
GPU Image Processing
SIGGRAPH 2004
Frank Jargstorff

©2004 NVIDIA Corporation. All rights reserved.

Overview

• Image Processing
• GPU how?

• Blending
• Porter-Duff and beyond

• Painting

©2004 NVIDIA Corporation. All rights reserved.

Image Processing – Overview

• Image Processing is the creation of a new image
by processing the pixels of an existing image;
each pixel in the output image is computed as a
function of one or several pixels in the original
image.

• A generic way to do image processing on GPUs
• Color manipulation
• Convolution Filters

• Separable Convolution Filters
• Performance tricks

©2004 NVIDIA Corporation. All rights reserved.

Getting Started

• 3D APIs (OpenGL, Direct3D) don’t allow reading
or writing of pixel values directly

• GPUs can only draw triangles
• Drawing is Processing Trick:

• Modern GPUs can execute fragment program for every
pixel drawn on a screen.

• Use input-image as texture.
• Draw screen aligned quad the size of the original

image.
• GPU executes fragment program for every pixel in the

output image.

©2004 NVIDIA Corporation. All rights reserved.

Drawing is Processing

GPU

Texture

Draw quad

(0,0)

(w,h)

(0,0)

(w,h)

Output Image

// Edge detect

varying vec2 vUV;
uniform vec2 vDeltaU;
uniform vec2 vDeltaV;
uniform sampler2D oImage;
void main()
{
vec3 vEdgeU = texture2D(oImage, vUV+vDeltaU)

- texture2D(oImage, vUV-vDeltaV);
vec3 vEdgeV = texture2D(oImage, vUV+vDeltaV)

- texture2D(oImage, vUV-vDeltaV);
gl_FragColor = abs(vEdgeU)+abs(vEdgeV);

}

Fragment Program

©2004 NVIDIA Corporation. All rights reserved.

Fragment Programs

• Prior to programmable GPUs image
processing possible but tedious

• Problems:
• Only small number of algorithms possible
• Each algorithm needs completely different render

setup
• Solution:

• Fragment programs
• Increasingly flexible
• Same approach for most processing tasks

©2004 NVIDIA Corporation. All rights reserved.

Practical Issues I

• Traditionally texture-
sizes powers of two

• Solution:
• Use the next bigger

power-of-two sized
texture and store image in
lower left area.

• Use one of the non-
power-of-two extensions:

(0,0)

(w’,h’)
uv=(1,1)

(w,h)
uv=(w/w’,h/h’)

- ARB_texture_non_power_of_two
- EXT_texture_rectangle

©2004 NVIDIA Corporation. All rights reserved.

Non-Power-Of-Two

• ARB_texture_non_power_of_two
• parametric addressing [0,1] x [0,1]
• all wrap modes (clamp, u/v-wrap, etc.)
• mipmaps
• borders

• EXT_texture_rectangle
• addressing [0,w] x [0,h]
• no mipmapping, border
• only clamp (no wrapping)
• Only GL_NEAREST for 16 bit floating point

formats

©2004 NVIDIA Corporation. All rights reserved.

Simple Image Transforms

• Transformations like scale, rotate, skew, etc. are trivial
• Drawing is processing – GPU is good for drawing.

Scale Rotate

Skew Perspective

For best image quality
use anisotropic
filtering and mipmaps.

©2004 NVIDIA Corporation. All rights reserved.

Manipulating Color

• Result is function of the input pixel’s color
• Great example for “Drawing is Processing”
• Very well suited for GPU. Huge performance

lead over CPU.
• Three examples:

• De-Gamma
• Gamma
• Color response of film stock

©2004 NVIDIA Corporation. All rights reserved.

Example 1: De-Gamma

• Stored images often gamma corrected (ready
for display)
• e.g. sRGB format (gamma = 2.2)

• Image processing algorithms usually assume
linear color space
varying vec2 vPixel;
uniform sampler2D oImage;

void main()
{

vec3 vColor = texture2D(oImage, vPixel);
gl_FragColor = pow(vColor, vec3(2.2, 2.2, 2.2));

}

©2004 NVIDIA Corporation. All rights reserved.

