GPU Performance
Tools and Analysis
Technigues

Sébastien Dominé
NVIDIA

Agenda <<%

Performance Tools Survey
Performance Methodologies and Practice
Next generation Performance Tools

Conclusion
Q&A

Performance Tools Survey

©2004 NVIDIA Corporation. All rights reserved.

Performance Tools Survey @%

e NVPerfHUD
* Direct3D9 Performance HUD

* NVShaderPerf
* Shader Performance Analysis

e FX Composer
* HLSL Shader Editor IDE

NVPerfHUD 2.0

Overlay graph that
displays stats from :

* Direct3D9 API
Interception layer

* Direct3D Driver
* Requires NVIDIA GPU

Able to bypass and
Inject some API calls to
assist with performance
analysis

Only works on your
own application

©2004 NVIDIA Corporation. All rights reserved.

flﬂmM\(\mﬂnn Mot o A /
Eammsa el L USRI

adhianko=

Image courtesy of FutureMark Corp.

TRIS/FramE 17029720 T:|.meJ B2, 4 @'ecs‘ - “o T Fr A R, W ¢ H¥PerfHUD 2.0 - HOT FOR BENCHMARKING
= < Jp wea B .

Lo ool
S ¥

Ko
o =

[sFramerate | . | les Batches:
{eNUmIoEr; of trlangles/frame RIS}
* -Elapsed HmENFtherSESSIoN

=Driver Waltlng i GPU (Spin)
-(‘DU**'u.e‘rer‘fb‘nna.M‘,‘ \,o‘llnter |

amme

— ——— ——— 1l

1000 ’
s aavrant |\/|r\mn|‘r\l f\n"'lf\lf'ln L Lt

e o H'lstogram of Draw! Primitives Batches)

T

1]

e Vid: 101 MB

rinage courtesy of FuwreMarl. Corp.

©2004 NVIDIA Corporation. All rigries iconn

What's new Iin 2.0?

3D Application

DirectX Runtime

NVIDIA Direct3D Driver

NVPerfHUD 1.0

NVIDIA HW

©2004 NVIDIA Corporation. All rights reserved.

3D Application

NVPerfHUD 2.0

DirectX Runtime

NVIDIA Direct3D

Driver stats

NVIDIA HW

>

* DrawPrimitives/DrawlndexedPrimitives
Histogram

200

100

0p)
O
=
=
:
D
O
S
H

500
of triangles

©2004 NVIDIA Corporation. All rights reserved.

FP5s: 17 TRI=<Frame: 272390 Time: 35.6 secs HVPerfHUD 2.0 - HOT FOR BEHCHMARKING

Texture Stage States

Humber of DP call=s: 403

m M= per frame Driver time CFU waits for GPUO = GFU idle = V¥id: B3 ME
AGP: 4 ME

©2004 NVIDIA Corporation. All rights reserved. Image Courtesy Of FutureMaI’k COI‘p

23 TRIs/Frai 9 .
Pixel Shaders 1.x =
¥
-
. IADMARK = PS4 Cimer 1:01.94 Frame: 1480 ¥

©2004 NVIDIA Corporation. All rights reserved. Image COUI‘tesy Of FutureMark COI‘.. e

FES: 13 TRI=-Frame!- 1227238 el HVEerfHOD 2.0 = NOT FOR BERCHMAREING
v i ~ 3 4

3 : \ 0
p s

Pixel Shaders 2.0
Pixel Shaders:3.0

¥

-

SR s T

- AW |:|

L e fl;ame Drig PS4 Sime 0:57.13 | Frame: 2626 gég 130}{%]3

©2004 NVIDIA Corporation. All rights reserved. Image Courtesy Of Futu reMark Corp

FPS: 19 TRI=<Frame: 344384 Time: 78.2 =ec=

2x2- Texture replacement
|

’3.

