Shader Model 3.0
Unleashed

Randima (Randy) Fernando
NVIDIA Developer Technology Group

Talk Outline

Quick Intro the GeForce 6 Series (NV4X family)

New Vertex Shader Features
« Vertex Texture Fetch
« Longer Programs and Dynamic Flow Control
« Vertex Frequency Stream Divider (Instancing)

New Pixel Shader Features
e Longer Programs and Dynamic Flow Control
e Multiple Render Targets

Floating-Point Blending and Filtering
Final Thoughts

©2004 NVIDIA Corporation. All rights reserved.

~~
O
4
>
Z
S
O
O
0
(o)
<b)
©)
—
@)
L
<L)
©

GeForce 6300 @2

Revolutionary Performance and
Complete Shader Model 3.0 Support

« Complete Native Shader Model 3.0 Support
* Full support for shader model 3.0
* Vertex Texture Fetch / Long programs / Pixel Shader flow control
* Full speed fp32 shading

 OpenEXR High Dynamic Range Rendering
 Floating point frame buffer blending
* Floating point texture filtering

e Unparalleled Performance
o 222M xtors /0.13um @ IBM
* 6 vertex units / 16 pixel pipelines

 PCI Express

©2004 NVIDIA Corporation. All rights reserved.

Complete Native Shader Model 3.0 Support <z

DX 9.0 Shader Model 3.0

Vertex Shader Model 2.0 3.0
Vertex Shader Instructions 256 216 (65,535)

Displacement Mapping - v

Vertex Texture Fetch -

v
Geometry Instancing - v
v

Dynamic Flow Control -
Pixel Shader Model 2.0 3.0
Required Shader Precision fp32

Pixel Shader Instructions 96 216 (65,535)

Subroutines - v

Loops & Branches - v

Dynamic Flow Control - 4

GeForce 6800 Graphics @%

Unparalleled Performance

e Up to 8x pixel shading performance - combination of 4x the
pipes and 2x the math per pipe

« 2Xx vertex shading performance - MIMD architecture, dual-
Issue, very efficient branching

e Next generation UltraShadow - 4x the performance of NV35
32ppc for z/stencil rendering

o 256-bit DDR3 — 1.1 GHz DDR data rate. Some AIC partners
will go faster

NV35 has been characterized as a 4x2 / 8x0 architecture.
NV40 is 16x1 / 32x0 architecture.

Vertex Texture Fetch

Detail of a Single Vertex Shader Pipeline @;

Input Vertex
Data

|

Vertex
Texture
Fetch

l !
;

Branch
Unit

!

Texture Primitive
Cache Assembly

!

\ 4

Viewport Processing

;

©2004 NVIDIA Corporation. All rights reserved. TO Set U p

An Example of Vertex Texturing: ”(Da
Displacement Mapping

(> — S -

Displacement
Texture

Flat Tessellated Mesh Displaced Mesh

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Examples

Without Vertex Textures With Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

©2004 NVIDIA Corporation. All rights reserved.

Without Vertex Textures With Vertex Textures

Images used with permission from Pacific Fighters. © 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft Entertainment.

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture <<%

* Multiple vertex texture units
- glGetiIntegerv(MAX_VERTEX_TEXTURE_IMAGE_UNITS_ARB)

4 units on GeForce 6 Series hardware
e Supports GL_NEAREST filtering only (currently)

« Supports mipmapping

* Need to calculate LOD yourself
» Uses standard 2D texture targets
e glBindTexture(GL_TEXTURE_2D, displace tex);

e Currently must use LUMINANCE_FLOAT32_ATI Of
RGBA_FLOAT32_ATI texture formats

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Applications @%

« Simple displacement mapping

* Note — not adaptive displacement mapping
e Hardware doesn’t tessellate for you

 Terrain, ocean surfaces

* Render to vertex texture
* Provides feedback path from fragment program to vertex program

 Particle systems
» Calculate particle positions using fragment program, read
positions from texture in vertex program, render as points
e Character animation

e Can do arbitrarily complex character animation using fragment
programs, read final result as vertex texture

* Not limited by vertex attributes — can use lots of bones, lots of
blend shapes

©2004 NVIDIA Corporation. All rights reserved.

