
GPU Performance
Tools and Analysis

Techniques
Sébastien Dominé

NVIDIA

©2004 NVIDIA Corporation. All rights reserved.

Agenda

• Performance Tools Survey
• Performance Methodologies and Practice
• Next generation Performance Tools
• Conclusion
• Q & A

©2004 NVIDIA Corporation. All rights reserved.

Agenda

• Performance Tools Survey
• Performance Methodologies and Practice
• Next generation Performance Tools
• Conclusion
• Q & A

©2004 NVIDIA Corporation. All rights reserved.

Performance Tools Survey

• NVPerfHUD
• Direct3D9 Performance HUD

• NVShaderPerf
• Shader Performance Analysis

• FX Composer
• HLSL Shader Editor IDE

©2004 NVIDIA Corporation. All rights reserved.

NVPerfHUD 2.0

• Overlay graph that
displays stats from :
• Direct3D9 API

interception layer
• Direct3D Driver
• Requires NVIDIA GPU

• Able to bypass and
inject some API calls to
assist with performance
analysis

• Only works on your
own application

Image courtesy of FutureMark Corp.

©2004 NVIDIA Corporation. All rights reserved. Image courtesy of FutureMark Corp.

Current Memory footprint:Current Memory footprint:
••AGPAGP
••Video MemoryVideo Memory

Driver Instrumentation:Driver Instrumentation:
••Time spent in Frame Time spent in Frame
••Time spent in Driver Time spent in Driver
••Driver waiting for GPU (Spin)Driver waiting for GPU (Spin)
••GPU Idle Performance CounterGPU Idle Performance Counter

Histogram of Draw Primitives BatchesHistogram of Draw Primitives Batches

Total number of Draw Primitives Batches:Total number of Draw Primitives Batches:
••CurrentCurrent
••Value over timeValue over time

••Frame rateFrame rate
••Number of triangles/frameNumber of triangles/frame
••Elapsed time in the sessionElapsed time in the session

©2004 NVIDIA Corporation. All rights reserved.

What’s new in 2.0?

3D Application

DirectX Runtime

NVIDIA Direct3D Driver

NVIDIA HW

NVPerfHUD 1.0

3D Application

DirectX Runtime

NVIDIA Direct3D
Driver

NVIDIA HW

NVPerfHUD 2.0

stats

©2004 NVIDIA Corporation. All rights reserved.

• DrawPrimitives/DrawIndexedPrimitives
Histogram

100

200

0
100 1000500

of triangles

of

 D
ra

w
P

rim
iti

ve
s

©2004 NVIDIA Corporation. All rights reserved.

Texture Stage States

Image courtesy of FutureMark Corp.

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shaders 1.x

Image courtesy of FutureMark Corp.

©2004 NVIDIA Corporation. All rights reserved.

Pixel Shaders 2.0
Pixel Shaders 3.0

Image courtesy of FutureMark Corp.

©2004 NVIDIA Corporation. All rights reserved.

2x2 Texture replacement2x2 Texture replacement

Image courtesy of FutureMark Corp.

©2004 NVIDIA Corporation. All rights reserved.

•Null DrawPrimitive mode
•Null Viewport mode

Image courtesy of FutureMark Corp.

©2004 NVIDIA Corporation. All rights reserved.

NVPerfHUD - Overhead

• NVPerfHUD is fairly lean but...
• Overlay graph and DLL interception can costs up

to 1.3%
• Driver instrumentation can cost up to 6%
• Upper bound for total cost: 7%

©2004 NVIDIA Corporation. All rights reserved.

v2f BumpReflectVS(a2v IN,
uniform float4x4 WorldViewProj,
uniform float4x4 World,
uniform float4x4 ViewIT)

