
Making Pretty Pictures with D3DMaking Pretty Pictures with D3D
Or…Or…

A handA hand--waveywavey tour through some case studies of tour through some case studies of 
how to bring a graphics card to its knees in the how to bring a graphics card to its knees in the 

persuitpersuit of ‘greater beauty’of ‘greater beauty’

Alex Evans, Lionhead StudiosAlex Evans, Lionhead Studios



And Relax…And Relax…

•• Amid all the awesome tools Amid all the awesome tools 
available its easy to forget why available its easy to forget why 
we’re making these engines…we’re making these engines…
–– Easy to forget simple things, e.g.Easy to forget simple things, e.g.

•• there's more to the rendering style there's more to the rendering style 
spectrum than just spectrum than just toontoon shading or shading or 
hyperhyper--realismrealism



I promise this rant will be quick!I promise this rant will be quick!

•• It's time for games to make more It's time for games to make more 
an effort to look different from an effort to look different from 
each othereach other
–– and not just driven by the actual art and not just driven by the actual art 

assets themselvesassets themselves
•• Shaders are opening up our way of Shaders are opening up our way of 

thinking about PC graphics codingthinking about PC graphics coding



Lots can be done with very little!Lots can be done with very little!
•• It doesn’t have to be complex to look It doesn’t have to be complex to look 

greatgreat
–– E.g. Lots of alpha layersE.g. Lots of alpha layers

•• Blooming, radial blur, particlesBlooming, radial blur, particles
–– Hiding polygon edgesHiding polygon edges

•• Silhouette polygons, blur, postSilhouette polygons, blur, post--processing, noiseprocessing, noise

•• So let’s get down to business…So let’s get down to business…
•• 4 different case studies coming up, ranging from 4 different case studies coming up, ranging from 

simple to justsimple to just--plainplain--weird…weird…



#1: DOF in 2.5D games#1: DOF in 2.5D games

•• Aesthetic / design decision:Aesthetic / design decision:
–– Limit ourselves to 2D billboardsLimit ourselves to 2D billboards

•• Placed in a full ‘3D’ spacePlaced in a full ‘3D’ space
–– Blurring is as simple as choosing a Blurring is as simple as choosing a 

mipmip--map to render withmap to render with
•• Just set Just set D3DSAMP_MIPMAPLODBIASD3DSAMP_MIPMAPLODBIAS

–– This trick is as old as the hills!This trick is as old as the hills!
•• But it looks great...But it looks great...



Image from ‘we cell’ by kewlers



2D DOF problems2D DOF problems

•• Must keep big alpha Must keep big alpha 
0 borders0 borders

•• Box filter is uglyBox filter is ugly
–– Could use something Could use something 

betterbetter
–– Can force the Can force the 

borders to alpha 0 borders to alpha 0 
here toohere too



More with less cont…More with less cont…
•• When you combine tricks like this When you combine tricks like this 

with the massive fillwith the massive fill--rate of rate of 
modern cards…modern cards…
–– You get some lovely resultsYou get some lovely results
–– Best example I’ve seen recently:Best example I’ve seen recently:

•• ‘We Cell’ by ‘We Cell’ by kewlerskewlers
•• Check out their awesome workCheck out their awesome work

–– http://http://kewlers.scene.orgkewlers.scene.org



•• Images from ‘weImages from ‘we--cell’ by cell’ by kewlerskewlers
•• No polygons (other than billboards…)No polygons (other than billboards…)
•• No Shaders!No Shaders!



#2: Lighting in 2.5D Games#2: Lighting in 2.5D Games

•• ArtArt--led engine feature request:led engine feature request:
–– How to shade these billboards under How to shade these billboards under 

changing lighting conditions?changing lighting conditions?
–– Could use normal maps…Could use normal maps…

•• But they are not always an ideal fit But they are not always an ideal fit –– it imposes a it imposes a 
lighting model that must be evaluated at run time.lighting model that must be evaluated at run time.

•• And what about selfAnd what about self--shadowing?shadowing?
–– What if we could just preWhat if we could just pre--render every render every 

possible light direction?possible light direction?