E
2
£
@
u
=
]
2
=
2
)
A

=
.
p)
>
0
AL
|
S
o
D
0
O

©2004 NVIDIA Corporation. All rights reserved.

Vertex Texture Fetch Performance @%

* Look-ups are not free

* Try to cover texture fetch latency with other non-
dependent instructions

 NOT practical for use as extra constant memory

 Measured performance:

« 33 million displaced vertices per second for basic
displacement mapping

e That’s more than a million displaced vertices per
frame!

S,

Advanced Vertex Shader Programmability

Vertex Shader Version Summary ’(DZ

2.0 3.0
of instruction slots 256 >=512

216
(65,535)

Max # of instructions executed 65535

Instruction Predication

Temp Registers

constant registers

Static Flow Control

Dynamic Flow Control

Dynamic Flow Control depth

Vertex Texture Fetch

of texture samplers

Geometry Instancing Support

Note: There is no vertex shader 2.0b

©2004 NVIDIA Corporation. All rights reserved.

Flow Control: Static vs. Dynamic @;

void Shader(
in float3 normal,

uniform float3 lightDirection,
uniform bool computelLight,
Static Flow Control
(condition constant
for each batch of triangles)

iIT (computeLight) {

iT (dot(lightDirection, normal)]

Dynamic Flow Control

(data dependent, so
condition can vary per
vertex or pixel)

Using Flow Control @%

e Subroutines, loops, and conditionals simplify
programming

« Dynamic branches only have ~2 cycle overhead

* Even if vertices take different branches
e Use this to avoid unnecessary vertex work (e.g., skinning)
 If you can branch to skip more than 2 cycles of work, do it!

©2004 NVIDIA Corporation. All rights reserved.

Geometry Instancing

DirectX 9 Instancing @%

 What Is instancing?

« Allows a single draw call to draw multiple instances
of the same model

» Allows you to minimize draw primitive calls and
reduce CPU overhead

 What is required to use it?
 Microsoft DirectX 9.0c
e VS 3.0 hardware

* API is layered on top of
IDirect3DDevice9::SetStreamSourceFreq

* OpenGL extension coming soon

©2004 NVIDIA Corporation. All rights reserved.

How does it work? éz

Stream 0 Vertex Data

Stream 1 Per instance data

e Primary stream is a single copy of the model
geometry

e Secondary stream(s) contain per-instance data
« Transform matrices, colors, texture indices

» Vertex shader does matrix transformations based
on vertex attributes

e Pointer iIs advanced each time an instance of the
primary stream is rendered.

©2004 NVIDIA Corporation. All rights reserved.

Instancing Demo

e Space scene with 500+ ships, 4000+ rocks

« Complex lighting, post-processing
« Some simple CPU collision work as well

e Dramatically faster with instancing

©2004 NVIDIA Corporation. All rights reserved.

Some Test Results

Test scene draws 1 million diffuse shaded polygons
Changing the batch size changes # of drawn instances

For small batch sizes, can provide extreme win due to PER DRAW CALL
savings

There is a fixed overhead from adding the extra data into the vertex stream
Sweet spot depends on many factors (CPU/GPU speed, engine overhead, etc.)

Instancing versus Single Daw Calls

—&— Instancing

i
l - No Instancing

Frame Rate

Batch Size

©2004 NVIDIA Corporation. All rights reserved.

S,

Advanced Pixel Shader Programmability

Texture Filter

Bi/ Tri / Aniso

1 texture @ full speed

4 tap filter @ full speed
16:1 Aniso w/ Trilinear
FP16 Texture Filtering

SIMD Architecture
Dual Issue / Co-Issue
FP32 Computation
Shader Model 3.0

©2004 NVIDIA Corporation. All rights reserved.