{
v2f OUT;
// Position in screen space.
OUT.Position = mul(IN.Position, WorldViewProj);
// pass texture coordinates for fetching the normal map
OUT.TexCoord.xyz = IN.TexCoord;
OUT.TexCoord.w = 1.0;
// compute the 4x4 tranform from tangent space to object space
float3x3 TangentToObjSpace;
// first rows are the tangent and binormal scaled by the bump scale
TangentToObjSpace[0] = float3(IN.Tangent.x, IN.Binormal.x, IN.Normal.x);
TangentToObjSpace[1] = float3(IN.Tangent.y, IN.Binormal.y, IN.Normal.y);
TangentToObjSpace[2] = float3(IN.Tangent.z, IN.Binormal.z, IN.Normal.z);
OUT.TexCoord1.x = dot(World[0].xyz, TangentToObjSpace[0]);
OUT.TexCoord1.y = dot(World[1].xyz, TangentToObjSpace[0]);
OUT.TexCoord1.z = dot(World[2].xyz, TangentToObjSpace[0]);
OUT.TexCoord2.x = dot(World[0].xyz, TangentToObjSpace[1]);
OUT.TexCoord2.y = dot(World[1].xyz, TangentToObjSpace[1]);
OUT.TexCoord2.z = dot(World[2].xyz, TangentToObjSpace[1]);
OUT.TexCoord3.x = dot(World[0].xyz, TangentToObjSpace[2]);
OUT.TexCoord3.y = dot(World[1].xyz, TangentToObjSpace[2]);
OUT.TexCoord3.z = dot(World[2].xyz, TangentToObjSpace[2]);
float4 worldPos = mul(IN.Position, World);
// compute the eye vector (going from shaded point to eye) in cube space
float4 eyeVector = worldPos - ViewIT[3]; // view inv. transpose contains eye position in world space in last row.
OUT.TexCoord1.w = eyeVector.x;
OUT.TexCoord2.w = eyeVector.y;
OUT.TexCoord3.w = eyeVector.z;
return OUT;

}

///////////////// pixel shader //////////////////

float4 BumpReflectPS(v2f IN,
uniform sampler2D NormalMap,
uniform samplerCUBE EnvironmentMap,

uniform float BumpScale) : COLOR
{

// fetch the bump normal from the normal map
float3 normal = tex2D(NormalMap, IN.TexCoord.xy).xyz * 2.0 - 1.0;
normal = normalize(float3(normal.x * BumpScale, normal.y * BumpScale, normal.z));
// transform the bump normal into cube space
// then use the transformed normal and eye vector to compute a reflection vector
// used to fetch the cube map
// (we multiply by 2 only to increase brightness)
float3 eyevec = float3(IN.TexCoord1.w, IN.TexCoord2.w, IN.TexCoord3.w);
float3 worldNorm;
worldNorm.x = dot(IN.TexCoord1.xyz,normal);
worldNorm.y = dot(IN.TexCoord2.xyz,normal);
worldNorm.z = dot(IN.TexCoord3.xyz,normal);
float3 lookup = reflect(eyevec, worldNorm);
return texCUBE(EnvironmentMap, lookup);

}

NVShaderPerf

Inputs:
•HLSL
•GLSL (fragments)
•!!FP1.0
•!!ARBfp1.0
•PS1.x,PS2.x,PS3.x
•VS1.x,VS2.x, VS3.x

NVShaderPerf

GPU Arch:
•GeForce FX (NV3X)
•GeForce 6 Series (NV4X)
•Quadro FX (NV3X+NV4X)

Outputs:Outputs:
••Assembly codeAssembly code
••# of cycles# of cycles
••# of temporary registers# of temporary registers
••Pixel throughputPixel throughput
••Forces all fp16 and all fp32Forces all fp16 and all fp32
(gives performance bounds)(gives performance bounds)

©2004 NVIDIA Corporation. All rights reserved.

NVShaderPerf

Direct3D Application

DirectX Runtime

NVIDIA Driver

HW

Unified Compiler

HLSL

Direct3D shader
op-codes

HW Binary

API agnostic
shader op-codes

DirectX Driver OpenGL Driver

OpenGL Application

GLSL

©2004 NVIDIA Corporation. All rights reserved.

v2f BumpReflectVS(a2v IN,
uniform float4x4 WorldViewProj,
uniform float4x4 World,
uniform float4x4 ViewIT)

