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Making Pretty Pictures with D3D

Or...

A hand-wavey tour through some case studies of
how to bring a graphics card to its knees in the
persuit of ‘greater beauty’

Alex Evans, Lionhead Studios
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And Relax...

« Amid all the awesome tools
available its easy to forget why
we’re making these engines...

— Easy to forget simple things, e.g.

 there's more to the rendering style
spectrum than just toon shading or
hyper-realism
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| promise this rant will be quick!

e It's time for games to make more
an effort to look different from
each other

— and not just driven by the actual art
assets themselves

« Shaders are opening up our way of
thinking about PC graphics coding
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Lots can be done with very little!

e It doesn’t have to be complex to look

great
— E.g. Lots of alpha layers

* Blooming, radial blur, particles
— Hiding polygon edges

» Silhouette polygons, blur, post-processing, noise

e So let’s get down to business...

4 different case studies coming up, ranging from
simple to just-plain-weird...
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#1: DOF in 2.5D games

e Aesthetic / design decision:

— Limit ourselves to 2D billboards
* Placed in a full ‘3D’ space

— Blurring is as simple as choosing a
mip-map to render with

* Just set D3IDSAMP_MIPMAPLODBIAS

— This trick is as old as the hills!
« But it looks great...
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Image from ‘we cell’ by kewlers
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2D DOF problems

e Must keep big alpha
0 borders

e Box filter is ugly

— Could use something
better

— Can force the
borders to alpha 0
here too
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More with less cont...

« When you combine tricks like this
with the massive fill-rate of
modern cards...

— You get some lovely results

— Best example I’ve seen recently:
* ‘We Cell’ by kewlers

* Check out their awesome work
— http://kewlers.scene.org
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« Images from ‘we-cell’ by kewlers
e No polygons (other than billboards...)
e No Shaders!
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#2: Lighting in 2.5D Games

e Art-led engine feature request:

— How to shade these billboards under
changing lighting conditions?
— Could use normal maps...

« But they are not always an ideal fit — it imposes a
lighting model that must be evaluated at run time.

« And what about self-shadowing?

— What if we could just pre-render every )
possible light direction? *i‘:
/
/
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Lots of different light dirs...
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Lighting continued...

« Every possible direction is too
memory heavy, but is flexible

— (Lossy) Compression please!

e The pixel colours are generally
slowly varying with light direction

— Diffuse / glossy assumption here
—In ‘3D-world’, Spherical Harmonics

have been helping us out here...
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‘Circular Harmonics’

e Project source images onto basis:

1
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« Gives us some small number of Y.
— For each pixel, for each channel
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Clrcular Harmonics Plctures




GameDevelopers

Conference

Rendering it on PS_1_1

e C(++) code computes lighting
and projects onto our basis, as i}:i]D X B(0) e
before

e Uploads as 5 constants:
- c0 = BOr, BOg, BOb, 1
- ¢l = Blr, Blg, Blb, 1
- c2 = B2r, B2g, B2b, 1
~-e3 =0, 0, 0, B3
~c4 =0, 0, 0, B4
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Rendering it on PS_1_1

e ps.l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0
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Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 = lighting BO * first texture rgb
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Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,x0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 += lighting Bl * second texture rgb
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Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 += lighting B2 * third texture
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Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 += lighting B3 * second texture alpha
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Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 += lighting B4 * third texture alpha
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Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

Modulate by vertex colour and output
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#3: ‘Gl’ on the GPU (cube version)
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‘Gl’ on the GPU (cube version)

e Implementation of soft shadowing
— with loads of area lights
— and totally dynamic scenes

— ‘traditional’ algorithms are cost O(N)
in the number of lights

— Recast the problem so it’s O(1) in the
number of lights

; * but a very big1 ©
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Demo!

e Look at it go!