Lots of different light Lots of different light dirsdirs……



Lighting continued…Lighting continued…

•• Every possible direction is too Every possible direction is too 
memory heavy, but is flexiblememory heavy, but is flexible
–– ((LossyLossy) Compression please!) Compression please!

•• The pixel colours are generally The pixel colours are generally 
slowly varying with light directionslowly varying with light direction
–– Diffuse / glossy assumption hereDiffuse / glossy assumption here
–– In ‘3DIn ‘3D--world’, Spherical Harmonics world’, Spherical Harmonics 

have been helping us out here…have been helping us out here…



‘‘Circular Harmonics’Circular Harmonics’

•• Project source images onto basis:Project source images onto basis:

•• Gives us some small number of YGives us some small number of Yii
–– For each pixel, for each channelFor each pixel, for each channel



Circular Harmonics PicturesCircular Harmonics Pictures



Rendering it on PS_1_1Rendering it on PS_1_1

•• C(++) code computes lighting C(++) code computes lighting 
and projects onto our basis, as and projects onto our basis, as 
beforebefore

•• Uploads as 5 constants:Uploads as 5 constants:
–– c0 = B0r, B0g, B0b, 1c0 = B0r, B0g, B0b, 1
–– c1 = B1r, B1g, B1b, 1c1 = B1r, B1g, B1b, 1
–– c2 = B2r, B2g, B2b, 1c2 = B2r, B2g, B2b, 1
–– c3 = 0,  0,  0,  B3c3 = 0,  0,  0,  B3
–– c4 = 0,  0,  0,  B4c4 = 0,  0,  0,  B4



Rendering it on PS_1_1Rendering it on PS_1_1

•• psps.1.1.1.1
•• tex tex t0t0
•• tex tex t1t1
•• tex tex t2t2
•• mul mul r0,t0,c0                r0,t0,c0                
•• mad mad r0.r0.rgbrgb,t1_bx2,c1,r0     ,t1_bx2,c1,r0     
•• mad mad r0.r0.rgbrgb,t2_bx2,c2,r0     ,t2_bx2,c2,r0     
•• mad mad r0.r0.rgbrgb,t1_bx2.a,c3.a,r0 ,t1_bx2.a,c3.a,r0 
•• mad mad r0.r0.rgbrgb,t2_bx2.a,c4.a,r0 ,t2_bx2.a,c4.a,r0 
•• mul mul r0,r0,v0 r0,r0,v0 



Rendering it on PS_1_1Rendering it on PS_1_1

•• psps.1.1.1.1
•• tex tex t0t0
•• tex tex t1t1
•• tex tex t2t2
•• mul mul r0,t0,c0r0,t0,c0
•• mad mad r0.r0.rgbrgb,t1_bx2,c1,r0     ,t1_bx2,c1,r0     
•• mad mad r0.r0.rgbrgb,t2_bx2,c2,r0     ,t2_bx2,c2,r0     
•• mad mad r0.r0.rgbrgb,t1_bx2.a,c3.a,r0 ,t1_bx2.a,c3.a,r0 
•• mad mad r0.r0.rgbrgb,t2_bx2.a,c4.a,r0 ,t2_bx2.a,c4.a,r0 
•• mul mul r0,r0,v0 r0,r0,v0 

r0 = lighting B0 * first texture r0 = lighting B0 * first texture rgbrgb



Rendering it on PS_1_1Rendering it on PS_1_1

•• psps.1.1.1.1
•• tex tex t0t0
•• tex tex t1t1
•• tex tex t2t2
•• mul mul r0,t0,c0                r0,t0,c0                
•• mad mad r0.r0.rgbrgb,t1_bx2,c1,r0,t1_bx2,c1,r0
•• mad mad r0.r0.rgbrgb,t2_bx2,c2,r0     ,t2_bx2,c2,r0     
•• mad mad r0.r0.rgbrgb,t1_bx2.a,c3.a,r0 ,t1_bx2.a,c3.a,r0 
•• mad mad r0.r0.rgbrgb,t2_bx2.a,c4.a,r0 ,t2_bx2.a,c4.a,r0 
•• mul mul r0,r0,v0 r0,r0,v0 