{
v2f OUT;
// Position in screen space.
OUT.Position = mul(IN.Position, WorldViewProj);
// pass texture coordinates for fetching the normal map
OUT.TexCoord.xyz = IN.TexCoord;
OUT.TexCoord.w = 1.0;
// compute the 4x4 tranform from tangent space to object space
float3x3 TangentToObjSpace;
// first rows are the tangent and binormal scaled by the bump scale
TangentToObjSpace[0] = float3(IN.Tangent.x, IN.Binormal.x, IN.Normal.x);
TangentToObjSpace[1] = float3(IN.Tangent.y, IN.Binormal.y, IN.Normal.y);
TangentToObjSpace[2] = float3(IN.Tangent.z, IN.Binormal.z, IN.Normal.z);
OUT.TexCoord1.x = dot(World[0].xyz, TangentToObjSpace[0]);
OUT.TexCoord1.y = dot(World[1].xyz, TangentToObjSpace[0]);
OUT.TexCoord1.z = dot(World[2].xyz, TangentToObjSpace[0]);
OUT.TexCoord2.x = dot(World[0].xyz, TangentToObjSpace[1]);
OUT.TexCoord2.y = dot(World[1].xyz, TangentToObjSpace[1]);
OUT.TexCoord2.z = dot(World[2].xyz, TangentToObjSpace[1]);
OUT.TexCoord3.x = dot(World[0].xyz, TangentToObjSpace[2]);
OUT.TexCoord3.y = dot(World[1].xyz, TangentToObjSpace[2]);
OUT.TexCoord3.z = dot(World[2].xyz, TangentToObjSpace[2]);
float4 worldPos = mul(IN.Position, World);
// compute the eye vector (going from shaded point to eye) in cube space
float4 eyeVector = worldPos - ViewIT[3]; // view inv. transpose contains eye position in world space in last row.
OUT.TexCoord1.w = eyeVector.x;
OUT.TexCoord2.w = eyeVector.y;
OUT.TexCoord3.w = eyeVector.z;
return OUT;

}

///////////////// pixel shader //////////////////

float4 BumpReflectPS(v2f IN,
uniform sampler2D NormalMap,
uniform samplerCUBE EnvironmentMap,

uniform float BumpScale) : COLOR
{

// fetch the bump normal from the normal map
float3 normal = tex2D(NormalMap, IN.TexCoord.xy).xyz * 2.0 - 1.0;
normal = normalize(float3(normal.x * BumpScale, normal.y * BumpScale, normal.z));
// transform the bump normal into cube space
// then use the transformed normal and eye vector to compute a reflection vector
// used to fetch the cube map
// (we multiply by 2 only to increase brightness)
float3 eyevec = float3(IN.TexCoord1.w, IN.TexCoord2.w, IN.TexCoord3.w);
float3 worldNorm;
worldNorm.x = dot(IN.TexCoord1.xyz,normal);
worldNorm.y = dot(IN.TexCoord2.xyz,normal);
worldNorm.z = dot(IN.TexCoord3.xyz,normal);
float3 lookup = reflect(eyevec, worldNorm);
return texCUBE(EnvironmentMap, lookup);

}

NVShaderPerf - Example

©2004 NVIDIA Corporation. All rights reserved.

NVShaderPerf Next

• Support for:
• GLSL (vertices)
• !!VP1.0
• !!ARBvp1.0
• Cg

• Standalone Libraries for easy integration to third
party tools

©2004 NVIDIA Corporation. All rights reserved.

FX Composer 1.5

• IDE for HLSL authoring,
debugging and optimization

• Vertex and Pixel Shader
scheduling

• Direct3D9 VS/PS op-code
disassembly

• Advanced texture generation
for baking Look Up Tables

• Visualization of
RenderTargets EverQuest® content courtesy Sony Online Entertainment

©2004 NVIDIA Corporation. All rights reserved.

FX Composer – Shader Perf

•Disassembly

•Target GPU

•Driver version match

•Number of Cycles

•Number of Registers

•Pixel Throughput

•Forces all fp16 and all fp32
(gives performance bounds)

©2004 NVIDIA Corporation. All rights reserved.

Agenda

• Performance Tools Survey
• Performance Methodologies and Practice
• Next generation Performance Tools
• Conclusion
• Q & A

©2004 NVIDIA Corporation. All rights reserved.

Performance Methodologies

• Basic principles
• Practice identifying the problems
• Learn how to fix the problems

©2004 NVIDIA Corporation. All rights reserved.

