Script = "Technique=Technique?PS3:PS2;";

> = 0.8; // DXSAS version #

• In the simplest object-shader cases, we can sometimes
skip this step – FX Composer will figure it out and “fill in
the blanks.”

©2004 NVIDIA Corporation. All rights reserved.

Spot-Early: CPU-Side (VM) Math

technique PS3 <
string Script = "Pass=drawPass;";

> {
pass drawPass < string Script = "Draw=geometry;";
> {

VertexShader = compile vs_3_0 mainCamVS();
ZEnable = true;
ZWriteEnable = true;
CullMode = None;
PixelShader = compile ps_3_0 spotLightPS(

cos(radians(SpotLightCone));
}

}

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Mandelbrot PS_3

• Shows:
• Full-Screen Effect
• Pixel-Shader Looping

07

©2004 NVIDIA Corporation. All rights reserved.

Mandelbrot: Full-Screen Drawing

• Built-in full-screen Quad

#include "Quad.fxh“

technique mandy <
string Script = "Pass=p0;";

> {
pass p0 <

string Script = "Draw=Buffer;";
> {

VertexShader = compile vs_3_0 ScreenQuadVS();
cullmode = none;
ZEnable = false;
ZWriteEnable = false;
AlphaBlendEnable = false;
PixelShader = compile ps_3_0 mandyPS();

}
}

©2004 NVIDIA Corporation. All rights reserved.

Mandelbrot: Pixel Looping

• Big difference in SM3
versus SM2 program
size – SM3 version has
dynamic # of loops

• SM2 version (with
constant # of loops) was
hundreds of PS
instructions…

• More in the session:
Shader Model 3.0
Unleashed

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Toksvig-split

• Shows:
• VM Texture Generation
• Using pixel shading to

get “look” right, and
texture for speedy AA on
final result

• This technique described in depth on
NVIDIA.COM
(http://developer.nvidia.com/object/mipmap
ping_normal_maps.html)
“Mipmapping Normal Maps”

08

©2004 NVIDIA Corporation. All rights reserved.

Toksvig: VM Texture Function

float spec_func(
float s,
float NaH,
float NaNa

) {
float toksvig = sqrt(NaNa)/(sqrt(NaNa)+

s*(1-sqrt(NaNa)));
return (1.0+toksvig*s)/(1.0+s) *

pow(NaH/sqrt(NaNa), toksvig*s);
}

float4 make_specular_tex(
float2 Pos : POSITION

) : COLOR {
float f = spec_func(SPEC_EXPON,Pos.x,Pos.y);
return float4(f.xxx,0.0);

}

©2004 NVIDIA Corporation. All rights reserved.

Toksvig: Assigning Texture Function

texture SpecTex <
string function = "make_specular_tex";
int width = TOX_TABLE_SIZE;
int height = TOX_TABLE_SIZE;
string UIWidget = "None";
string format = “g16r16”;

>;

sampler SpecSampler = sampler_state
{

texture = <SpecTex>;
AddressU = CLAMP;
AddressV = CLAMP;
MIPFILTER = NONE;
MINFILTER = ANISOTROPIC;
MAGFILTER = ANISOTROPIC;

};

©2004 NVIDIA Corporation. All rights reserved.

Toksvig: Saving Textures to Disk

• Any loaded texture can
be saved to disk

• More-efficient if multiple
shaders will be
generating the same
texture

• We can also save GPU
render targets

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Durer

• Shows:
• Texture Generation with

texture derivatives
• Fast anti-aliasing via the

texture engine (follow-on
to Toksvig)

• NPR render technique
describe in GPU Gems

09

©2004 NVIDIA Corporation. All rights reserved.