r0 += lighting B1 * second texture r0 += lighting B1 * second texture rgbrgb



Rendering it on PS_1_1Rendering it on PS_1_1

•• psps.1.1.1.1
•• tex tex t0t0
•• tex tex t1t1
•• tex tex t2t2
•• mul mul r0,t0,c0                r0,t0,c0                
•• mad mad r0.r0.rgbrgb,t1_bx2,c1,r0     ,t1_bx2,c1,r0     
•• mad mad r0.r0.rgbrgb,t2_bx2,c2,r0,t2_bx2,c2,r0
•• mad mad r0.r0.rgbrgb,t1_bx2.a,c3.a,r0 ,t1_bx2.a,c3.a,r0 
•• mad mad r0.r0.rgbrgb,t2_bx2.a,c4.a,r0 ,t2_bx2.a,c4.a,r0 
•• mul mul r0,r0,v0 r0,r0,v0 

r0 += lighting B2 * third texture r0 += lighting B2 * third texture 



Rendering it on PS_1_1Rendering it on PS_1_1

•• psps.1.1.1.1
•• tex tex t0t0
•• tex tex t1t1
•• tex tex t2t2
•• mul mul r0,t0,c0                r0,t0,c0                
•• mad mad r0.r0.rgbrgb,t1_bx2,c1,r0     ,t1_bx2,c1,r0     
•• mad mad r0.r0.rgbrgb,t2_bx2,c2,r0     ,t2_bx2,c2,r0     
•• mad mad r0.r0.rgbrgb,t1_bx2.a,c3.a,r0,t1_bx2.a,c3.a,r0
•• mad mad r0.r0.rgbrgb,t2_bx2.a,c4.a,r0 ,t2_bx2.a,c4.a,r0 
•• mul mul r0,r0,v0 r0,r0,v0 

r0 += lighting B3 * second texture alphar0 += lighting B3 * second texture alpha



Rendering it on PS_1_1Rendering it on PS_1_1

•• psps.1.1.1.1
•• tex tex t0t0
•• tex tex t1t1
•• tex tex t2t2
•• mul mul r0,t0,c0                r0,t0,c0                
•• mad mad r0.r0.rgbrgb,t1_bx2,c1,r0     ,t1_bx2,c1,r0     
•• mad mad r0.r0.rgbrgb,t2_bx2,c2,r0     ,t2_bx2,c2,r0     
•• mad mad r0.r0.rgbrgb,t1_bx2.a,c3.a,r0 ,t1_bx2.a,c3.a,r0 
•• mad mad r0.r0.rgbrgb,t2_bx2.a,c4.a,r0,t2_bx2.a,c4.a,r0
•• mul mul r0,r0,v0 r0,r0,v0 

r0 += lighting B4 * third texture alphar0 += lighting B4 * third texture alpha



Rendering it on PS_1_1Rendering it on PS_1_1

•• psps.1.1.1.1
•• tex tex t0t0
•• tex tex t1t1
•• tex tex t2t2
•• mul mul r0,t0,c0                r0,t0,c0                
•• mad mad r0.r0.rgbrgb,t1_bx2,c1,r0     ,t1_bx2,c1,r0     
•• mad mad r0.r0.rgbrgb,t2_bx2,c2,r0     ,t2_bx2,c2,r0     
•• mad mad r0.r0.rgbrgb,t1_bx2.a,c3.a,r0 ,t1_bx2.a,c3.a,r0 
•• mad mad r0.r0.rgbrgb,t2_bx2.a,c4.a,r0 ,t2_bx2.a,c4.a,r0 
•• mul mul r0,r0,v0r0,r0,v0

Modulate by vertex Modulate by vertex colourcolour and outputand output



#3: ‘GI’ on the GPU (cube version)#3: ‘GI’ on the GPU (cube version)



‘‘GI’ on the GPU (cube version)GI’ on the GPU (cube version)

•• Implementation of soft shadowingImplementation of soft shadowing
–– with loads of area lightswith loads of area lights
–– and totally dynamic scenesand totally dynamic scenes
–– ‘traditional’ algorithms are cost O(N) ‘traditional’ algorithms are cost O(N) 

in the number of lightsin the number of lights
–– Recast the problem so it’s O(1) in the Recast the problem so it’s O(1) in the 

number of lightsnumber of lights
•• but a very big 1 but a very big 1 ☺☺



Demo!Demo!