Texture
Data

|

FP Texture [

Processor

|

Texture
Cache

Input Fragment
Data

l

FP32

<«

» Shader =
Unit 1

!

FP32
Shader
Unit 2

|

Detail of a Single Pixel Shader Pipeline =7

Shader Unit 1

4 FP Ops / pixel
Dual/Co-Issue
Texture Address Calc

Free fpl6
normalize
+ mini ALU

Shader Unit 2
4 FP Ops / pixel
Dual/Co-Issue

+ mini ALU

Branch
Processor

)

Fog
ALU

!
Output

Shaded Fragments

NV4x Superscalar Shader Architecture @D;

Computational Performance

ir gOTpone”tS o oor 1 Texture/pixel
p / componen @ full speed
4 ops/pixel

Shader 4 Components

) 1 Op / component
unit 2 4 ops/pixel

8 Ops/pixel

©2004 NVIDIA Corporation. All rights reserved.

Instruction Processing
Dual Issue vs. Co-Issue

Shader

G| B A

o
2

Operation 1 Operation 2

Operation 3 Operation 4

DX9 “Co-Issue” GeForce 6 Series Dual-Issue

« Two independent instructions Two instructions executing in the

executing on the same shader same cycle on different shader
unit. units.

» NV4x can do this as 3/1 or 2/2 Cankalsobe SC oSS ohE
pairing of components NV4x candothis
Unique to NV4x architecture

2 instructions/pixel/cycle 4 instructions/pixel/cycle

Pixel Shader Version Summary

&

—

2.0

2.0a

2.0b

3.0

Dependent Texture Limit

4

No limit

4

No limit

Texture Instruction Limit

32

unlimited

unlimited

unlimited

Position Register

v

Instruction Slots

512

512

>=512

Executed Instructions

512

512

216 (65,535)

Interpolated Registers

2+8

2+8

Instruction Predication

v

Indexed Input Registers

Temp Registers

22

32

Constant Registers

32

32

Arbitrary Swizzling

v

Gradient Instructions

v

Loop Count Register

Face Register (2-sided lighting)

Dynamic Flow Control Depth

©2004 NVIDIA Corporation. All rights reserved.

Fragment Program Branching Performancg(%

e Static branching is fast

« But still may not be worth it for short branches (less
than ~5 instructions)

e Can use conditional execution instead

 Divergent (data-dependent) branching is more
expensive

* Depends on which pixels take which branches

©2004 NVIDIA Corporation. All rights reserved.

Branch Overhead

e Pixel shader flow control
Instruction costs:

Instruction Cost (Cycles)
if / endif 4
If / else / endif

call

ret

loop / endloop

* Not free, but certainly usable and can save a
ton of work!

©2004 NVIDIA Corporation. All rights reserved.

Multiple Lights Demo

-
M simple_fragment_program?2

Available at http://developer.nvidia.com/object/sdk samples.html

Pixel Shader Ray Tracer

Available at http://developer.nvidia.com/object/sdk effects.html

(@

Pixel Shader Looping Example @%
- Single Pass Volume Rendering

Application only renders a single quad

Pixel shader calculates intersection between view ray
and bounding box, discards pixels outside

Marches along ray between far and near intersection
points, accumulating color and opacity

* Looks up in 3D texture, or evaluates procedural function at
each sample

Compiles to REP/ENDREP loop

« Allows us to exceed the 512 instruction PS2.0 limit
« All blending is done at fp32 precision in the shader
« 100 steps is interactive on 6800 Ultra

©2004 NVIDIA Corporation. All rights reserved.

