
Shader Model 3.0 Shader Model 3.0
UnleashedUnleashed

Randima (Randy) FernandoRandima (Randy) Fernando
NVIDIA Developer Technology GroupNVIDIA Developer Technology Group

©2004 NVIDIA Corporation. All rights reserved.

Talk Outline

• Quick Intro the GeForce 6 Series (NV4X family)
• New Vertex Shader Features

• Vertex Texture Fetch
• Longer Programs and Dynamic Flow Control
• Vertex Frequency Stream Divider (Instancing)

• New Pixel Shader Features
• Longer Programs and Dynamic Flow Control
• Multiple Render Targets

• Floating-Point Blending and Filtering
• Final Thoughts

©2004 NVIDIA Corporation. All rights reserved.

GeForce 6800 GeForce 6800 –– (NV40)(NV40)

©2004 NVIDIA Corporation. All rights reserved.

GeForce 6800
Revolutionary Performance and
Complete Shader Model 3.0 Support

•• Complete Native Shader Model 3.0 SupportComplete Native Shader Model 3.0 Support
•• Full support for shader model 3.0Full support for shader model 3.0
•• Vertex Texture Fetch / Long programs / Pixel Shader flow controlVertex Texture Fetch / Long programs / Pixel Shader flow control
•• Full speed fp32 shadingFull speed fp32 shading

•• OpenEXR High Dynamic Range RenderingOpenEXR High Dynamic Range Rendering
•• Floating point frame buffer blendingFloating point frame buffer blending
•• Floating point texture filteringFloating point texture filtering

•• Unparalleled PerformanceUnparalleled Performance
•• 222M 222M xtorsxtors / 0.13um @ IBM/ 0.13um @ IBM
• 6 vertex units / 16 pixel pipelines

•• PCI ExpressPCI Express

©2004 NVIDIA Corporation. All rights reserved.

Complete Native Shader Model 3.0 Support

fp32fp32fp24fp24Required Shader Precision

2216 16 (65,535)(65,535)9696Pixel Shader Instructions

3.03.02.02.0Pixel Shader Model

--Dynamic Flow Control
--Loops & Branches
--Subroutines

--Dynamic Flow Control
--Geometry Instancing
--Vertex Texture Fetch
--Displacement Mapping

2216 16 (65,535)(65,535)256256Vertex Shader Instructions

3.03.02.02.0Vertex Shader Model

Shader Model 3.0Shader Model 3.0DX 9.0DX 9.0

©2004 NVIDIA Corporation. All rights reserved.

• Up to 8x pixel shading performance - combination of 4x the
pipes and 2x the math per pipe

• 2x vertex shading performance - MIMD architecture, dual-
issue, very efficient branching

• Next generation UltraShadow - 4x the performance of NV35
32ppc for z/stencil rendering

• 256-bit DDR3 – 1.1 GHz DDR data rate. Some AIC partners
will go faster

GeForce 6800 Graphics
Unparalleled Performance

NV35 has been characterized as a 4x2 / 8x0 architecture.
NV40 is 16x1 / 32x0 architecture.NV40 is 16x1 / 32x0 architecture.

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture FetchVertex Texture Fetch

©2004 NVIDIA Corporation. All rights reserved.

Detail of a Single Vertex Shader Pipeline

FP32
Vector
Unit

Primitive
Assembly

Input Vertex
Data

To Setup

Viewport Processing

Branch
Unit

Vertex
Texture
Fetch

Texture
Cache

FP32
Scalar
Unit

©2004 NVIDIA Corporation. All rights reserved.

An Example of Vertex Texturing:
Displacement Mapping

Flat Tessellated Mesh Displaced Mesh

Displacement
Texture

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Examples

Without Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

With Vertex Textures

©2004 NVIDIA Corporation. All rights reserved.

More Vertex Texture Examples

Without Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

With Vertex Textures

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture

• Multiple vertex texture units
• glGetIntegerv(MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB)
• 4 units on GeForce 6 Series hardware

• Supports GL_NEAREST filtering only (currently)
• Supports mipmapping

• Need to calculate LOD yourself
• Uses standard 2D texture targets

• glBindTexture(GL_TEXTURE_2D, displace_tex);

• Currently must use LUMINANCE_FLOAT32_ATI or
RGBA_FLOAT32_ATI texture formats

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Applications

• Simple displacement mapping
• Note – not adaptive displacement mapping

• Hardware doesn’t tessellate for you
• Terrain, ocean surfaces

• Render to vertex texture
• Provides feedback path from fragment program to vertex program

• Particle systems
• Calculate particle positions using fragment program, read

positions from texture in vertex program, render as points

• Character animation
• Can do arbitrarily complex character animation using fragment

programs, read final result as vertex texture
• Not limited by vertex attributes – can use lots of bones, lots of

blend shapes

©2004 NVIDIA Corporation. All rights reserved.