— Was written on a Radeon 9700
 Makes heavy use of MRTs, 16bit targets

— The e.g. X800 flies along in comparison

— But volume texture reads are mem b/w
limited

 Dynamic shadows of the character
coming up in a second...
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Path Tracing 101

e Traditionally, to shade

a point, you ‘cast rays’ 10" _ ot I ldadabde
. . EE‘I‘EV s.?nph N.L light-
— But only to point light 1
sources. Then TITTeRa TN
accumulate
In Path tracing / Distribution ray
tracing, light is gathered fromall 7 by coth b &Tu' bt
directions O || R 6;?.,#! dneely pifl
- allowing bounce light, area KV, % al s (I‘]mn snur)

lights and therefore soft shadows
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Doing it on the GPU

e Need to cast zillions of rays

— Imagine if we could trace one ray for every
pixel computed by a shader

« Step 1: Cover the world in a lightmap
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GPU Gl cont...

« Step 2: imagine casting
rays out in random
directions with some magic
pixel shader

Step 3: The output of
the pixel shader is the
colour of the first
surface or light that is
hit by that ray
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GPU Gl cont...

Step 4: downsample to average the results
of many rays

CLBEVP 0f LIMYMAR
Se o E y
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Making it Practical
* Imagine a world made entirely of cubes
— Store the whole world in a volume texture
— DXT compressed, 1 bit alpha = solid/not solid
— RGB channel stores emissiveness (=lights)

* Tracing a ray now just becomes sampling
— Can sample up to 20 times along the ray
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Making it Practical 2

e There are many more details to the actual

implementation

» Getting good random numbers into the PS is hard

« Stochastic sampling, importance sampling

— This is implemented using a technique akin to dithering,
but in 3D space over light directions.
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But it all fits in PS_2_0!

. float4 steppattern = tex2D(steptex, posincell); // each element is 'nearly 1'
. floatd4 destposx = tex2D (desttex, posonpage) ;

. float3 destpos=float3(destposx.x,destposx.y,destposx.z);

. float3 d = destpos - (posinworld-Zero) ;

. floatd4 temp;

. float outa=1l.f;

. for (int loopy=0;loopy<numloops;loopy++)

. {

. temp=tex3D (boxtex, posinworld+d*steppattern.x);
. if (temp.a>0) outa=steppattern.x;

. temp=tex3D (boxtex, posinworld+d*steppattern.y);
. if (temp.a>0) outa=steppattern.y;

. temp=tex3D (boxtex, posinworld+d*steppattern.z);
. if (temp.a>0) outa=steppattern.z;

. temp=tex3D (boxtex, posinworld+d*steppattern.w);
. if (temp.a>0) outa=steppattern.w;

. steppattern-=0.25;

. }

. float4 outcol = tex3D (boxtex, posinworld+d*outa) ;

. d*=worldscale;

. float dlen=1l.f/length(d);

. float3 dnorm = d*dlen;

. float dotty=dot (normal,dnorm) ;

. dotty=max (dotty+0.1,0); // clamp to > 0 so we get some ambient
. dotty*=A*dlen*dlen+B; // 1/r2 falloff

* return outcol * dotty / destposx.w;
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The down-sides...

« Why was that algorithm slow?

— A lot of rays were cast
« But they’re all independent

— And it was limited to worlds represented as
cubes

— Offline renderers solve this issue by
‘caching’ the results of similar rays
 Photon Mapping
* Irradiance Caches

— But that’s another talk...

 Or try different representations of your world
— Eg Mike Bunnell, GPU Gems 2
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Dynamic object shadows in
cube-world

e The fuzzy shadows cast by the marble
bust in the cubeworld demo...
— Works independently of the GPU algorithm
just described

— But it is chosen carefully to ‘match’ — it is
based on SH techniques that are of
(approximately) fixed cost regardless of the
number or size of the area lights in the

scene.
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SH Volume Transfer

« The Irradiance Volume [Greger98] says:

- Isr?_laging storing the incident lighting at every point in space projected onto the
asis...

« Surfaces nearby have an effect on the light at every point
— They bounce and occlude light

— This has some relation to [Greger98], which Natalya covered already in her
talk today. (but have that pic one more time!)

 What we’re going to do is store occlusion information in a volume
texture
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basis, to dgomg radn kaj into
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‘dcton Ilghtn.sg
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« See Slodn et*ul rirst paGP U
— Section 8! { 0‘
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SH Volume Transfer the ‘Wrong’ Way

e Preprocess step embeds
shadow caster in double size
bounding box

e The processor is going to
output a 32x32x32 volume
of SH coefficient VECTORS
(not matrices)

— The demo used PCA
compression to reduce the
number of coefficients per

voxel to 16
— We’re effectively assuming the =
bottom rows of the matrix arefj=—

all Os. ,}!
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SH Volume Transfer preprocess...