•• Look at it go! Look at it go! 
–– Was written on a Was written on a RadeonRadeon 97009700

•• Makes heavy use of Makes heavy use of MRTsMRTs, 16bit targets, 16bit targets
–– The e.g. X800 flies along in comparisonThe e.g. X800 flies along in comparison
–– But volume texture reads are But volume texture reads are memmem b/w b/w 

limitedlimited

•• Dynamic shadows of the character Dynamic shadows of the character 
coming up in a second…coming up in a second…



Path Tracing 101Path Tracing 101
•• Traditionally, to shade Traditionally, to shade 

a point, you ‘cast rays’a point, you ‘cast rays’
–– But only to point light But only to point light 

sources. Then sources. Then 
accumulateaccumulate

In Path tracing / Distribution ray In Path tracing / Distribution ray 
tracing, light is gathered from all tracing, light is gathered from all 
directions directions 

–– allowing bounce light, area allowing bounce light, area 
lights and therefore soft shadowslights and therefore soft shadows



Doing it on the GPUDoing it on the GPU
•• Need to cast zillions of raysNeed to cast zillions of rays

–– Imagine if we could trace one ray for every Imagine if we could trace one ray for every 
pixel computed by a shaderpixel computed by a shader
•• Step 1: Cover the world in a Step 1: Cover the world in a lightmaplightmap



GPU GI cont…GPU GI cont…

•• Step 2: imagine casting Step 2: imagine casting 
rays out in random rays out in random 
directions with some magic directions with some magic 
pixel shaderpixel shader

Step 3:  The output of Step 3:  The output of 
the pixel shader is the the pixel shader is the 
colour of the first colour of the first 
surface or light that is surface or light that is 
hit by that rayhit by that ray



GPU GI cont…GPU GI cont…
Step 4: Step 4: downsampledownsample to average the results to average the results 
of many raysof many rays



Making it PracticalMaking it Practical
•• Imagine a world made entirely of cubesImagine a world made entirely of cubes

–– Store the whole world in a volume textureStore the whole world in a volume texture
–– DXT compressed, 1 bit alpha = solid/not solidDXT compressed, 1 bit alpha = solid/not solid
–– RGB channel stores RGB channel stores emissivenessemissiveness (=lights)(=lights)

•• Tracing a ray now just becomes samplingTracing a ray now just becomes sampling
–– Can sample up to 20 times along the rayCan sample up to 20 times along the ray



Making it Practical 2Making it Practical 2
•• There are many more details to the actual There are many more details to the actual 

implementationimplementation
•• Getting good random numbers into the PS is hardGetting good random numbers into the PS is hard
•• Stochastic sampling, importance samplingStochastic sampling, importance sampling

–– This is implemented using a technique akin to dithering, This is implemented using a technique akin to dithering, 
but in 3D space over light directions.but in 3D space over light directions.