GPU Particle System

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Fetch Performance

• Look-ups are not free
• Try to cover texture fetch latency with other non-

dependent instructions
• NOT practical for use as extra constant memory
• Measured performance:

• 33 million displaced vertices per second for basic
displacement mapping

• That’s more than a million displaced vertices per
frame!

©2004 NVIDIA Corporation. All rights reserved.

Advanced Vertex Shader ProgrammabilityAdvanced Vertex Shader Programmability

©2004 NVIDIA Corporation. All rights reserved.

Vertex Shader Version Summary

--Vertex Texture Fetch
4--# of texture samplers

Static Flow Control
>= 256>= 256>= 256# constant registers

2424-Dynamic Flow Control depth

--Geometry Instancing Support

-Dynamic Flow Control

321312Temp Registers
-Instruction Predication

2216 16

(65,535)(65,535)6553565535Max # of instructions executed

>= 512256256# of instruction slots

3.02.0a2.0

Note: There is no vertex shader 2.0bNote: There is no vertex shader 2.0b

©2004 NVIDIA Corporation. All rights reserved.

Flow Control: Static vs. Dynamic
void Shader(

...
// Input per vertex or per pixel

in float3 normal,

// Input per batch of triangles
uniform float3 lightDirection,
uniform bool computeLight,

...
)
{
...
if (computeLight) {

...
if (dot(lightDirection, normal)) {

...
}
...

}
...

}

Static Flow Control
(condition constant

for each batch of triangles)

Dynamic Flow Control
(data dependent, so

condition can vary per
vertex or pixel)

©2004 NVIDIA Corporation. All rights reserved.

Using Flow Control

• Subroutines, loops, and conditionals simplify
programming

• Dynamic branches only have ~2 cycle overhead
• Even if vertices take different branches
• Use this to avoid unnecessary vertex work (e.g., skinning)
• If you can branch to skip more than 2 cycles of work, do it!

©2004 NVIDIA Corporation. All rights reserved.

Geometry InstancingGeometry Instancing

©2004 NVIDIA Corporation. All rights reserved.

DirectX 9 Instancing

• What is instancing?
• Allows a single draw call to draw multiple instances

of the same model
• Allows you to minimize draw primitive calls and

reduce CPU overhead
• What is required to use it?

• Microsoft DirectX 9.0c
• VS 3.0 hardware
• API is layered on top of

IDirect3DDevice9::SetStreamSourceFreq
• OpenGL extension coming soon

©2004 NVIDIA Corporation. All rights reserved.

How does it work?

• Primary stream is a single copy of the model
geometry

• Secondary stream(s) contain per-instance data
• Transform matrices, colors, texture indices
• Vertex shader does matrix transformations based

on vertex attributes
• Pointer is advanced each time an instance of the

primary stream is rendered.

Vertex Data
VS_3_0

Stream 0

Stream 1 Per instance data

©2004 NVIDIA Corporation. All rights reserved.

Instancing Demo

• Space scene with 500+ ships, 4000+ rocks
• Complex lighting, post-processing

• Some simple CPU collision work as well
• Dramatically faster with instancing

©2004 NVIDIA Corporation. All rights reserved.

Some Test Results

• Test scene draws 1 million diffuse shaded polygons
• Changing the batch size changes # of drawn instances
• For small batch sizes, can provide extreme win due to PER DRAW CALL

savings
• There is a fixed overhead from adding the extra data into the vertex stream
• Sweet spot depends on many factors (CPU/GPU speed, engine overhead, etc.)

Instancing versus Single Daw Calls

Batch Size

Fr
am

e
R

at
e

Instancing

No Instancing

©2004 NVIDIA Corporation. All rights reserved.

Advanced Pixel Shader ProgrammabilityAdvanced Pixel Shader Programmability

©2004 NVIDIA Corporation. All rights reserved.

