GameDevelopers

Conference

Making Pretty Pictures with D3D

Or...

A hand-wavey tour through some case studies of
how to bring a graphics card to its knees in the
persuit of ‘greater beauty’

Alex Evans, Lionhead Studios

& = /8

LIONHEAD
STUDIOS




GameDevelopers

Conference

And Relax...

« Amid all the awesome tools
available its easy to forget why
we’re making these engines...

— Easy to forget simple things, e.g.

 there's more to the rendering style
spectrum than just toon shading or
hyper-realism




GameDevelopers

Conference

| promise this rant will be quick!

e It's time for games to make more
an effort to look different from
each other

— and not just driven by the actual art
assets themselves

« Shaders are opening up our way of
thinking about PC graphics coding

& /%
y g



GameDevelopers

Conference

Lots can be done with very little!

e It doesn’t have to be complex to look

great
— E.g. Lots of alpha layers

* Blooming, radial blur, particles
— Hiding polygon edges

» Silhouette polygons, blur, post-processing, noise

e So let’s get down to business...

4 different case studies coming up, ranging from
simple to just-plain-weird...




GameDevelopers

Conference

#1: DOF in 2.5D games

e Aesthetic / design decision:

— Limit ourselves to 2D billboards
* Placed in a full ‘3D’ space

— Blurring is as simple as choosing a
mip-map to render with

* Just set D3IDSAMP_MIPMAPLODBIAS

— This trick is as old as the hills!
« But it looks great...




GameDevelopers

Conference

Image from ‘we cell’ by kewlers




GameDevelopers

Conference

2D DOF problems

e Must keep big alpha
0 borders

e Box filter is ugly

— Could use something
better

— Can force the
borders to alpha 0
here too




GameDevelopers

Conference

More with less cont...

« When you combine tricks like this
with the massive fill-rate of
modern cards...

— You get some lovely results

— Best example I’ve seen recently:
* ‘We Cell’ by kewlers

* Check out their awesome work
— http://kewlers.scene.org

._'?'a - M)
*
! .
|
}f
¥ . ) '




GameDevelopers

Conference

« Images from ‘we-cell’ by kewlers
e No polygons (other than billboards...)
e No Shaders!




GameDevelopers

Conference

#2: Lighting in 2.5D Games

e Art-led engine feature request:

— How to shade these billboards under
changing lighting conditions?
— Could use normal maps...

« But they are not always an ideal fit — it imposes a
lighting model that must be evaluated at run time.

« And what about self-shadowing?

— What if we could just pre-render every )
possible light direction? *i‘:
/
/




GameDevelopers

Conference

Lots of different light dirs...




GameDevelopers

Conference

Lighting continued...

« Every possible direction is too
memory heavy, but is flexible

— (Lossy) Compression please!

e The pixel colours are generally
slowly varying with light direction

— Diffuse / glossy assumption here
—In ‘3D-world’, Spherical Harmonics

have been helping us out here...




GameDevelopers

Conference

‘Circular Harmonics’

e Project source images onto basis:

1

2T

BD:=B%

sin( 8 1) cos( 8 1)

By;=8- Jr By;y1=6— Ir

« Gives us some small number of Y.
— For each pixel, for each channel

2T
J = | EB:-{EJJ oL
I.'II:I




GameDevelopers

Conference

Clrcular Harmonics Plctures




GameDevelopers

Conference

Rendering it on PS_1_1

e C(++) code computes lighting
and projects onto our basis, as i}:i]D X B(0) e
before

e Uploads as 5 constants:
- c0 = BOr, BOg, BOb, 1
- ¢l = Blr, Blg, Blb, 1
- c2 = B2r, B2g, B2b, 1
~-e3 =0, 0, 0, B3
~c4 =0, 0, 0, B4




GameDevelopers

Conference

Rendering it on PS_1_1

e ps.l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0




GameDevelopers

Conference

Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 = lighting BO * first texture rgb




GameDevelopers

Conference

Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,x0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 += lighting Bl * second texture rgb




GameDevelopers

Conference

Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 += lighting B2 * third texture




GameDevelopers

Conference

Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 += lighting B3 * second texture alpha




GameDevelopers

Conference

Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

r0 += lighting B4 * third texture alpha




GameDevelopers

Conference

Rendering it on PS_1_1

e ps.1l.1

e tex tO0

e tex tl

e tex t2

e mul r0,t0,cO

* mad r0.rgb,tl bx2,cl,r0

* mad r0.rgb,t2 bx2,c2,r0

* mad r0.rgb,tl bx2.a,c3.a,r0
* mad r0.rgb,t2 bx2.a,c4.a,r0
e mul r0,r0,vO0

Modulate by vertex colour and output




GameDevelopers

Conference

#3: ‘Gl’ on the GPU (cube version)

. . T S i

1;-—4 . ".I




GameDevelopers

Conference

‘Gl’ on the GPU (cube version)

e Implementation of soft shadowing
— with loads of area lights
— and totally dynamic scenes

— ‘traditional’ algorithms are cost O(N)
in the number of lights

— Recast the problem so it’s O(1) in the
number of lights

; * but a very big1 ©




GameDevelopers

Conference

Demo!

e Look at it go!