But it all fits in PS_2_0!But it all fits in PS_2_0!
•• const static const static intint numloopsnumloops = 4;                                               = 4;                                               
•• float4 float4 steppatternsteppattern = tex2D(steptex, = tex2D(steptex, posincellposincell); // each element is 'nearly 1'); // each element is 'nearly 1'
•• float4 float4 destposxdestposx = tex2D(desttex, = tex2D(desttex, posonpageposonpage) ;                                ) ;                                
•• float3 float3 destposdestpos=float3(destposx.x,destposx.y,destposx.z);                     =float3(destposx.x,destposx.y,destposx.z);                     
•• float3 d = float3 d = destposdestpos -- ((posinworldposinworld--Zero);                                      Zero);                                      
•• float4 temp;                                                    float4 temp;                                                    
•• float float outaouta=1.f;                                                           =1.f;                                                           
•• for (for (intint loopy=0;loopy<loopy=0;loopy<numloops;loopynumloops;loopy++)                                     ++)                                     
•• {                                                               {                                                               
•• temp=tex3D(boxtex, temp=tex3D(boxtex, posinworld+dposinworld+d**steppattern.xsteppattern.x);                  );                  
•• if (temp.a>0) if (temp.a>0) outaouta==steppattern.xsteppattern.x;                                ;                                
•• temp=tex3D(boxtex, temp=tex3D(boxtex, posinworld+dposinworld+d**steppattern.ysteppattern.y);                  );                  
•• if (temp.a>0) if (temp.a>0) outaouta==steppattern.ysteppattern.y;                                ;                                
•• temp=tex3D(boxtex, temp=tex3D(boxtex, posinworld+dposinworld+d**steppattern.zsteppattern.z);                  );                  
•• if (temp.a>0) if (temp.a>0) outaouta==steppattern.zsteppattern.z;                                ;                                
•• temp=tex3D(boxtex, temp=tex3D(boxtex, posinworld+dposinworld+d**steppattern.wsteppattern.w);                  );                  
•• if (temp.a>0) if (temp.a>0) outaouta==steppattern.wsteppattern.w;                                ;                                
•• steppatternsteppattern--=0.25;                                               =0.25;                                               
•• }                                                               }                                                               
•• float4 float4 outcoloutcol = tex3D(boxtex, = tex3D(boxtex, posinworld+dposinworld+d**outaouta) ;                           ) ;                           
•• d*=d*=worldscaleworldscale;                                                               ;                                                               
•• float float dlendlen=1.f/length(d);                                                 =1.f/length(d);                                                 
•• float3 float3 dnormdnorm = d*= d*dlendlen;                                                       ;                                                       
•• float dotty=float dotty=dot(normal,dnormdot(normal,dnorm);                                               );                                               
•• dotty=max(dotty+0.1,0); // clamp to > 0 so we get some ambient  dotty=max(dotty+0.1,0); // clamp to > 0 so we get some ambient  
•• dotty*=A*dotty*=A*dlendlen**dlen+Bdlen+B; // 1/r2 falloff                                        ; // 1/r2 falloff                                        
•• return return outcoloutcol * dotty / * dotty / destposx.wdestposx.w; ; 



The downThe down--sides…sides…
•• Why was that algorithm slow?Why was that algorithm slow?

–– A lot of rays were castA lot of rays were cast
•• But they’re all independentBut they’re all independent

–– And it was limited to worlds represented as And it was limited to worlds represented as 
cubescubes

–– Offline Offline renderersrenderers solve this issue by solve this issue by 
‘caching’ the results of similar rays‘caching’ the results of similar rays

•• Photon MappingPhoton Mapping
•• Irradiance CachesIrradiance Caches

–– But that’s another talk…But that’s another talk…
•• Or try different representations of your worldOr try different representations of your world

–– EgEg Mike Mike BunnellBunnell, GPU Gems 2, GPU Gems 2



Dynamic object shadows in Dynamic object shadows in 
cubecube--worldworld

•• The fuzzy shadows cast by the marble The fuzzy shadows cast by the marble 
bust in the bust in the cubeworldcubeworld demo…demo…
–– Works independently of the GPU algorithm Works independently of the GPU algorithm 

just describedjust described
–– But it is chosen carefully to ‘match’ But it is chosen carefully to ‘match’ –– it is it is 

based on SH techniques that are of based on SH techniques that are of 
(approximately) fixed cost regardless of the (approximately) fixed cost regardless of the 
number or size of the area lights in the number or size of the area lights in the 
scene.scene.



SH Volume TransferSH Volume Transfer
•• The Irradiance Volume [Greger98] says: The Irradiance Volume [Greger98] says: 

–– Imagine storing the incident lighting at every point in space prImagine storing the incident lighting at every point in space projected onto the ojected onto the 
SH basis…SH basis…

•• Surfaces nearby have an effect on the light at every pointSurfaces nearby have an effect on the light at every point
–– They bounce and occlude lightThey bounce and occlude light
–– This has some relation to [Greger98], which This has some relation to [Greger98], which NatalyaNatalya covered already in her covered already in her 

talk today. (but have that talk today. (but have that picpic one more time!)one more time!)
•• What we’re going to do is store What we’re going to do is store occlusionocclusion information in a volume information in a volume 

texturetexture



SH Volume transferSH Volume transfer

•• When the lighting is stored as When the lighting is stored as 
truncated SH…truncated SH…
–– The influence of an object can be The influence of an object can be 

precomputedprecomputed for all points in spacefor all points in space
•• As a transfer matrix which maps As a transfer matrix which maps 

incoming radiance expressed in SH incoming radiance expressed in SH 
basis, to outgoing radiance taking into basis, to outgoing radiance taking into 
account the object’s effect on lighting.account the object’s effect on lighting.