:lf'x_ﬁ\

HN¥FerfHUD 2.0 — HOT FOR BENCHMARKING

Humber of DP call=s: 157

m H= per framne Driver time CPU wait= for GFU GPT idle

©2004 NVIDIA Corporation. All rights reserved.

Image courtesy of FutureMark Corp.

ey e s e =

FPS: 132 TRIs<Frame: 781650 Time: 60.9 secs H¥FertHUD 2.0 — HOT FOR BENCHHMARKIHG

Null DrawPrimitive mode
*Null Viewport mode

ber of DP calll=: 2

.

1AL wm
J—

f———— I

m = per framne Driver time CFU waits for GFU = GFU idle = YWid: 100 MBE
AGF: 9 HE

Image courtesy of FutureMark Corp.

©2004 NVIDIA Corporation. All rights reserved.

NVPerfHUD - Overhead <<%

NVPerfHUD is fairly lean but...

Overlay graph and DLL interception can costs up
to 1.3%

Driver instrumentation can cost up to 6%
Upper bound for total cost: 7%

©2004 NVIDIA Corporation. All rights reserved.

NVShaderPerf

NVShaderPerf

e CAWINDOWSsystem 32\emd. exe

dpd »B.x, »1,. »l

rag rA.w, rB.x

nrm rB.xy=,. ti

mad »1.xy=, »1, *A.uw,. rA
nrm r2.xyz, ri

nrm rl.xy=,. t2

dpd »2.x, r2, »rl

max rl.w, p2.x. c?.x

pow A w, r1.w, c5.x

add r1.w, rB.w, —c7.x
mouv »2.uw, cb.x

add »2.w, r2.w, —c?.x
recp r2.uw, r2.u

mul_sat r2.w, rl.w, r2_u
mad »l.w, r2.w. c?.y. c?.z
mul »2.w, r2.w, r2.u

mul 1w, rl.w, r2.u

mouv »2.x, c9.u

add »2.w, r2.x, —cB.x
mad pl.w, rl.w, r2.u,. cB.x
dpd »B.x, r#, »l

mul pA.w, rB.w,. rl.u

mul »1l.xy=, vB.w,. c4
A I'rl Lh o'l

Outputs:

=Assembly code

=7t of cycles

=/ of temporary registers

*Pixel throughput

eForces all fpl6 and all fp32
gives performance bounds)

Cyéies:.21.éﬂ ;: R ﬁegs-Uéed: 3 = R Regzs Max Index (@ based
FPixel throughput <assuming 1 cycle texture lookup? 384.76 HMH

C \TemB\NUShaderPerf 61_"77>

NVShaderPerf "%

Direct3D Application| | OpenGL Application

Direct3D shader -
op-codes

APl agnostic
shader op-codes

©2004 NVIDIA Corporation. All rights reserved.

NVShaderPerf- Example

e C:WWINDOWSsystem 3 2emd. exe
G TempsNUShaderPerf _6l_7/>NMUShaderPerf .exe —a nvdd —allprec —v B gunchy_HLEL.fxll

Running performance on file goochy_HLSL.fx

Technigue <Untextured>, Pass <{p@>
HU4
Target: GeForce 68HB Ultra (NU4B> :: Unified Compiler: whl .77
Cycles: 21.88 = R Regs Used: 3 :: R Regs Max Index <8 based>: 2
Pixel throughput <assuming 1 cycle texture lookup? 3684.76 HMP-=

Cycles: 14.88 :: R Regs Used: 2 z: R Regs Max Index <@ hased>:
o C:\WINDOWS\system32\cm Pixel throughput <assuming 1 cycle texture lookup? 457.14 HMP-s

C:sTemp MUShaderPerf _61_

Cycles: 21.88 = R Regs Used: 3 :: R Regs Max Index <8 based>:
Pixel throughput <assuming 1 cycle texture lookup? 3684.76 HMP-=