1 Pass Volume Rendering Examples @;

Early Outs <<%

« “Early out” iIs a dynamic branch in the shader
to bypass computation

e Some obvious examples:

 If in shadow, don’t do lighting computations
 If out of range (attenuation zero), don’t light
 These apply to vs.3.0 as well

* Next — a novel example for soft-edged
shadows

Soft-Edged Shadows with ps 3.0 @

fros = 37.7 mode = HNW4X
Jitter = yes fwidth =851

Available at http://developer.nvidia.com/object/sdk samples

Soft-Edged Shadows with ps 3.0 éz

* Works by taking 8 “test” samples from shadow map
« |f all 8 in shadow or all 8 in the light we’re done

« If we're on the edge (some are in shadow some are in light), do
56 more samples for additional quality

* 64 samples at much lower cost!
e Quick-and-dirty importance sampling

©2004 NVIDIA Corporation. All rights reserved.

pPs.3.0 — Soft Shadows <<%

 This demo on GeForce 6 Series GPUSs

 Dynamic sampling > 2x faster vs. 64 samples
everywhere

e Completely orthogonal to other parts of the HW (for
example, stencil is still usable)

e Can do even more complex decision-making if
necessary

« Combine with hardware shadow maps
e High-quality real-time “soft” shadows are a reality

4 NVIDIA Corporation. All rights reserved.

Hardware Shadow Maps <<%

 Many developers use R32F or R16F shadow
maps
* Render depth to single-channel float texture in shader
e Multiple jittered samples for high quality / soft edges

* NVIDIA HW Shadow Maps = drop-in replacement

e Same setup and pipeline as any shadow map
technique

e Shader code is simpler and faster

Hardware Shadow Maps <<%

e Hardware does shadow map comparison for free
 No need to compare and filter in the shader

* In OpenGL, render to DEPTH_COMPONENT texture

. Use TEXTURE_COMPARE_MODE_ARB with
COMPARE_R TO_TEXTURE

* In D3D, render to a depth format texture
e D3DFMT _D24X8, D3DFMT _D16
e Use tex2Dproj to sample
« Shadow map comparison is automatic

©2004 NVIDIA Corporation. All rights reserved.

Percentage Closer Filtering @%

 PCF Is “free” on GeForce3 up to GeForce 6800

e Just enable bilinear filtering on the shadow map
 Then each tex2Dproj does 4-sample PCF
* And filters them bilinearly for a smooth result!

» Use a single tap for performance
 Or filter multiple taps to get higher quality

 Your choice: gain either 4x performance or 4x
qguality

 Compared to rolling your own in a pixel shader

©2004 NVIDIA Corporation. All rights reserved.

Fast Z-only Rendering @%

» GeForce FX and 6 Series can render Z-only at double-
speed!
e This is important for dynamic shadow maps!
* Big speedup for shadow volumes also
e Can be useful for other applications too.

* Make sure you:
 Disable color writes

* Disable alpha test

* Check the GPU Programming Guide for full list if you’re having
trouble getting double-speed rendering

©2004 NVIDIA Corporation. All rights reserved.

S,

Multiple Render Targets (MRTS)

Multiple Render Targets (MRT) "%

Allows pixel shader to
output up to colors to 4 1
separate render targets

Share same depth buffer

Can be used to reduce l
number of passes Pixel Shader

Render § Render § Render @ Render
target 1 § target 2 § target 3 @ target 4

Vertex Shader

Current MRT Limitations @%

No hardware-accelerated antialiasing

All render targets must have same width, height,
and bit depth

« Okay to mix-and-match formats with the same bit

depth

Can improve performance, but there are costs

* High bandwidth cost, especially with float formats

« Small overhead per target rendered

e GeForce 6800 has a sweet spot of 3 MRTs

Draw Buffers Example

M simple draw buffers

Available at http://developer.nvidia.com/object/sdk samples.html

S,

Floating-Point Filtering and Blending

Floating-Point Filtering and Blending @%

* GeForce 6 Series GPUs have fully-featured support for
floating-point textures

» fpl6 texture filtering (including bilinear, trilinear, anisotropic)
» fpl6 blending

« Supports all texture targets, including cube maps, non-power-of-
2 textures with mipmaps

* Exposed in both OpenGL and Direct3D

©2004 NVIDIA Corporation. All rights reserved.