•• See Sloan et al first paper on SHSee Sloan et al first paper on SH
–– Section 8! Section 8! 



SH Volume Transfer the ‘Wrong’ WaySH Volume Transfer the ‘Wrong’ Way
•• PreprocessPreprocess step embeds step embeds 

shadow caster in double size shadow caster in double size 
bounding boxbounding box

•• The processor is going to The processor is going to 
output a 32x32x32 volume output a 32x32x32 volume 
of SH coefficient VECTORS of SH coefficient VECTORS 
(not matrices)(not matrices)
–– The demo used PCA The demo used PCA 

compression to reduce the compression to reduce the 
number of coefficients per number of coefficients per 
voxelvoxel to 16to 16

–– We’re effectively assuming the We’re effectively assuming the 
bottom rows of the matrix are bottom rows of the matrix are 
all 0s.all 0s.



SH Volume Transfer SH Volume Transfer preprocesspreprocess……
•• Each Each voxelvoxel casts rays to casts rays to 

determine which determine which 
directions are occludeddirections are occluded
–– The results are projected The results are projected 

onto the SH basisonto the SH basis
–– This is like a much This is like a much 

simplified light transport simplified light transport 
(PRT) step(PRT) step

•• Except we don’t bother Except we don’t bother 
with bounce light, the with bounce light, the 
cosine term (or any BRDF)cosine term (or any BRDF)

•• And it’s over all of space, And it’s over all of space, 
not just the surface of the not just the surface of the 
mesh.mesh.



SH Volume Transfer SH Volume Transfer preprocesspreprocess……

•• Example Example 
voxelvoxel and the and the 
result of the result of the 
SH SH 
‘compression’ ‘compression’ 
–– a sort of a sort of 
fuzzy fuzzy 
occlusion mapocclusion map



SH Volume transfer at runtime…SH Volume transfer at runtime…
•• After the background has been lit and the After the background has been lit and the 

dynamic objects rendered…dynamic objects rendered…
–– I happen to light the dynamic objects using the I happen to light the dynamic objects using the 

standard SH PRT techniquestandard SH PRT technique



……shadows are added…shadows are added…
•• ……in a ‘deferred’ wayin a ‘deferred’ way

–– By rendering a By rendering a fullscreenfullscreen quad over the quad over the 
screen with a big pixel shaderscreen with a big pixel shader

•• For each pixel, the shader computes the For each pixel, the shader computes the 
occlusion of that object, and outputs a scalar occlusion of that object, and outputs a scalar 
value to darken the screen.value to darken the screen.



SH Volume transfer runtime…SH Volume transfer runtime…
•• The CPU computes the incident lighting The CPU computes the incident lighting 

for the object at 2 candidate pointsfor the object at 2 candidate points
–– Chosen at ends of object’s longest axisChosen at ends of object’s longest axis

•• Improves locality of lightingImproves locality of lighting
•• This is a general technique applicable to all This is a general technique applicable to all 

lighting approximations that rely on an lighting approximations that rely on an 
assumption of ‘distant lighting’assumption of ‘distant lighting’



•• To compute the lighting at a point, the To compute the lighting at a point, the 
pixel shader:pixel shader:
–– Rotates the point to be shaded into the Rotates the point to be shaded into the 

object’s local spaceobject’s local space
–– Interpolates the lighting environments Interpolates the lighting environments 

uploaded by the CPU, according to the uploaded by the CPU, according to the 
position along the longest axisposition along the longest axis

–– Dots the lighting environment with the Dots the lighting environment with the 
occlusion data looked up from the occlusion data looked up from the 
precomputedprecomputed volume volume texture(stexture(s))