C:Temp~NUShaderPerf_ hi1_77>
Technigque <Untextured’,. Fass <pws
NU34
Target: GeForceF® 5288 Ultra (HU34)> :: Unified Compiler: uvbl.??
Cyclez: 51 :: # R Registers: 4
Pixel throughput {assuming 1 cycle texture lookup? 15.6%9 MP-/=

Running performance on f

Shader performance using all
Cycles: 51 :: # R Registers:
Pixel throughput (aszuming 1

Cycles: 51 :: # R Registers:
Pixel throughput {assuming 1 cycle texture lookup? 15.6%9 MP-/=

C:sTemp“HMUShaderPerf _61_77>

©2004 NVIDIA Corporation. All rights reserved.

NVShaderPerf Next

* Support for:
* GLSL (vertices)
° 1IVP1.0
e 1IARBvp1.0
e Cg
e Standalone Libraries for easy integration to third
party tools

FX Composer 1.5

IDE for HLSL authoring,
debugging and optimization
Vertex and Pixel Shader

scheduling

Direct3D9 VS/PS op-code
disassembly

Advanced texture generation @ @
for baking Look Up Tables

Visualization of
RenderTargetS Everuest® content courtesy Sony Online Entertainment

©2004 NVIDIA Corporation. All rights reserved.

FX Composer — Shader Perf

*Disassembly
eTarget GPU

eDriver version match

*Number of Cycles P CEER T

*Number of Registers
*Pixel Throughput

*Forces all fp16 and all fp32
(gives performance bounds)

Properties

©2004 NVIDIA Corporation. All rights reserved.

S,

Performance Methodologies and Practice

©2004 NVIDIA Corporation. All rights reserved.

Performance Methodologies @%

* Basic principles
* Practice identifying the problems
* Learn how to fix the problems

Basic Principles <<%

* Pipelined architecture

* Each part needs the data from the previous part to
do its job

* Bottleneck identification and elimination
* Balancing the pipeline

S ——

Pipelined Architecture (simplified vieﬁz

Geometry
Storage

Geometry
Processor

Vertices

©2004 NVIDIA Corporation. All rights reserved.

Rasterizer

Fragment
Processor

Frame
buffer

Texture
Storage +
Filtering

Pixels

The Terrible Bottleneck

Limits the speed of the pipeline

Geometry Geometry Rasterizer Fragment
Storage Processor Processor

Texture /
Storage +

Filtering

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck ldentification @%

* Need to identify it quickly and correctly

* Guessing what it is without testing can waste a lot of
coding time

* Two ways to identify a stage as the bottleneck
* Modify the stage itself
* Rule out the other stages

Bottleneck Identification

* Modify the stage itself
* By decreasing its workload

H — Ea

* If performance improves greatly, then
you know this is the bottleneck

* Careful not to change the workload of
other stages!

Bottleneck Identification

* Rule out the other stages
* By giving all of them little or no work

lm - L

* If performance doesn’t change
significantly, then you know this is the

bottleneck
e Careful not to change the workload of
this stage!

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck ldentification @%

* Most changes to a stage affect other stages as
well

* Can be hard to pick what test to do

* | et's go over some tests

Bottleneck Identification: CPU <<%

e CPU workload [h

* What could the problem be?
* Could be the game
* Complex physics, Al, game logic

* Memory management

e Data structures
* Could be incorrect usage of API

* Check debug runtime output for errors and warnings
* Could be the display driver

* Too many batches

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: CPU @%

e Reduce the CPU workload [b

°* Temporarily turn off
* Game logic
o Al

* Physics

* Any other thing you know to be expensive on the CPU as
long as it doesn’t change the rendering workload

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: CPU @%

* Rule out other stages [b

e Kill the DrawPrimitive calls

* Set up everything as you normally would but when the time
comes to render something, just do not make the

DrawPrimitive* call

* Problem: you don’t know what the runtime or driver does
when a draw primitive call is made

e Use VTUNE or NVPerfHUD

* These let you see right away if the CPU time is in your app
or somewhere else

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Vertex

* Vertex Bound

* What could the problem be?
* Transferring the vertices and indices to the card
* Turning the vertices and indices into triangles
* Vertex cache misses
* Using an expensive vertex shader

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Vertex @%

* Reduce vertex overhead &

* Use simpler vertex shader
* But still include all the data for the pixel shader
* Send fewer Triangles??