Example 2: Monitor Gamma Correction

• Monitors expect Gamma Corrected Input
• In full-screen mode DACs can gamma correct

• Allow for separate gamma per color channel
varying vec2 vPixel;
uniform sampler2D oImage;
uniform vec3 vGamma;

void main()
{

vec3 vColor = texture2D(oImage, vPixel);
gl_FragColor = pow(vColor, vGamma);

}

©2004 NVIDIA Corporation. All rights reserved.

Example 3: Film Stock Color Response

• Physical film’s color response for one color channel
depends on value of other color channels:

varying vec2 vPixel;
uniform sampler2D oImage;
uniform sampler3D oLookUpTable;

void main()
{

vec3 vColor = texture2D(oImage, vPixel);
gl_FragColor = texture3D(oLookUpTable, vColor);

}

©2004 NVIDIA Corporation. All rights reserved.

Convolution Filter

• Belong into class of linear filters
• Interesting because amenable to Fourier analysis
• Described by filter kernel Ki,j (discrete case)
• Example kernel size (2r+1) x (2r+1) indices

i,j in {-r,...,r}.

• Example: r = 2 -> 5x5 filter kernel

©2004 NVIDIA Corporation. All rights reserved.

Convolution Filter Implementation

• Naïve implementation
varying vec2 vPixel;
uniform sampler2D oImage;
uniform sampler2D oKernel;
uniform vec2 vImageScale;
uniform vec2 vWeightScale;

void main() {
vec4 vSum = vec4(0.0, 0.0, 0.0, 0.0);
vec2 vOffset;
for(int i = -N_RADIUS; i < N_RADIUS; i++)

for (int j = -N_RADIUS; j < N_RADIUS; j++) {
vOffset = vec2(i, j);
vSum += texture2D(oImage, vPixel + vImageScale*vOffset)

* texture2D(oKernel, vec2(N_RADIUS + 1, N_RADIUS + 1)
+ vWeightScale*vOffset);

}
gl_FragColor = vSum;

}

©2004 NVIDIA Corporation. All rights reserved.

Problems with Naïve Implementation

• Other than GeForce 6 Series GPUs unroll the
nested loops
• Max instruction count limits filter size
• GeForce FX GPUs have 1000 instructions
• ... other DX9 cards have 96 instructions

• Relatively slow

©2004 NVIDIA Corporation. All rights reserved.

Minor Improvements

• Symmetrical filter
• Ki,ji,j = K-i,j = Ki,-j = K-i,-j

• Single lookup into K per four pixel lookups.

• Ki,j = K-i,j or Ki,j = Ki,-j
• Single lookup into K per two pixel lookups.

• Using NV_rectangle with non-parametric
texture addressing simplifies texture
coordinate calculation.

• Doesn’t really change O(n2) complexity.

©2004 NVIDIA Corporation. All rights reserved.

Separable Convolution Filter

• 2D filter is separable if outer product of two 1D filters:
• i.e.

• Gaussian filter is separable:

©2004 NVIDIA Corporation. All rights reserved.

Separable Filters Implementation

• Complexity reduced to O(2n)
• Shorter programs allow for larger filter kernels
• But implementation requires two passes:

• OpenGL various options:
• glCopyTexSubImage() copy frame-buffer data to texture.
• Render-to-texture P-Buffers
• Whitepaper “Using P-Buffers for Off-Screen Rendering in

OpenGL” (Chris Wynn) available at
http://developer.nvidia.com

©2004 NVIDIA Corporation. All rights reserved.

Performance Tricks

• Texture filtering math is free
• Can do bi-linear interpolation of 4 texel values per texture

access.
• One-dimensional example:

• Naïve implementation:

• Using GL_LINEAR filtering hardware calculates

...

(1-α)

w1 w2 w3 wn

α

©2004 NVIDIA Corporation. All rights reserved.

Texture Filtering

• Idea: Position sample location according to weights wn
and wn+1

• Half the number of texture lookups!

...
(1-αk)αk (1-αk+1)αk+1

w’k w’k+1

©2004 NVIDIA Corporation. All rights reserved.

Image Processing Summary

• Powerful fragment programs allow
• implementation of wide variety of image processing

task
• unified approach to GPU image processing.