SH Volume transfer runtime…SH Volume transfer runtime…



But it all fits in PS_2_0!But it all fits in PS_2_0!
•• float4 main(float2 t0: TEXCOORD0) : COLORfloat4 main(float2 t0: TEXCOORD0) : COLOR
•• {{
•• float4 float4 worldposworldpos=tex2D(postex,t0);=tex2D(postex,t0);
•• float id=float id=worldpos.wworldpos.w;;
•• worldpos.wworldpos.w=1;=1;
•• worldposworldpos==mul(worldpos,worldmatmul(worldpos,worldmat); // rotate world pos into local object ); // rotate world pos into local object 

spacespace

•• float float zlerpzlerp=saturate(worldpos.z+0.5);=saturate(worldpos.z+0.5);

•• float4 a=float4 a=abs(worldposabs(worldpos););
•• float funkiest=max(1,max(a.x,max(a.y,a.z)));float funkiest=max(1,max(a.x,max(a.y,a.z)));
•• worldposworldpos==worldposworldpos*(0.5f/funkiest);*(0.5f/funkiest);

•• float4 float4 aaaa=tex3D(shadowtex0,worldpos);=tex3D(shadowtex0,worldpos);
•• float4 bb=tex3D(shadowtex1,worldpos);float4 bb=tex3D(shadowtex1,worldpos);
•• float4 cc=tex3D(shadowtex2,worldpos);float4 cc=tex3D(shadowtex2,worldpos);
•• float4 float4 dddd=tex3D(shadowtex3,worldpos);=tex3D(shadowtex3,worldpos);

•• float outcol1 = dot(float4(dot(aa,lighting[0]),dot(bb,ligfloat outcol1 = dot(float4(dot(aa,lighting[0]),dot(bb,lighting[1]),hting[1]),
•• dot(cc,lighting[2]),dot(dd,ligdot(cc,lighting[2]),dot(dd,lighting[3])),1);hting[3])),1);
•• float outcol2 = dot(float4(dot(aa,lighting2[0]),dot(bb,lifloat outcol2 = dot(float4(dot(aa,lighting2[0]),dot(bb,lighting2[1]),ghting2[1]),
•• dot(cc,lighting2[2]),dot(dd,lidot(cc,lighting2[2]),dot(dd,lighting2[3])),1);ghting2[3])),1);
•• return lerp(outcol1,outcol2,zlerp);return lerp(outcol1,outcol2,zlerp);
•• }}



Help! I’ve been blinded by science!Help! I’ve been blinded by science!

•• And who would want to make a And who would want to make a rendererrenderer that can that can 
only do cubes?only do cubes?
–– ☺☺ There is interesting stuff you can do by enabling There is interesting stuff you can do by enabling trilineartrilinear

filtering, effectively creating a filtering, effectively creating a ‘‘signed distance functionsigned distance function’…’…
•• There is *so* much headroom left on current cardsThere is *so* much headroom left on current cards

–– Even using PS1.1 … or PS0!Even using PS1.1 … or PS0!
–– Restrictions in the game design are *great* for inspiring Restrictions in the game design are *great* for inspiring 

novel (nonnovel (non--general) solutions.general) solutions.
•• Exploring ‘Exploring ‘whackywhacky’ rendering approaches, or hybrids ’ rendering approaches, or hybrids 

of existing approachesof existing approaches
–– Allows the engine to be more tightly tailored to the Allows the engine to be more tightly tailored to the 

aesthetics of the game/applicationaesthetics of the game/application
–– And will lead to more variety and imagination (?) in the And will lead to more variety and imagination (?) in the 

visual style of games.visual style of games.



But…But…

•• ‘‘Real Life Game Making’ militates against thisReal Life Game Making’ militates against this
–– But the march of time can only make things betterBut the march of time can only make things better

•• As we collectively get more used to algorithms and As we collectively get more used to algorithms and 
tools such as SH, we ‘internalise’ them and feel less tools such as SH, we ‘internalise’ them and feel less 
afraid to experiment.afraid to experiment.

•• ‘‘RealtimeRealtime Cinematic Rendering’ doesn’t just mean Cinematic Rendering’ doesn’t just mean 
great looking surfacesgreat looking surfaces

–– hopefully it will bring to games the same breadth of hopefully it will bring to games the same breadth of 
visual styles that are evident today in film.visual styles that are evident today in film.