* Not good: can affect pixel shader, texture, and frame
buffer

* Decrease AGP Aperture??

* Maybe not good: can affect texture also, depends on
where your textures are

* Use NVPerfHUD to see video memory
* Ifit’s full then you might have textures in AGP
* Try to change the Vertex Format with a smaller footprint
* Bus Bandwidth consideration — unlikely though

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Vertex @%

* Rule out other stages &

* Render to a smaller backbuffer or null viewport;
this can rule out
* Texture

* Frame buffer
e Pixel shader

e Test for a CPU bottleneck

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Texture <%

e Texture Bound dL

* What could the problem be?
* Texture cache misses
* Huge Textures

* Bandwidth
* Texturing out of AGP

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Texture <%

* Reduce Texture bandwidth dL

* Use tiny (2x2) textures

* Good, but if you are using alpha test with texture alpha,
then this could actually make things run slower due to
Increased fill. It is still a good easy test though

* Use mipmaps if you aren’t already
* Use compressed textures (DXT1/3/5)
* Also, increases the number of texels in the cache.

* For normal maps, use DXT5 with y in the G channel
(6bit), x in the alpha (8bit) and use shader for
hemispherical projection (Also See Mipmapping
NelfnEIRVIETS

* Turn off anisotropic filtering if you have it on

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Fragment @z

* Fragment Bound

* What could the problem be?
* EXxpensive pixel shader
* Rendering more fragments than necessary
* High depth complexity
* Poor z-cull

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: Fragment @z

* Modify the stage itself

* Just output a solid color
* Good: does no work per fragment

* But also affects texture, so you must then rule out
texture

* Use simpler math
* Good: does less work per fragment

* But make sure that the math still indexes into the
textures the same way or you will change the texture
stage as well

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: FB @%

* Frame Buffer bandwidth

* What could the problem be?
* Touching the buffer more times than necessary
* Multiple passes
* Tons of alpha blending — too many read/modify/writes
* Using too big a buffer
* Allocating stencil when you don’'t need it

* A lot of time dynamic reflection cube-maps can get
away with r5g6b5 color instead of x8r8g8b8

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck Identification: FB @%

* Modify the stage itself d

* Use a 16 bit depth buffer instead of a 24 bit one
e Use a 16 hit color buffer instead of a 32 bit one

©2004 NVIDIA Corporation. All rights reserved.

Bottleneck ldentification @%

* Now we have a bunch of practical ideas to find
out If each stage is a bottleneck or not

* Questions on Bottleneck Identification?

Practice <<%

* Now lets look at some sample problems and see
If we can find out where the problem is

* Use NVPerfHUD to help

Practice: Clean the Machine @%

* Please use the exact target configuration!

* Make sure that your machine is ready for

analysis

* Make sure you have the right drivers
Use a release build of the game (optimizations on)
Check debug output for warnings or errors but
Use the release d3d runtime!!!
No maximum validation
No driver overridden anisotropic filtering or anti-
aliasing

* Make sure v-sync is off

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 1

* A seemingly simple
scene runs horribly slow
* Narrow in on the bottleneck

a
¥ Perf Problem Experiments
Fle p % Fx t m PRESETS

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 1 @%

* Dynamic vertex buffer
* BAD creation flags

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),

PARTICLE VERT:FVF,
D3DPOOL_DEFAULT,
&m_pVB,

NULL);

Practice: Example 1 @%

* Dynamic vertex buffer
* GOOD creation flags

HRESULT hr = pd3dDevice->CreateVertexBuffer(
6* sizeof(PARTICLE_VERT),

PARTICLE VERT:FVF,
D3DPOOL_DEFAULT,
&m_pVB,

NULL);

Practice: Example 1

* Dynamic Vertex Buffer
* BAD Lock flags

m_pVB->Lock(0, O,(void**)&quadTris, ");

* No flags at all!?
* That can’t be good....