Durer: Getting Texel Derivatives

• The previous example let the system generate MIP maps
• “Durer” makes custom MIP levels:

half4 stripe_function(
half2 Pos : POSITION,
half2 ps : PSIZE

) : COLOR
{

half v = 0;
half nx = Pos.x+ps.x; // keep the last column full-on, always
v = nx > Pos.y;
return half4(v.xxxx);

}

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Paint_Brush

• Shows:
• DXSAS bool/loops and

ScriptClass
• Interactivity:
• MOUSEPOSITION
• LEFTMOUSEDOWN
• TIMER
• FXCOMPOSER_RESET

PULSE
• Using a shader instead

of “clear”

10

©2004 NVIDIA Corporation. All rights reserved.

Paint_brush: Pixel-shader clear

technique paint <
string Script = "RenderColorTarget0=;“

"RenderDepthStencilTarget=;"

"LoopByCount=bReset;"
"Pass=revert;"

"LoopEnd=;"
"Pass=splat;";

> {
pass revert <

string Script = "Draw=Buffer;";
> {

VertexShader = compile vs_1_1 ScreenQuadVS();
PixelShader = compile ps_2_0 revertPS(true);
AlphaBlendEnable = false;
ZEnable = false;

}
pass splat <

string Script = "Draw=Buffer;";
> {

VertexShader = compile vs_1_1 ScreenQuadVS();
PixelShader = compile ps_2_0 strokePS(fadeout(),lerpsize());
AlphaBlendEnable = true;
SrcBlend = SrcAlpha;
DestBlend = InvSrcAlpha;
ZEnable = false;

}
}

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Liquid

• Shows:
• DXSAS RenderTarget

assignments
• FP16 Blending
• MOUSE events
• Render to texture
• VM math for efficiency

11

©2004 NVIDIA Corporation. All rights reserved.

Paint_brush: Reset Events

• We can set a bool value to be triggered by
“reset” events (explicitly toggled in the
Parameters pane, or from reload/resize events)

• We can use this to conditional invoke CLEAR
events or special passes in DXSAS scripts

bool bReset : FXCOMPOSER_RESETPULSE
<

string UIName="Clear Canvas";
>;

©2004 NVIDIA Corporation. All rights reserved.

Liquid: Defining a Render Target

• We use a “Quad.fxh” macro:
DECLARE_QUAD_TEX(PaintTex,PaintSamp,"A16B16G16R16F")

• Which expands to:
texture PaintTex : RENDERCOLORTARGET <

float2 ViewPortRatio = {1.0,1.0}; // screen-sized
int MipLevels = 1;
string Format = "A16B16G16R16F";
string UIWidget = "None";

>;
sampler PaintSamp = sampler_state {

texture = <PaintTex>;
AddressU = CLAMP;
AddressV = CLAMP;
MipFilter = POINT;
MinFilter = LINEAR;
MagFilter = LINEAR;

};
• This viewport-sized, OpenEXR-style floating-point image is blendable and filterable

on GeForce 6 and Quadro 4K+

©2004 NVIDIA Corporation. All rights reserved.

Paint_Liquid: Target Assignment

technique liquid <
string Script =

"Pass=paint;"
"Pass=display;";

> {
pass paint <

string Script = "RenderColorTarget0=PaintTex;"
"RenderDepthStencilTarget=;"
"LoopByCount=bReset;"

"ClearSetColor=ClearColor;"
"Clear=Color0;"

"LoopEnd=;"
"Draw=Buffer;";

> {
VertexShader = compile vs_1_1 ScreenQuadVS();
PixelShader = compile ps_2_0 strokePS(dir_color(),fadeout(),

fadein(),lerpsize());
AlphaBlendEnable = true;
SrcBlend = SrcAlpha;
DestBlend = InvSrcAlpha;
ZEnable = false;

}
pass display <

string Script = "RenderColorTarget0=;“ // no target
"RenderDepthStencilTarget=;"
"Draw=Buffer;";

> {
VertexShader = compile vs_1_1 ScreenQuadVS();
PixelShader = compile ps_2_0 liquidPS();
AlphaBlendEnable = false;
ZEnable = false;

}
}

©2004 NVIDIA Corporation. All rights reserved.