©2004 NVIDIA Corporation. All rights reserved.

Demo
• SDK Example available at developer.nvidia.com
• FX Composer image processing examples

©2004 NVIDIA Corporation. All rights reserved.

Blending on the GPU

• Blending in OpenGL
• Simple Porter-Duff blending
• Blend modes in OpenGL 1.5

• “Manual Blending” in Fragment Program

©2004 NVIDIA Corporation. All rights reserved.

Porter-Duff Blending Algebra

• “Compositing Digital Images”, Thomas Porter
and Tom Duff, Siggraph 1984

• Color C=(r,g,b) plus coverage α represented
as pre-multiplied color c=(rα, gα, bα, α)

• Various advantages:
• Ready for display

• anti-aliased image on black background.

• Simple blending equation:
• cO = FAcA + FBcB

• Porter-Duff operators set FA and FB to 0, 1, αA/B ,
and 1- αA/B

©2004 NVIDIA Corporation. All rights reserved.

Blending in OpenGL

• Equation:

• Specify blend factors via:
• glBlendFunc(source, destination);

• GL_ZERO, GL_ONE
• GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
• GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

• GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR
• GL_DST_COLOR, GL_ONE_MINUS_DST_COLOR

©2004 NVIDIA Corporation. All rights reserved.

More Flexibility–OpenGL 1.5

• OpenGL 1.5 integrated several extensions into
the standard:
• EXT_blend_color
• EXT_blend_equation_separate
• EXT_blend_minmax
• EXT_blend_subtract

©2004 NVIDIA Corporation. All rights reserved.

EXT_blend_color

• Specify a fixed blend factor (Fr,Fg,Fb,Fα)
• glBlendColor(r,g,b,a)

• Blend factors tokens:
• GL_CONSTANT_COLOR
• GL_ONE_MINUS_CONSTANT_COLOR
• GL_CONSTANT_ALPHA
• GL_ONE_MINUS_CONSTANT_ALPHA

• Example:
• Simulate photographic color filters
• Blend between complete images without touching

the image data’s alpha.

©2004 NVIDIA Corporation. All rights reserved.

EXT_blend_equation_separate

• Specify different blend-factors for color and
alpha
• glBlendFuncSeparate(srcRGB, dstRGB,
srcAlpha, dstAlpha)

©2004 NVIDIA Corporation. All rights reserved.

EXT_blend_minmax &
EXT_blend_subtract

• Change the underlying blend equation:
• GL_FUNC_ADD sets default: C = CsS + CdD
• GL_FUNC_SUBTRACT sets: C = CsS – CdD
• GL_FUNC_REVERSE_SUBTRACT sets: C = CdD – CsS
• GL_MIN sets: C = min(Cs, Cd)
• GL_MAX sets: C = max(Cs, Cd)

©2004 NVIDIA Corporation. All rights reserved.

What More Could You Want?

• 16 bit floating-point blending only available on GeForce 6
Series

• 32 bit floating-point blending not available yet
• Example: Adobe’s “basic” compositing formula

• B(Cb, Cs) determines blending modes like ColorDodge,
etc.
• see PDF Reference Manual

©2004 NVIDIA Corporation. All rights reserved.

Blending using Fragment Shader

• Complex math no problem but...
• Shader can’t access frame-buffer
• Workaround:

• Copy FB to texture.
• Use texture to get FB data.
• Catch: slower than native blending

©2004 NVIDIA Corporation. All rights reserved.

Normal Blending

• Normal draw loop (GPU takes care of blending):
clearBuffer(backgroundColor);
for all Object in Scene:

setBlendFunc(Object.blendFunc);
render(Object);

displayBuffer();

©2004 NVIDIA Corporation. All rights reserved.

“Manual” Blending

clearBuffer(background);
copyBuffer(bufferSize, texture);

for all Object in Scene:
setShader(Object.blendShader);
bind(texture);
render(Object);
unbind(texture);
copyBuffer(Object.boundingBox,

oTexture);

display(oTexture);

BufferTexture

render

copy

copy

copy

render

clear

etc.

©2004 NVIDIA Corporation. All rights reserved.