Practice: Example 1

* Dynamic Vertex Buffer
* GOOD Lock flags

m_pVB->Lock(0, 0,(void**)&quadTris,

* Use D3DLOCK_ DISCARD the first time you
lock a vertex buffer each frame
* And again when that buffer is full
* Otherwise just use NOSYSLOCK

©2004 NVIDIA Corporation. All rights reserved

Practice: Example 2

* Another slow scene
* What's the problem here

©2004 NVIDIA Corporation. All rights reserved.

Perf Problem Experiments
File p w» fx t m PRESETS

44 95 fps (558x392), XBREBGBBS (D16)
HAL (pure hw.vp): NVIDIAQuadro FX 4000

i

Practice: Example 2

* Texture bandwidth overkill
* Use mipmaps
* Use dxtl if possible
* Some cards can store compressed data in cache

* Use smaller textures when they are fine
* Does the grass blade really need a 1024x1024 texture?
* Maybe

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

* Another slow scene
* Who wants a prize?

¥ Perf Problem Experiments
File p « Ffx t m PRESETS

136.93 fps (558x392), XBRBGBBSB (D16)
HAL (pure hw vp): NVIDIA Quadro FX 4000

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

* EXxpensive pixel shader
* Can have huge performance effect

* Only 3 verts, but maybe a million pixels
* That's only 1024x1024

Look at all the pixels!!

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

Shader Perf

TestFsCheapsE = pO + Pixel Shader +* GeForce 6800 LI -

Target: GeForce 6800 Ulkra (MY40) 1 Unified Compiler: w61, 77

32 CyCIeS BAD - Cycles: 31.50 i R Regs Used: 7 @1 R Regs Max Index (0 based): &

Pizel throughput {assuming 1 cycle bexture lookop) 206,45 MP)'s

Shader performance using all FP16
Cycles: 20,00 :: R Regs Used: 3 1 B Regs Max Index (0 based); 2
Pixel throughput (assuming 1 cycle texture lookup) 320,00 MP)'s

Shader performance using all FP3z2
Cycles: 31,50 i1 R Regs Used: 7 11 R Regs Max Index (0 based); &
Pixel throughput {assuming 1 cwcle texture lookup) 206,45 MP)'s

P3 Instructions: 35
ps_2 0

defc, 0, 1, 0,0
dol k0,

dol EL.xwz

dol £2. vz

del t3

dcl £4

dcl 5

do_zd =0

dp4 r0.w, k4, £4
rsq rdow, r.w

il 10,32, rd,w, b

el vl i e BT

L4
@ Properties Ij:: Shader Perf

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3

TestFsCheaphah = pi + Pixel shadey +* GeForce 6300 LI -

Target: GeForce 6300 Ulkra (Ry40) 1 Unified Compiler: w6177

12 CyCIeS GOOD - Cycles: 12,00 1 B Regs Used: 2 :: R Regs Max Index (0 based): 1

Pixel throughput {assuming 1 cycle kexture lookup) 533,33 MP/s

Shader performance using all FP16
Cycles: 12,00 1 B Regs Used: 2 :: R Regs Max Index (0 based): 1
Pixel throughput {assurming 1 cycle bexkure lookop) 533,33 MP/s

Shader performance using all FP3z

Cycles: 11.00 5 R Regs Used: 3 ;B Reqgs Max Index (0 based): 2
Pixel throughput {assurming 1 cycle bexkure lookop) 581,82 MP/s

PS Instructions: 20
ps_2 0

defcO, 0,1,0,0
del b,

del k3

del k&

del &7

del_2d =0

dp4 r0,w, £3, £3
r&q rOLw, rlow
mul_pp r1, 0w, £3
dp4_pp rd.w, rl, kG
add_pp r.w, redoe, rdow

L I o R o B TTR | ki

£
@Prnperties Iji: shader Perf

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 3 @%

* What changed?