Paint_Liquid: CPU VM Math

technique liquid <
string Script =

"Pass=paint;"
"Pass=display;";

> {
pass paint <

string Script = "RenderColorTarget0=PaintTex;“
"RenderDepthStencilTarget=;"
"LoopByCount=bReset;"

"ClearSetColor=ClearColor;"
"Clear=Color0;"

"LoopEnd=;"
"Draw=Buffer;";

> {
VertexShader = compile vs_1_1 ScreenQuadVS();

PixelShader = compile ps_2_0 strokePS(dir_color(), fadeout(),
fadein(),lerpsize());

AlphaBlendEnable = true;
SrcBlend = SrcAlpha;
DestBlend = InvSrcAlpha;
ZEnable = false;

}
pass display <

string Script = "RenderColorTarget0=;"
"RenderDepthStencilTarget=;"
"Draw=Buffer;";

> {
VertexShader = compile vs_1_1 ScreenQuadVS();
PixelShader = compile ps_2_0 liquidPS();
AlphaBlendEnable = false;
ZEnable = false;

}
}

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: 3D Paint

• Shows:
• Multipass
• FP blending
• “dependant read”

12

©2004 NVIDIA Corporation. All rights reserved.

3D Paint – Mixing 3D and 2D Passes

pass ShowUV <
string Script = "RenderCoLorTarget0=UVMap;"

"RenderDepthStencilTarget=DepthBuffer;"
"ClearSetColor=ClearColor;"
"ClearSetDepth=ClearDepth;"
"Clear=Color;"
"Clear=Depth;"

"Draw=Scene;";
> {

VertexShader = compile vs_2_0 minVS();
ZEnable = true;
ZWriteEnable = true;
CullMode = None;
PixelShader = compile ps_2_0 uvPS();

}
pass restorePaint <

string Script ="RenderColorTarget0=BufMap;"

"Draw=Buffer;";
> {

VertexShader = compile vs_1_1 ScreenQuadVS();
PixelShader = compile ps_2_0 restorePaintPS();
AlphaBlendEnable = false;
ZEnable = false;

}

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Sculpt

• Shows
• FP16 blend
• FP16/FP32 pingpong
• Vertex Texture Fetch
• More painting fun

13

©2004 NVIDIA Corporation. All rights reserved.

Sculpt: Mixing FP16 and FP32

• FP16 is blendable for painting
• FP32 is needed for Vertex Texture Fetch (VTF)
• So we use utility shaders in Quad.fxh to copy the FP16 PaintSampler to

FP32 Displacement Map in a special pass:
pass boost <

string Script =
"RenderColorTarget0=DisplaceMap;"
"Draw=Buffer;";

> {
VertexShader = compile vs_3_0

ScreenQuadVS();
ZEnable = false;
ZWriteEnable = false;
CullMode = None;
PixelShader = compile ps_3_0

TexQuadPS(PaintStrokeSampler);
}

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Bloom & Reflection

• Shows:
• DXSAS post-process
• VM matrix math
• FP16 imaging
• Separable multipass

filtering
• “Fake reflection”

technique – restricted
one-bounce raytracer

14

©2004 NVIDIA Corporation. All rights reserved.

Separable Image Filters

• Done in two passes –
blur once in the
horizontal direction, then
blur that vertically

• FP16 pixels let us avoid
clamping in the brightest
areas

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Raytracer

• Shows:
• Non-poly-intensive use of

GPU with “real” raytracer
writing to a full-screen
buffer

• FX is appropriate for
numeic uses other than
games

15

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: shadRPort

• Shows:
• Frustum annotation
• Renderport assignment
• FP texture shadow maps
• VM used to pre-calculate

spotlight cone values

16

©2004 NVIDIA Corporation. All rights reserved.