Detail of a Single Pixel Shader Pipeline

FP Texture
Processor

Texture
Cache

Branch
Processor

FP32
Shader
Unit 1

FP32
Shader
Unit 2

Input Fragment
Data

Output
Shaded Fragments

Fog
ALU

Texture
Data

• SIMD Architecture
• Dual Issue / Co-Issue
• FP32 Computation
• Shader Model 3.0

• SIMD Architecture
• Dual Issue / Co-Issue
• FP32 Computation
• Shader Model 3.0

Shader Unit 1
4 FP Ops / pixel
Dual/Co-Issue
Texture Address Calc
Free fp16
normalize
+ mini ALU

Shader Unit 1
4 FP Ops / pixel
Dual/Co-Issue
Texture Address Calc
Free fp16
normalize
+ mini ALU

Texture Filter
Bi / Tri / Aniso
1 texture @ full speed
4 tap filter @ full speed
16:1 Aniso w/ Trilinear
FP16 Texture Filtering

Texture Filter
Bi / Tri / Aniso
1 texture @ full speed
4 tap filter @ full speed
16:1 Aniso w/ Trilinear
FP16 Texture Filtering

Shader Unit 2
4 FP Ops / pixel
Dual/Co-Issue
+ mini ALU

Shader Unit 2
4 FP Ops / pixel
Dual/Co-Issue
+ mini ALU

©2004 NVIDIA Corporation. All rights reserved.

NV4x Superscalar Shader Architecture
Computational Performance

ShaderShader
Unit 1Unit 1

TextureTexture

ShaderShader
Unit 2Unit 2

4 Components
1 Op / component
4 ops/pixel

4 Components
1 Op / component
4 ops/pixel

4 Components
1 Op / component
4 ops/pixel

4 Components
1 Op / component
4 ops/pixel

1 Texture/pixel
@ full speed

1 Texture/pixel
@ full speed

8 Ops/pixel8 Ops/pixel

or

©2004 NVIDIA Corporation. All rights reserved.

Instruction Processing
Dual Issue vs. Co-Issue

DX9 “Co-Issue”

• Two independent instructions
executing on the same shader
unit.

• NV4x can do this as 3/1 or 2/2
pairing of components

2 instructions/pixel/cycle

GeForce 6 Series Dual-Issue

• Two instructions executing in the
same cycle on different shader
units.

• Can also be “Co-Issue”
• NV4x can do this
• Unique to NV4x architecture

4 instructions/pixel/cycle

RR GG BB AA

Operation 1 Operation 2

RR GG BB AA

Operation 3 Operation 4

RR GG BB AA

Operation 1 Operation 2

Shader
Unit 1

Shader
Unit 2

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader Version Summary

--Arbitrary Swizzling

224323232Constant Registers

---Loop Count Register

24---Dynamic Flow Control Depth

---Face Register (2-sided lighting)

--Gradient Instructions

32322212Temp Registers

---Indexed Input Registers

--Instruction Predication

102 + 82 + 82 + 8Interpolated Registers

2216 16 (65,535)(65,535)51251232 + 64Executed Instructions

>= 51251251232 + 64Instruction Slots

---Position Register

unlimitedunlimitedunlimited32Texture Instruction Limit

No limit4No limit4Dependent Texture Limit

3.02.0b2.0a2.0

©2004 NVIDIA Corporation. All rights reserved.

Fragment Program Branching Performance

• Static branching is fast
• But still may not be worth it for short branches (less

than ~5 instructions)
• Can use conditional execution instead

• Divergent (data-dependent) branching is more
expensive
• Depends on which pixels take which branches

©2004 NVIDIA Corporation. All rights reserved.

Branch Overhead

• Pixel shader flow control
instruction costs:

• Not free, but certainly usable and can save a
ton of work!

4loop / endloop
2ret
2call
6if / else / endif
4if / endif

Cost (Cycles)Instruction

©2004 NVIDIA Corporation. All rights reserved.

Multiple Lights Demo

Available at http://developer.nvidia.com/object/sdk_samples.html

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader Ray Tracer

Available at http://developer.nvidia.com/object/sdk_effects.html

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shader Looping Example
- Single Pass Volume Rendering

• Application only renders a single quad
• Pixel shader calculates intersection between view ray

and bounding box, discards pixels outside
• Marches along ray between far and near intersection

points, accumulating color and opacity
• Looks up in 3D texture, or evaluates procedural function at

each sample

• Compiles to REP/ENDREP loop
• Allows us to exceed the 512 instruction PS2.0 limit
• All blending is done at fp32 precision in the shader
• 100 steps is interactive on 6800 Ultra

©2004 NVIDIA Corporation. All rights reserved.