Basic Principles

• Pipelined architecture
• Each part needs the data from the previous part to

do its job
• Bottleneck identification and elimination
• Balancing the pipeline

©2004 NVIDIA Corporation. All rights reserved.

Pipelined Architecture (simplified view)

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Vertices Pixels

©2004 NVIDIA Corporation. All rights reserved.

The Terrible Bottleneck

Frame
buffer

Fragment
Processor

Texture
Storage +
Filtering

RasterizerGeometry
Processor

Geometry
StorageCPU

Limits the speed of the pipeline

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification

• Need to identify it quickly and correctly
• Guessing what it is without testing can waste a lot of

coding time
• Two ways to identify a stage as the bottleneck

• Modify the stage itself
• Rule out the other stages

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification

• Modify the stage itself
• By decreasing its workload

FPS FPS

• If performance improves greatly, then
you know this is the bottleneck

• Careful not to change the workload of
other stages!

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification

• Rule out the other stages
• By giving all of them little or no work

FPS

• If performance doesn’t change
significantly, then you know this is the
bottleneck

• Careful not to change the workload of
this stage!

FPS

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification

• Most changes to a stage affect other stages as
well

• Can be hard to pick what test to do
• Let’s go over some tests

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: CPU

• CPU workload
• What could the problem be?

• Could be the game
• Complex physics, AI, game logic
• Memory management
• Data structures

• Could be incorrect usage of API
• Check debug runtime output for errors and warnings

• Could be the display driver
• Too many batches

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: CPU

• Reduce the CPU workload
• Temporarily turn off

• Game logic
• AI
• Physics
• Any other thing you know to be expensive on the CPU as

long as it doesn’t change the rendering workload

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: CPU

• Rule out other stages
• Kill the DrawPrimitive calls

• Set up everything as you normally would but when the time
comes to render something, just do not make the
DrawPrimitive* call

• Problem: you don’t know what the runtime or driver does
when a draw primitive call is made

• Use VTUNE or NVPerfHUD
• These let you see right away if the CPU time is in your app

or somewhere else

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Vertex

• Vertex Bound
• What could the problem be?

• Transferring the vertices and indices to the card
• Turning the vertices and indices into triangles
• Vertex cache misses
• Using an expensive vertex shader

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Vertex

• Reduce vertex overhead
• Use simpler vertex shader

• But still include all the data for the pixel shader
• Send fewer Triangles??

• Not good: can affect pixel shader, texture, and frame
buffer

• Decrease AGP Aperture??
• Maybe not good: can affect texture also, depends on

where your textures are
• Use NVPerfHUD to see video memory

• If it’s full then you might have textures in AGP
• Try to change the Vertex Format with a smaller footprint

• Bus Bandwidth consideration – unlikely though

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Vertex

• Rule out other stages
• Render to a smaller backbuffer or null viewport;

this can rule out
• Texture
• Frame buffer
• Pixel shader

• Test for a CPU bottleneck

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Texture

• Texture Bound
• What could the problem be?

• Texture cache misses
• Huge Textures
• Bandwidth
• Texturing out of AGP

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Texture

• Reduce Texture bandwidth
• Use tiny (2x2) textures

• Good, but if you are using alpha test with texture alpha,
then this could actually make things run slower due to
increased fill. It is still a good easy test though

• Use mipmaps if you aren’t already
• Use compressed textures (DXT1/3/5)

• Also, increases the number of texels in the cache.
• For normal maps, use DXT5 with y in the G channel

(6bit), x in the alpha (8bit) and use shader for
hemispherical projection (Also See Mipmapping
Normal Maps)

• Turn off anisotropic filtering if you have it on

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Fragment

• Fragment Bound
• What could the problem be?

• Expensive pixel shader
• Rendering more fragments than necessary

• High depth complexity
• Poor z-cull

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Fragment

• Modify the stage itself
• Just output a solid color

• Good: does no work per fragment
• But also affects texture, so you must then rule out

texture
• Use simpler math

• Good: does less work per fragment
• But make sure that the math still indexes into the

textures the same way or you will change the texture
stage as well

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: FB

• Frame Buffer bandwidth
• What could the problem be?