Assigning a Frustum and RenderPort

• We can re-assign :VIEW and :PROJECTION
matrices to a specific spotlamp:
float4x4 LampProjXf : Projection <

//string UIWidget="None";
string frustum = "light0";

>;

• To adjust for screen aspect, we also define a
RenderPort in the DXSAS script for the shadow-
generation pass, as if it was a Render Target:
"RenderPort=light0;"

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Translucent

• Shows:
• Frustum annotation
• Renderport assignment
• FP texture shadow maps
• Simple VM math
• Specialized usage of

maps

17

©2004 NVIDIA Corporation. All rights reserved.

Translucent: Multi-channel Shadow

• This shadow uses two
different channels: depth
and a light-view fresnel
attentuation

• (Similar idea: write a full-
color translucent shadow
as an MRT during this
pass….)

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Motion Blur

• Shows:
• Mouse interception
• Unusual GPGPU-ish use

of textures
• FP16 blending provides

accumulation-buffer
motion blur

• DXSAS lets us
dynamically select the #
of accumulations

18

©2004 NVIDIA Corporation. All rights reserved.

Saving Persistent Data in Texture

• “MoBlur” has a funny
little 4x4 1-channel fp 32
texture….

• It’s the previous frame’s
projection matrix, saved
by a “saveXf” pass

• Shader uses it to
interpolate against
current-frame projection
for motion blur

• (Alternative crazy idea:
use blending to mix
them…)

©2004 NVIDIA Corporation. All rights reserved.

Motion Blur: DXSAS Looping

• Given a global tweakable scalar “npasses,” and a (hidden) untweakable scalar called
“passnumber”:
technique Blur <

string Script =
"LoopByCount=bReset;"

"Pass=resetXf;"
"LoopEnd=;"
// Clear Accum Buffer
"RenderColorTarget0=AccumBuffer;"
"ClearSetColor=ClearColor;"
"Clear=Color;"
"LoopByCount=npasses;"

"LoopGetIndex=passnumber;"
// Render Object(s)
"Pass=drawObj;"
// Blend Results into accum buffer
"Pass=Accumulate;"

"LoopEnd;"
// draw accum buffer to framebuffer
"Pass=saveXf;"
"Pass=FinalPass;";

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Parallax Bump

• Shows:
• It’s simple and fast!

19

©2004 NVIDIA Corporation. All rights reserved.

“Shading Sketchbook” in Action…

• New demo shader, literally written during the
break between the first two classes here at
Siggraph on Monday afternoon

©2004 NVIDIA Corporation. All rights reserved.

Shader Demo: Bloom and Gloom

• Shows:
• FP16 processing
• Layering of post-process

effects

20

©2004 NVIDIA Corporation. All rights reserved.

Bloom and Gloom: Shading Stack

• We can assign by hand
in Material Editor, or edit
in the ScriptExecute
Sorter Window

©2004 NVIDIA Corporation. All rights reserved.

Script Demo: Shader Donuts

• Shows:
• C# Integration and

highlighting
• OLE Browser for

“nv_sys”
• Reading files from C#
• Creating Nodes
• Creating Keyframes
• Reading Annotations

©2004 NVIDIA Corporation. All rights reserved.

C# Animation

• C# Scripts are subclass of “INVUtility”
• The entry point is always

public int Run(interop.nv_sys.NVSystem Sys)

• Use OLE browser to explore nv_sys namespace
• We can access almost every part of the FX

Composer data structure, create objects, save
images…

• …as well as communicate with other processes,
files, etc.

• Samples supplied for both C# and
VisualBasic.NET

©2004 NVIDIA Corporation. All rights reserved.

SDK Demo: Import/Export

• Not a Demo per se –
Plugins are created in
Visual Studio etc

• Some functionality
overlaps C#

• Can be used for Import
of custom geometry
formats, material export
(mtl exporter shown)

• Pix courtesy Mike Chow
at Rainbow Studios

Bonus Round
Some Shader Ideas

©2004 NVIDIA Corporation. All rights reserved.

Coming Soon: Son of GLM

• DXSAS spec has looping constructs for lights
and objects
• Not in the current release, but soon!

• These will permit building shaders that can
handle an arbitrary # of lights, and of varying
types!