1 Pass Volume Rendering Examples

©2004 NVIDIA Corporation. All rights reserved.

Early Outs

• “Early out” is a dynamic branch in the shader
to bypass computation

• Some obvious examples:
• If in shadow, don’t do lighting computations
• If out of range (attenuation zero), don’t light
• These apply to vs.3.0 as well

• Next – a novel example for soft-edged
shadows

©2004 NVIDIA Corporation. All rights reserved.

Soft-Edged Shadows with ps 3.0

Available at http://developer.nvidia.com/object/sdk_samples.html

©2004 NVIDIA Corporation. All rights reserved.

Soft-Edged Shadows with ps 3.0

• Works by taking 8 “test” samples from shadow map
• If all 8 in shadow or all 8 in the light we’re done
• If we’re on the edge (some are in shadow some are in light), do

56 more samples for additional quality

• 64 samples at much lower cost!
• Quick-and-dirty importance sampling

©2004 NVIDIA Corporation. All rights reserved.

ps.3.0 – Soft Shadows

• This demo on GeForce 6 Series GPUs
• Dynamic sampling > 2x faster vs. 64 samples

everywhere
• Completely orthogonal to other parts of the HW (for

example, stencil is still usable)
• Can do even more complex decision-making if

necessary

• Combine with hardware shadow maps
• High-quality real-time “soft” shadows are a reality

©2004 NVIDIA Corporation. All rights reserved.

Hardware Shadow Maps

• Many developers use R32F or R16F shadow
maps
• Render depth to single-channel float texture in shader
• Multiple jittered samples for high quality / soft edges

• NVIDIA HW Shadow Maps = drop-in replacement
• Same setup and pipeline as any shadow map

technique
• Shader code is simpler and faster

©2004 NVIDIA Corporation. All rights reserved.

Hardware Shadow Maps

• Hardware does shadow map comparison for free
• No need to compare and filter in the shader

• In OpenGL, render to DEPTH_COMPONENT texture
• Use TEXTURE_COMPARE_MODE_ARB with

COMPARE_R_TO_TEXTURE

• In D3D, render to a depth format texture
• D3DFMT_D24X8, D3DFMT_D16
• Use tex2Dproj to sample
• Shadow map comparison is automatic

©2004 NVIDIA Corporation. All rights reserved.

Percentage Closer Filtering

• PCF is “free” on GeForce3 up to GeForce 6800
• Just enable bilinear filtering on the shadow map

• Then each tex2Dproj does 4-sample PCF
• And filters them bilinearly for a smooth result!

• Use a single tap for performance
• Or filter multiple taps to get higher quality

• Your choice: gain either 4x performance or 4x
quality
• Compared to rolling your own in a pixel shader

©2004 NVIDIA Corporation. All rights reserved.

Fast Z-only Rendering

• GeForce FX and 6 Series can render Z-only at double-
speed!
• This is important for dynamic shadow maps!
• Big speedup for shadow volumes also
• Can be useful for other applications too.

• Make sure you:
• Disable color writes
• Disable alpha test
• Check the GPU Programming Guide for full list if you’re having

trouble getting double-speed rendering

©2004 NVIDIA Corporation. All rights reserved.

Multiple Render Targets (Multiple Render Targets (MRTsMRTs))

©2004 NVIDIA Corporation. All rights reserved.

Multiple Render Targets (MRT)

• Allows pixel shader to
output up to colors to 4
separate render targets

• Share same depth buffer
• Can be used to reduce

number of passes

Vertex Shader

Pixel Shader

Render
target 1

Render
target 3

Render
target 2

Render
target 4

©2004 NVIDIA Corporation. All rights reserved.

Current MRT Limitations

• No hardware-accelerated antialiasing
• All render targets must have same width, height,

and bit depth
• Okay to mix-and-match formats with the same bit

depth
• Can improve performance, but there are costs

• High bandwidth cost, especially with float formats
• Small overhead per target rendered
• GeForce 6800 has a sweet spot of 3 MRTs

©2004 NVIDIA Corporation. All rights reserved.

Draw Buffers Example

Available at http://developer.nvidia.com/object/sdk_samples.html

©2004 NVIDIA Corporation. All rights reserved.