• Touching the buffer more times than necessary
• Multiple passes

• Tons of alpha blending – too many read/modify/writes
• Using too big a buffer

• Allocating stencil when you don’t need it
• A lot of time dynamic reflection cube-maps can get

away with r5g6b5 color instead of x8r8g8b8

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: FB

• Modify the stage itself
• Use a 16 bit depth buffer instead of a 24 bit one
• Use a 16 bit color buffer instead of a 32 bit one

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification

• Now we have a bunch of practical ideas to find
out if each stage is a bottleneck or not

• Questions on Bottleneck Identification?

©2004 NVIDIA Corporation. All rights reserved.

Practice

• Now lets look at some sample problems and see
if we can find out where the problem is

• Use NVPerfHUD to help

©2004 NVIDIA Corporation. All rights reserved.

Practice: Clean the Machine

• Please use the exact target configuration!
• Make sure that your machine is ready for

analysis
• Make sure you have the right drivers
• Use a release build of the game (optimizations on)
• Check debug output for warnings or errors but.....
• Use the release d3d runtime!!!
• No maximum validation
• No driver overridden anisotropic filtering or anti-

aliasing
• Make sure v-sync is off

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 1

• A seemingly simple
scene runs horribly slow
• Narrow in on the bottleneck

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 1

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),
0, //declares this as static
PARTICLE_VERT::FVF,
D3DPOOL_DEFAULT,
&m_pVB,
NULL);

• Dynamic vertex buffer
• BAD creation flags

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 1

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),
D3DUSAGE_DYNAMIC |
D3DUSAGE_WRITEONLY,
PARTICLE_VERT::FVF,
D3DPOOL_DEFAULT,
&m_pVB,
NULL);

• Dynamic vertex buffer
• GOOD creation flags

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 1

m_pVB->Lock(0, 0,(void**)&quadTris, 0);

• Dynamic Vertex Buffer
• BAD Lock flags

• No flags at all!?
• That can’t be good....

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 1

m_pVB->Lock(0, 0,(void**)&quadTris,
D3DLOCK_NOSYSLOCK | D3DLOCK_DISCARD);

• Dynamic Vertex Buffer
• GOOD Lock flags

• Use D3DLOCK_DISCARD the first time you
lock a vertex buffer each frame
• And again when that buffer is full
• Otherwise just use NOSYSLOCK

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 2

• Another slow scene
• What’s the problem here

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 2

• Texture bandwidth overkill
• Use mipmaps
• Use dxt1 if possible

• Some cards can store compressed data in cache

• Use smaller textures when they are fine
• Does the grass blade really need a 1024x1024 texture?

• Maybe

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

• Another slow scene
• Who wants a prize?

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

• Expensive pixel shader
• Can have huge performance effect
• Only 3 verts, but maybe a million pixels

• That’s only 1024x1024

Look at all the pixels!!

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

32 cycles BAD

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

12 cycles GOOD

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

• What changed?
• Moved math that was constant across the triangle

into the vertex shader

• Used ‘half’ instead of ‘float’

• Got rid of normalize where it wasn’t necessary
• See Normalization Heuristics
• http://developer.nvidia.com

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 4

• The last one
• Audience: there are no more prizes, but we’ve locked the doors

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 4

• Too many batches
• Was sending every quad as it’s own batch
• Instead, group quads into one big VB then send that with

one call

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 4

• What if they use different textures?
• Use texture atlases
• Put the two textures into a single texture and use a

vertex and pixel shader to offset the texture coordinates

©2004 NVIDIA Corporation. All rights reserved.

Agenda

• Performance Tools Survey
• Performance Methodologies and Practice
• Next generation Performance Tools
• Conclusion
• Q & A

©2004 NVIDIA Corporation. All rights reserved.

Next Generation Performance Tools

• NVIDIA Performance Kit (PerfKit)
• Instrumented Driver
• NVIDIA Developer Control Panel (NVDevCPL)
• NVIDIA Plug-in for Microsoft PIX for Windows
• Sample Code for OpenGL and DirectX

©2004 NVIDIA Corporation. All rights reserved.

ApplicationApplication

Problem

Common Profilers

APIAPI

DriverDriver

HardwareHardware

How to evaluate
performance here?

PIX for Windows
OGLDebug

©2004 NVIDIA Corporation. All rights reserved.