Conclusion

• GPUs natively support Porter-Duff blending
• Additional flexibility:

• Source/destination color, constant color and alpha
as blend factors

• Subtraction, min/max blend functions
• Fragment shader blending

• Total flexibility
• More programming overhead
• Performance penalty

©2004 NVIDIA Corporation. All rights reserved.

Painting

• Basic idea
• Simple Soft-Brush
• Clone Brush
• Liquefy Brush

©2004 NVIDIA Corporation. All rights reserved.

Basic Idea

• Use over-operator to compose brush with
background.

• Brush could be:
• Geometric primitive
• Texture

• Fractional alpha-values: Anti-Aliasing

©2004 NVIDIA Corporation. All rights reserved.

Soft-Edged Circular Brush

• Brush has “hardness”
control (h)

©2004 NVIDIA Corporation. All rights reserved.

Soft-Edged Circular Brush

• x < h brush completely
opaque

• x > 1 fully transparent
• smooth fall-off

©2004 NVIDIA Corporation. All rights reserved.

Drawing the Brush

• If blend mode supported by HW simply draw
quad

varying vec2 vUV;
uniform sampler2D oBrush;
uniform vec4 vColor;

void main()
{

gl_FragColor = vColor * texture2D(oBrush, vUV).a;
}

©2004 NVIDIA Corporation. All rights reserved.

“Manually Blending” the Brush

varying vec2 vBrushUV;
varying vec2 vBackgroundUV;

uniform sampler2D oBrush;
uniform sampler2D oBackground;

uniform vec4 vColor;

void main()
{

float nAlpha = texture2D(oBrush,vBrushUV).a;
gl_FragColor = nAlpha * vColor

+ (1-nAlpha) * texture2D(oBackground,
vBackgroundUV);

}

©2004 NVIDIA Corporation. All rights reserved.

Clone Brush

• Manual Blending gives access to “background”
• Use background twice, as source AND destination

varying vec2 vBrushUV;
varying vec2 vDstUV;
varying vec2 vSrcUV;

uniform sampler2D oBrush;
uniform sampler2D oImage;

uniform vec4 vColor;

void main()
{
float nAlpha = texture2D(oBrush,vBrushUV).a;
gl_FragColor = nAlpha * texture2D(oImage, vSrcUV)

+ (1-nAlpha) * texture2D(oImage, vDstUV);
}

©2004 NVIDIA Corporation. All rights reserved.

Liquefy Brush

• Liquefy Brush drags colors with it
• new pixel-values found in opposite direction as brush stroke.

©2004 NVIDIA Corporation. All rights reserved.

Liquefy Brush (cont’d)

• Idea: Don’t manipulate
image but paint (store)
brush stokes in
separate offset
texture.
• offset texture in

floating point format
• paint x-motion in red

channel, y-motion in
green channel.

• Use original image
and offset texture to
render final image.

©2004 NVIDIA Corporation. All rights reserved.

Liquefy Shader

varying vec2 vUV;

uniform sampler2D oImage;
uniform sampler2D oOffset;

uniform float nScale;

void main()
{

vec2 vOffset = nScale * texture2D(oOffset, vUV);
gl_FragColor = texture2D(oImage, vUV - vOffset);

}

©2004 NVIDIA Corporation. All rights reserved.

Conclusion

• Painting is Compositing
• Example brushes

• simple fragment programs
• used “manual blending” for clone brush

©2004 NVIDIA Corporation. All rights reserved.

Paint Demo

• Courtesy of Simon Green

©2004 NVIDIA Corporation. All rights reserved.

Apple Motion

©2004 NVIDIA Corporation. All rights reserved.

Questions

©2004 NVIDIA Corporation. All rights reserved.

Blending using Buffer-Ping-Ponging

clearBuffer1(backgroundColor);
clearBuffer2(backgroundColor);

pActive = Buffer1;
pTexture = Buffer2;

for all Object in Scene:
setShader(Object.blendShader);
bind(pTexture);
render(Object);

swap(pActive, pTexture);

setShader(copyShader);
bind(pTexture)
render(Object.boundingBox);

display(pActive)

BufferTexture

render

swap

copy

swap

render