• Syntax is the same as current DXSAS looping
• Global vars can be assigned value-per light:

string frustum = “light#”;

©2004 NVIDIA Corporation. All rights reserved.

Skin and Shading

• Diffuse Subsurface
Scattering on the Cheap:
• By remapping “(N·L)” in our

diffuse-shading calulations to
“((N·L)+w)/(1+w)” we can
“wrap” light around the
contours of an object

• (Don’t worry about the math
details – an example awaits!)

• Since this is all in the diffuse
lighting, it’s sometimes okay to
do the job in the vertex shader

21

©2004 NVIDIA Corporation. All rights reserved.

Skin and Direct Reflectance

• The younger you are, the
less dead skin

• Live skin cells reflect like
little cat’s eye reflectors

• Therefore, a flat skin tone
= youthful appearance

• Oren-Nayar Shading
(expensive) and “grisaille”
shading (cheap!)

• Combining ideas

Traditional Grisaille Relief

One Modern Variation

22

©2004 NVIDIA Corporation. All rights reserved.

Reflections

• Can replace all specular
in some circumstances

• Can use VM to generate
CUBE maps

• Can have finite radius
(see GPU Gems)

• Can have distance with
quadratic falloff

14

Environment-mapped background, reflected card-shaped
light source, 16-bit blending with overbright bloom

©2004 NVIDIA Corporation. All rights reserved.

CGI, Films, and Painting

• Film borrows lighting
and composition from
media like painting

• Lighting leads attention
• Lighting sets emotional

tone

Rafael’s TransfigurationScott’s Blade Runner

©2004 NVIDIA Corporation. All rights reserved.

Smart Light Placement

• Magy Seif El-Nasr’s
“ELE”: The Expressive
Lighting Engine

• http://ist.psu.edu/SeifElN
asr/

• Uses robotics load-
balancing equations to
maximize visibility and
“mood” for a limited set of
lights

M
ira

ge
,E

l-N
as

re
t a

l,
C

IR
A

©2004 NVIDIA Corporation. All rights reserved.

Compositing & 2D Effects

• FP buffers make things
more powerful than ever

• Lots of fun…
• Color controls
• Final “sweetening”
• Blend modes
• Mix 2D/3D sprites
• Floating-point pixels

Halftoning Patterns

Image Trails

Conclusion

©2004 NVIDIA Corporation. All rights reserved.

That’s a Wrap!

• Games now have the capacity to
match film shading, in character if
not pixel-to-pixel
• Get used to lots of shaders
• Get tools that let you play

• http://www.fxcomposer.com/
• Play with shaders, try everything,

keep a “sketchbook” of useful ideas

The End

©2004 NVIDIA Corporation. All rights reserved.

Some Recommended Books

• Jon Ruskin: The Laws
of Fésole, Priciples of
Drawing and Painting
from the Tuscan
Masters

• John Alton: Painting
with Light

• Randima Fernando:
GPU Gems

©2004 NVIDIA Corporation. All rights reserved.

More On These Topics

• http://developer.nvidia.com/
• http://www.fxcomposer.com/
• kbjorke@nvidia.com

©2004 NVIDIA Corporation. All rights reserved.

More At Siggraph

• NVIDIA Sponsored Sessions – Here in Room 401
• Shader Model 3.0 Unleashed

Tuesday 1:45
Wednesday 3:45
Thursday 10:30

• GPU Performance Tools and Analysis Techniques
Monday 3:45
Wednesday 10:30
Thursday 1:45

• Image Processing with the GPU
Monday 10:30
Tuesday 3:45
Wednesday 1:45

• Microsoft Sponsored Sessions – Room 402A
• HLSL Shader Workshop: Introductory

Monday & Wednesday, 10:30 and 3:45
Tuesday and Thursday, 1:45

• HLSL Shader Workshop: Introductory
Monday and Wednesday, 1:45
Tuesday and Thursday, 10:30 and 345