•• “And with a little effort and careful design, a “And with a little effort and careful design, a 
lot is possible today.”lot is possible today.”
–– Go Jerry! Go Jerry! Go Jerry!Go Jerry! Go Jerry! Go Jerry!



ReferencesReferences

•• [Greger98] [Greger98] -- Gene Gene GregerGreger, Peter Shirley, Philip M. Hubbard, and , Peter Shirley, Philip M. Hubbard, and 
Donald P. Greenberg, “The Irradiance Volume”, IEEE Donald P. Greenberg, “The Irradiance Volume”, IEEE Computer Computer 
Graphics and ApplicationsGraphics and Applications, 18(2):32, 18(2):32----43, March  199843, March  1998

•• [Malzbender01] [Malzbender01] -- Tom Tom MalzbenderMalzbender, Dan Gelb, Hans , Dan Gelb, Hans WoltersWolters
“Polynomial “Polynomial TexturemapsTexturemaps”, SIGGRAPH 2001”, SIGGRAPH 2001

•• [Sloan02] [Sloan02] --PeterPeter--Pike Sloan, Jan Pike Sloan, Jan KautzKautz, and John Snyder, , and John Snyder, 
Precomputed Radiance Transfer for RealPrecomputed Radiance Transfer for Real--Time Rendering in Time Rendering in 
Dynamic, LowDynamic, Low--Frequency Lighting EnvironmentsFrequency Lighting Environments, SIGGRAPH , SIGGRAPH 
2002,July, 20022002,July, 2002

•• [Bunnell04] [Bunnell04] -- Mike Mike BunnellBunnell, “, “Dynamic Ambient Occlusion and Dynamic Ambient Occlusion and 
Indirect Lighting”, Chapter 14 GPU Gems 2Indirect Lighting”, Chapter 14 GPU Gems 2

•• [Kewlers05] [Kewlers05] -- KewlersKewlers, “We Cell”, , “We Cell”, http://kewlers.scene.orghttp://kewlers.scene.org

http://research.microsoft.com/copyright/accept.asp?path=http://research.microsoft.com/~ppsloan/shillum_final23.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://research.microsoft.com/~ppsloan/shillum_final23.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://research.microsoft.com/~ppsloan/shillum_final23.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://research.microsoft.com/~ppsloan/shillum_final23.pdf&pub=ACM
http://kewlers.scene.org


Questions?Questions?

•• aevans@lionhead.comaevans@lionhead.com

•• Thanks:Thanks:
–– Mark Healey, Dave Smith @ LHMark Healey, Dave Smith @ LH
–– Jason Mitchell, Mike Smith, Kevin Strange Jason Mitchell, Mike Smith, Kevin Strange 

& Richard & Richard HuddyHuddy @ ATI@ ATI

mailto:aevans@lionhead.com
mailto:aevans@lionhead.com

	Making Pretty Pictures with D3D
	And Relax…
	I promise this rant will be quick!
	Lots can be done with very little!
	#1: DOF in 2.5D games
	2D DOF problems
	More with less cont…
	#2: Lighting in 2.5D Games
	Lots of different light dirs…
	Lighting continued…
	‘Circular Harmonics’
	Circular Harmonics Pictures
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	#3: ‘GI’ on the GPU (cube version)
	‘GI’ on the GPU (cube version)
	Demo!
	Path Tracing 101
	Doing it on the GPU
	GPU GI cont…
	GPU GI cont…
	Making it Practical
	Making it Practical 2
	But it all fits in PS_2_0!
	The down-sides…
	Dynamic object shadows in cube-world
	SH Volume Transfer
	SH Volume transfer
	SH Volume Transfer the ‘Wrong’ Way
	SH Volume Transfer preprocess…
	SH Volume Transfer preprocess…
	SH Volume transfer at runtime…
	…shadows are added…
	SH Volume transfer runtime…
	SH Volume transfer runtime…
	But it all fits in PS_2_0!
	Help! I’ve been blinded by science!
	But…
	References
	Questions?