« Each voxel casts rays to
determine which
directions are occluded

— The results are projected
onto the SH basis

— This is like a much
simplified light transport
(PRT) step

« Except we don’t bother
with bounce light, the
cosine term (or any BRDF)

« And it’s over all of space,
not just the surface of the
mesh.
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SH Volume Transfer preprocess...

« Example
voxel and the
result of the
SH
‘compression’
- a sort of

fuzzy
‘ occlusion map

&
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SH Volume transfer at runtime...

o After the background has been lit and the
dynamic objects rendered...

— | happen to light the dynamic objects using the
standard SH PRT technique
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...shadows are added...

e ...in a ‘deferred’ way

— By rendering a fullscreen quad over the
screen with a big pixel shader
* For each pixel, the shader computes the

occlusion of that object, and outputs a scalar
value to darken the screen.
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SH Volume transfer runtime...
« The CPU computes the incident lighting
for the object at 2 candidate points

— Chosen at ends of object’s longest axis

* Improves locality of lighting

« This is a general technique applicable to all
lighting approximations that rely on an
assumption of ‘distant lighting’

L1

L2

L3
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SH Volume transfer runtime...

« To compute the lighting at a point, the
pixel shader:

— Rotates the point to be shaded into the
object’s local space

— Interpolates the lighting environments
uploaded by the CPU, according to the
position along the longest axis

— Dots the lighting environment with the

L2
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But it all fits in PS_2_0!

. float4 main(float2 t0: TEXCOORDO) : COLOR
. {

. float4 worldpos=tex2D (postex, t0) ;

. float id=worldpos.w;

. worldpos.w=1;

. worldpos=mul (worldpos,worldmat); // rotate world pos into local object
space

. float zlerp=saturate (worldpos.z+0.5);

. floatd4 a=abs (worldpos) ;

. float funkiest=max(l,max(a.x,max(a.y,a.z))):;

. worldpos=worldpos* (0.5f/funkiest) ;

. float4 aa=tex3D (shadowtex0,worldpos) ;

. float4 bb=tex3D (shadowtexl,worldpos) ;

. float4 cc=tex3D (shadowtex2,worldpos) ;

. float4 dd=tex3D (shadowtex3,worldpos) ;

. float outcoll = dot(float4 (dot(aa,lighting[0]) ,dot(bb,lighting[1]), g

. dot (cc,lighting[2]) ,dot(dd,lighting[3])),1);

. float outcol2 = dot(floatd (dot(aa,lighting2[0]) ,dot(bb,lighting2[1]),

: dot (cc,lighting2[2]) ,dot(dd,lighting2[3])),1) ;

return lerp(outcoll,outcol2, zlerp);
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Help! I’ve been blinded by science!

« And who would want to make a renderer that can
only do cubes?

— © There is interesting stuff you can do by enabling trilinear
filtering, effectively creating a ‘signed distance function’...

e« There is *so* much headroom left on current cards
— Even using PS1.1 ... or PSO0!
— Restrictions in the game design are *great* for inspiring
novel (non-general) solutions.
e Exploring ‘whacky’ rendering approaches, or hybrids
of existing approaches

— Allows the engine to be more tightly tailored to the
aesthetics of the game/application

— And will lead to more variety and imagination (?) in the
visual style of games.
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But...

o ‘Real Life Game Making’ militates against this

— But the march of time can only make things better

« As we collectively get more used to algorithms and
tools such as SH, we ‘internalise’ them and feel less
afraid to experiment.

« ‘Realtime Cinematic Rendering’ doesn’t just mean
great looking surfaces

— hopefully it will bring to games the same breadth of
visual styles that are evident today in film.

« “And with a little effort and careful design, a
lot is possible today.”

— Go Jerry! Go Jerry! Go Jerry!
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Questions?

e Thanks:
— Mark Healey, Dave Smith @ LH

— Jason Mitchell, Mike Smith, Kevin Strange
& Richard Huddy @ ATI
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