FloatingFloating--Point Filtering and BlendingPoint Filtering and Blending

©2004 NVIDIA Corporation. All rights reserved.

Floating-Point Filtering and Blending

• GeForce 6 Series GPUs have fully-featured support for
floating-point textures
• fp16 texture filtering (including bilinear, trilinear, anisotropic)
• fp16 blending
• Supports all texture targets, including cube maps, non-power-of-

2 textures with mipmaps

• Exposed in both OpenGL and Direct3D

©2004 NVIDIA Corporation. All rights reserved.

FP16 Applications

• HDR imagery
• 16-bit integer texture formats are not enough for very

high dynamic ranges
• Image based lighting
• Interactive HDR painting
• Multi-pass algorithms

©2004 NVIDIA Corporation. All rights reserved.

What is HDR (High Dynamic Range)?

• Dynamic Range = log10(max_intensity/min_intensity)
• Human perception is 1014:1 (14 dB), with log response
• Standard 32 bpp frame buffer is 255:1 (2.4 dB)

• HDR Rendering Engine:
• Compute surface reflectance, save in HDR buffer

• Contributions from multiple lights are additive (blended)
• Add image-space special effects to HDR buffer

• AA, Glow, Depth of Field, Motion Blur
• Tone-Map HDR buffer to LDR for display

• Good, robust HDR requires floating point

©2004 NVIDIA Corporation. All rights reserved.

High Dynamic Range Imagery

©2004 NVIDIA Corporation. All rights reserved.

GeForce 6800 HDR Technology

• Studio-Quality 16-bit floating point
• 12.0dB dynamic range
• 11-bit logarithmic precision
• Sufficient for nearly any application

• Fully Orthogonal Hardware Support
• Texture Filtering, including trilinear+16x anisotropic
• All OpenGL 1.5 and DX9.0c alpha blending modes

• Easy to Use
• No complicated pixel shader encode/decode
• Already exposed in OpenGL and DirectX 9 APIs

©2004 NVIDIA Corporation. All rights reserved.

HDR: int16 versus fp16

Dynamic range: 200,000:1

HDR with 16-bit Integer HDR with 16-bit Floating Point

Available at http://developer.nvidia.com/object/sdk_samples.html

©2004 NVIDIA Corporation. All rights reserved.

HDR: int16 versus fp16

Available at http://developer.nvidia.com/object/sdk_samples.html

Dynamic range: 200,000:1

HDR with 16-bit Integer HDR with 16-bit Floating Point

©2004 NVIDIA Corporation. All rights reserved.

HDR Paint

©2004 NVIDIA Corporation. All rights reserved.

Floating-Point Blending

• On GeForce FX GPUs, you have to emulate
float blending using “ping-pong buffer”
• Lots of context switches and additional passes
• Blending lots of particles, e.g., is infeasible

• GeForce 6 Series solves this for fp16
• Makes many algorithms cheaper
• Accumulating light contributions, transparency, etc.
• GPGPU array addition

©2004 NVIDIA Corporation. All rights reserved.

FP16 Blending Example

Available at http://developer.nvidia.com/object/sdk_samples.html

©2004 NVIDIA Corporation. All rights reserved.

Final ThoughtsFinal Thoughts

©2004 NVIDIA Corporation. All rights reserved.

Summary

• The GeForce 6 Series GPUs are a wonderful
combination:

• Industry-leading performance
• Unparalleled flexibility

• Take advantage of all its features
• Find new uses for the technology
• If you thought abusing the fixed-function pipeline was

fun, this will be so much better…

©2004 NVIDIA Corporation. All rights reserved.

References

• Tons of resources at
http://developer.nvidia.com

• NVIDIA SDK
• http://developer.nvidia.com/object/sdk_home.html

• Individual Standalone Samples (.zip)
• http://developer.nvidia.com/object/sdk_samples.html

• Individual FX Composer Effects (.fx)
• http://developer.nvidia.com/object/sdk_effects.html

• Documentation
• NVIDIA GPU Programming Guide

• http://developer.nvidia.com/object/gpu_programming_guide.html
• Recent Conference Presentations

• http://developer.nvidia.com/object/presentations.html

©2004 NVIDIA Corporation. All rights reserved.

Questions?

• Support e-mail:
• devrelfeedback@nvidia.com [Technical Questions]
• sdkfeedback@nvidia.com [Tools Questions]