FP16 Applications <<%

« HDR imagery
e 16-bit integer texture formats are not enough for very
high dynamic ranges

* Image based lighting
e Interactive HDR painting
* Multi-pass algorithms

2
What is HDR (High Dynamic Range)? @;

g Dynamic Range E |Og10(max_intensity/min intensity)
e Human perception is 10*4:1 (14 dB), with log response
« Standard 32 bpp frame buffer is 255:1 (2.4 dB)

« HDR Rendering Engine:

« Compute surface reflectance, save in HDR buffer
« Contributions from multiple lights are additive (blended)

* Add image-space special effects to HDR buffer
* AA, Glow, Depth of Field, Motion Blur

 Tone-Map HDR buffer to LDR for display

e Good, robust HDR requires floating point

©2004 NVIDIA Corporation. All rights reserved.

High Dynamic Range Imagery

L
ﬁ
.t

©2004 NVIDIA Corporation. All rights reserved.

GeForce 6800 HDR Technology

 Studio-Quality 16-bit floating point
e 12.0dB dynamic range
e 11-bit logarithmic precision
« Sufficient for nearly any application

 Fully Orthogonal Hardware Support

« Texture Filtering, including trilinear+16x anisotropic
* All OpenGL 1.5 and DX9.0c alpha blending modes

 Easy to Use
« No complicated pixel shader encode/decode
* Already exposed in OpenGL and DirectX 9 APIs

©2004 NVIDIA Corporation. All rights reserved.

HDR: Int16 versus fp16

M HDR rendering Q@Er M HDR rendering

HDR with 16-bit Integer HDR with 16-bit Floating Point
Dynamic range: 200,000:1

Available at http://developer.nvidia.com/object/sdk samples.html

HDR: Int16 versus fp16

HDR with 16-bit Integer HDR with 16-bit Floating Point
Dynamic range: 200,000:1

Available at http://developer.nvidia.com/object/sdk samples.html

HDR Paint

M nvpaint

ra

brush size
brush aspect
brush spacing
brush hardness
airbrush radius
airbrush no
EELER

collorfg

color kb

color a
lightness

light elewvation
light angle
shininess

bump scale
EXpOsuUre

camma

ligquify scale

POPRPOLLCOOORP OO OOE OO

i

©2004 NVIDIA Corporation. All rights reserved.

Floating-Point Blending @%

 On GeForce FX GPUs, you have to emulate
float blending using “ping-pong buffer”
* Lots of context switches and additional passes
* Blending lots of particles, e.g., is infeasible

» GeForce 6 Series solves this for fpl6
« Makes many algorithms cheaper
« Accumulating light contributions, transparency, etc.
 GPGPU array addition

FP16 Blending Example

B2 simple_fp16_blend

Available at http://developer.nvidia.com/object/sdk samples.html

©2004 NVIDIA Corporation. All rights reserved.

Final Thoughts

Summary <<%

e The GeForce 6 Series GPUs are a wonderful
combination:
 Industry-leading performance
« Unparalleled flexibility

 Take advantage of all its features
* Find new uses for the technology

e If you thought abusing the fixed-function pipeline was
fun, this will be so much better...

References

e Tons of resources at
http://developer.nvidia.com

* NVIDIA SDK
e http://developer.nvidia.com/object/sdk home.html

O
. . o G - . FrogrammngGuide
 Individual Standalone Samples (.zip) ﬁof

e http://developer.nvidia.com/object/sdk samples.html &= q-
 Individual FX Composer Effects (.fx)
» http://developer.nvidia.com/object/sdk effects.html

e Documentation

* NVIDIA GPU Programming Guide
 http://developer.nvidia.com/object/gpu_programming_quide.html

 Recent Conference Presentations
 http://developer.nvidia.com/object/presentations.html

©2004 NVIDIA Corporation. All rights reserved.

Questions? <<%

e Support e-mail:
» devrelfeedback@nvidia.com [Technical Questions]
« sdkfeedback@nvidia.com [Tools Questions]