* Moved math that was constant across the triangle
Into the vertex shader

* Used ‘half’ instead of ‘float’

* Got rid of normalize where it wasn’t necessary
* See Normalization Heuristics
* http://developer.nvidia.com

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 4 @2

e The last one

* Audience: there are no more prizes, but we’ve locked the doors
% Perf Problem Experiments Q@@

File p « Ffx t m PRESETS

34.46 fps (558x392), XBRBGBBB (D16)
HAL (pure hw vp): NVIDIA Quadro FX 4000

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 4 @%

* Too many batches
* Was sending every quad as it's own batch

* Instead, group quads into one big VB then send that with
one call

Humber of DF calls: 2004

©2004 NVIDIA Corporation. All rights reserved.

Practice: Example 4 @%

* What if they use different textures?
* Use texture atlases

* Put the two textures into a single texture and use a
vertex and pixel shader to offset the texture coordinates

©2004 NVIDIA Corporation. All rights reserved.

Next generation Performance Tools

©2004 NVIDIA Corporation. All rights reserved.

Next Generation Performance Tools @%

* NVIDIA Performance Kit (PerfKit)
* |Instrumented Driver
* NVIDIA Developer Control Panel (NVDevCPL)
* NVIDIA Plug-in for Microsoft PIX for Windows
e Sample Code for OpenGL and DirectX

Problem

Application | Common Profilers |

X7/

Driver -~

PIX for Windows
OGLDebug

>

How to evaluate
performance here?

4
ardware

©2004 NVIDIA Corporation. All rights reserved.

Solution

VTune

>

Windows
Performance

PIX for Windows

Game Engine

NVIDIA Developer
Control Panel

Plug-in for PIX for Windows

NVPerfHUD 3.0

©2004 NVIDIA Corporation. All rights reserved.

Data Helper
(PDH)

NVIDIA Instrumented
Driver | OpenGL Driver |

Direct3D Drive

Instrumented Driver @%

Special Instrumented Driver

* Built with regular drivers
* Includes NVPMAPI.DLL

Exposes Driver and HW Performance Counters
Compatible with Windows WMI and PDH

New Driver Instrumentation tab in NVIDIA
Display Control Panel

Instrumented Driver

General Adapter M onitor

Colar Management &1 Quadmo
——''_.'_.'_—_____'_-w_j
#VIDIA.

= Gluad

|

=) Performance
= OpenGL
Addit

support

benu Editing

©2004 NVIDIA Corporation. All rights reserved.

Developer Control Panel

* Control per-counter specifics
* Enabled or not
* Raw values or % values
e Etc.

* Manage multiple counter-sets
* Tray Icon: fast application of presets

* Provides HW specific information

©2004 NVIDIA Corporation. All rights reserved.

Developer Control Panel: Demo

8 NYIDIA Developer Control Panel

FPmem g

NYIDLA
Performance
Monitor

W

Axailable Counters

< Al Counters »

Al

- Dan

- CPU

D30 frame agprem B
D30 frame driver
D30 frame FPS
D30 frame frame
D30 frame num batches
D30 frame zleeping
D30 frame s
D30 frame vidmem MEB
- D30 Templ
- D30 Temp:
- 030 Temp3

W
W
W
W
W
W
v
W

— GPU
s GPU_Graphics
- atrdcaz_active

- atrdcasz_idle
£ |

Drezcription

determine percentage of time the graphics portion of the chip iz idle.

Clear

Chogen Counters

Save Counter Set...]

[Set Folder...]