Solution

Windows
Performance
Data Helper
(PDH)

NVIDIA Instrumented
Driver
NVIDIA Instrumented
Driver

VTune

Game Engine

OpenGL DriverOpenGL Driver

Direct3D DriverDirect3D Driver

NVIDIA Developer
Control Panel

Plug-in for PIX for Windows

GPUGPUNVPerfHUD 3.0

PIX for Windows

©2004 NVIDIA Corporation. All rights reserved.

Instrumented Driver

• Special Instrumented Driver
• Built with regular drivers
• Includes NVPMAPI.DLL

• Exposes Driver and HW Performance Counters
• Compatible with Windows WMI and PDH
• New Driver Instrumentation tab in NVIDIA

Display Control Panel

©2004 NVIDIA Corporation. All rights reserved.

Instrumented Driver

©2004 NVIDIA Corporation. All rights reserved.

Developer Control Panel

• Control per-counter specifics
• Enabled or not
• Raw values or % values
• Etc.

• Manage multiple counter-sets
• Tray Icon: fast application of presets

• Provides HW specific information

©2004 NVIDIA Corporation. All rights reserved.

Developer Control Panel: Demo

©2004 NVIDIA Corporation. All rights reserved.

PIX for Windows

• New tools from Microsoft
• Coming from Xbox success
• Focused on Direct3D API instrumentation

©2004 NVIDIA Corporation. All rights reserved.

PIX for Windows Plug-in

• NVIDIA’s performance counters
• PIX’s PDH adaptor
• NVIDIA’s Pix Plug-in

• higher frequency
• lower latency

Windows
Performance
Data Helper
(PDH)

NVIDIA
Instrumented Driver
NVIDIA
Instrumented Driver

Plug-in for PIX for Windows

PIX for Windows

©2004 NVIDIA Corporation. All rights reserved.

Plug-in for PIX: Demo

©2004 NVIDIA Corporation. All rights reserved.

NVPerfKit Code Samples

• Includes C++ helper classes for PDH access and display
• PDHHelper
• Trace<T>
• TraceDisplay

• Various display types
• OpenGL and Direct3D implementations

• Sample Code and App
• Identical usage code in Direct3D and OpenGL
• Illustrates sampling issues and dynamic reconfigurability

©2004 NVIDIA Corporation. All rights reserved.

NVPerfKit Code Samples

• Members
• CPDHHelper pdh;
• Ctrace<float> trace;
• CTraceDisplay tracedisplay(0,0,0.5,0.25);

• Init
• pdh.add(“\\NVIDIA GPU Performance(GPU0/%

gr_idle)\\% GPU Counter Value”);
• trace.name(“idle”);
• tracedisplay.insert(&trace,0,1,0,0.2);

• Periodically
• pdh.sample();
• trace.insert(pdh.value(0).doubleValue);
• tracedisplay.display(CTraceDisplay::LINE_STREAM);

©2004 NVIDIA Corporation. All rights reserved.

Conclusion

• Comprehensive Suite of Performance Tools
• performance information at all levels

• Direct3D API
• Direct3D and OpenGL Driver
• Hardware

• Provide it in a variety of venues
• Microsoft WMI/PDH
• Microsoft PIX for Windows
• User application
• NVPerfHUD

©2004 NVIDIA Corporation. All rights reserved.

Other talks interest…

• Transforming Production Workflows with the GPU
Kevin Bjorke, NVIDIA Corporation
Monday, 3:45 – 5:30 pm; Wednesday, 10:30 am –
12:15; Thursday, 1:45 – 3:15 pm
Room 401

• HLSL Shader Workshop: Introductory
Microsoft Corporation, sponsored by NVIDIA and AMD
Monday & Wednesday, 10:30 am and 3:45 pm
Tuesday & Thursday, 1:45 pm
Room 402A

• HLSL Shader Workshop: Advanced
Microsoft Corporation, sponsored by NVIDIA and AMD
Monday & Wednesday, 1:45 pm
Tuesday & Thursday, 10:30 am and 3:45 pm
Room 402A

©2004 NVIDIA Corporation. All rights reserved.

Questions?

• What else can we do for you?
• sdkfeedback@nvidia.com