All
= D30
= CPU
2 D30 frame agpmem ME
2: D30 frame driver
2 D30 frame FP3
2 D30 frame frame
2 030 Frame num batches
2: D30 frame zleeping
2 D30 Frame triz
2 D30 frame vidmem ME
= GRU
=~ GPU_Graphics
2+ pixel_count
= 0GL
=~ CPU
o 0G

L % driver waiting
o OGL % ouzhbuf used

©2004 NVIDIA Corporation. All rights reserved.

OF.

l [Cancel

PIX for Windows

* New tools from Microsoft
* Coming from Xbox success
* Focused on Direct3D API instrumentation

¥

©2004 NVIDIA Corporation. All rights reserved.

PIX for Windows Plug-in

NVIDIA’s performance counters
* PIX’'s PDH adaptor
* NVIDIA's Pix Plug-in

* higher frequency
* |ower latency

Windows
PIX for Windows |- | Performance

Data Helper
\ (PDH)

Plug-in for PIX for Windows

NVIDIA
Instrumented Driver

Plug-in for PIX: Demo

PIX Counters

all available counters

My Countersets
Direct30 Counters
Performance Counters
[=)- Plugin Counters
[=- MYPMAPT PIx Counters
D30 Templ
D30 Tempz
D30 Temp3
D30 Frame driver
D30 frame sleeping
D30 Frame frame
D30 Frame FP3
D30 Frame num batches
D30 Frame vidmem ME
D30 frame agpmem ME
D30 Frame tris
pixel_count
% gr_idle

Description of selecked counker

hosen counkers

D30 frame ag

Save As Counterset...

©2004 NVIDIA Corporation. All rights reserved.

NVPerfKit Code Samples <<%

* Includes C++ helper classes for PDH access and display
* PDHHelper
* Trace<T>
* TraceDisplay
* Various display types
* OpenGL and Direct3D implementations
e Sample Code and App
* |dentical usage code in Direct3D and OpenGL
* Jllustrates sampling issues and dynamic reconfigurability

©2004 NVIDIA Corporation. All rights reserved.

NVPerfKit Code Samples "%

* Members

® CPDHHelper pdh;

® Ctrace<float> trace;

® CTraceDisplay tracedisplay(0,0,0.5,0.25);
° Init

® pdh.add(““\\NVIDIA GPU Performance(GPUO/%

gr _1dle)\\% GPU Counter Value’);
® trace.name(“‘1dle);
® tracedisplay.insert(&trace,0,1,0,0.2);

* Periodically
® pdh.sample();
® trace.insert(pdh.value(0).doubleVvalue);
e tracedisplay.display(CTraceDisplay::LINE_STREAM);

©2004 NVIDIA Corporation. All rights reserved.

Conclusion @%

* Comprehensive Suite of Performance Tools

* performance information at all levels

* Direct3D API
* Direct3D and OpenGL Driver

e Hardware

°* Provide it in a variety of venues
* Microsoft WMI/PDH
e Microsoft PIX for Windows

* User application
* NVPerfHUD

©2004 NVIDIA Corporation. All rights reserved.

Other talks Iinterest...

* Transforming Production Workflows with the GPU
Kevin Bjorke, NVIDIA Corporation
Monday, 3:45 — 5:30 pm; Wednesday, 10:30 am —
12:15; Thursday, 1:45 — 3:15 pm
Room 401

HLSL Shader Workshop: Introductory

Microsoft Corporation, sponsored by NVIDIA and AMD
Monday & Wednesday, 10:30 am and 3:45 pm
Tuesday & Thursday, 1:45 pm

Room 402A

HLSL Shader Workshop: Advanced

Microsoft Corporation, sponsored by NVIDIA and AMD
Monday & Wednesday, 1:45 pm

Tuesday & Thursday, 10:30 am and 3:45 pm

Room 402A

©2004 NVIDIA Corporation. All rights reserved.

Questions?

* What else can we do for you?
* sdkfeedback@nvidia.com