— Was written on a Radeon 9700
 Makes heavy use of MRTs, 16bit targets

— The e.g. X800 flies along in comparison

— But volume texture reads are mem b/w
limited

 Dynamic shadows of the character
coming up in a second...




GameDevelopers

Conference

Path Tracing 101

e Traditionally, to shade

a point, you ‘cast rays’ 10" _ ot I ldadabde
. . EE‘I‘EV s.?nph N.L light-
— But only to point light 1
sources. Then TITTeRa TN
accumulate
In Path tracing / Distribution ray
tracing, light is gathered fromall 7 by coth b &Tu' bt
directions O || R 6;?.,#! dneely pifl
- allowing bounce light, area KV, % al s (I‘]mn snur)

lights and therefore soft shadows




GameDevelopers

Conference

Doing it on the GPU

e Need to cast zillions of rays

— Imagine if we could trace one ray for every
pixel computed by a shader

« Step 1: Cover the world in a lightmap

E‘."
' _J

LIGHYVMAP




GameDevelopers

Conference

GPU Gl cont...

« Step 2: imagine casting
rays out in random
directions with some magic
pixel shader

Step 3: The output of
the pixel shader is the
colour of the first
surface or light that is
hit by that ray




GameDevelopers

Conference

GPU Gl cont...

Step 4: downsample to average the results
of many rays

CLBEVP 0f LIMYMAR
Se o E y

DouN
). X >
DEg ; SAMPLE

OVBRALL, DIUNIAMPLED  MAP

NN

 TExeL !




GameDevelopers

Conference

Making it Practical
* Imagine a world made entirely of cubes
— Store the whole world in a volume texture
— DXT compressed, 1 bit alpha = solid/not solid
— RGB channel stores emissiveness (=lights)

* Tracing a ray now just becomes sampling
— Can sample up to 20 times along the ray




GameDevelopers

Conference

Making it Practical 2

e There are many more details to the actual

implementation

» Getting good random numbers into the PS is hard

« Stochastic sampling, importance sampling

— This is implemented using a technique akin to dithering,
but in 3D space over light directions.

T2 =P [

.'Jq_, ’ﬂ

e o Ay

x Y| % ~12

SRR
(,,) T Il |




GameDevelopers

Conference
But it all fits in PS_2_0!

. float4 steppattern = tex2D(steptex, posincell); // each element is 'nearly 1'
. floatd4 destposx = tex2D (desttex, posonpage) ;

. float3 destpos=float3(destposx.x,destposx.y,destposx.z);

. float3 d = destpos - (posinworld-Zero) ;

. floatd4 temp;

. float outa=1l.f;

. for (int loopy=0;loopy<numloops;loopy++)

. {

. temp=tex3D (boxtex, posinworld+d*steppattern.x);
. if (temp.a>0) outa=steppattern.x;

. temp=tex3D (boxtex, posinworld+d*steppattern.y);
. if (temp.a>0) outa=steppattern.y;

. temp=tex3D (boxtex, posinworld+d*steppattern.z);
. if (temp.a>0) outa=steppattern.z;

. temp=tex3D (boxtex, posinworld+d*steppattern.w);
. if (temp.a>0) outa=steppattern.w;

. steppattern-=0.25;

. }

. float4 outcol = tex3D (boxtex, posinworld+d*outa) ;

. d*=worldscale;

. float dlen=1l.f/length(d);

. float3 dnorm = d*dlen;

. float dotty=dot (normal,dnorm) ;

. dotty=max (dotty+0.1,0); // clamp to > 0 so we get some ambient
. dotty*=A*dlen*dlen+B; // 1/r2 falloff

* return outcol * dotty / destposx.w;




GameDevelopers

Conference

The down-sides...

« Why was that algorithm slow?

— A lot of rays were cast
« But they’re all independent

— And it was limited to worlds represented as
cubes

— Offline renderers solve this issue by
‘caching’ the results of similar rays
 Photon Mapping
* Irradiance Caches

— But that’s another talk...

 Or try different representations of your world
— Eg Mike Bunnell, GPU Gems 2




GameDevelopers

Conference

Dynamic object shadows in
cube-world

e The fuzzy shadows cast by the marble
bust in the cubeworld demo...
— Works independently of the GPU algorithm
just described

— But it is chosen carefully to ‘match’ — it is
based on SH techniques that are of
(approximately) fixed cost regardless of the
number or size of the area lights in the

scene.




GameDevelopers

Conference

SH Volume Transfer

« The Irradiance Volume [Greger98] says:

- Isr?_laging storing the incident lighting at every point in space projected onto the
asis...

« Surfaces nearby have an effect on the light at every point
— They bounce and occlude light

— This has some relation to [Greger98], which Natalya covered already in her
talk today. (but have that pic one more time!)

 What we’re going to do is store occlusion information in a volume
texture




GameDevelopers

Conference

incomingg¥iiance expressed

basis, to dgomg radn kaj into
e

‘dcton Ilghtn.sg

accoun e‘:
« See Slodn et*ul rirst paGP U
— Section 8! { 0‘




GameDevelopers

Conference

SH Volume Transfer the ‘Wrong’ Way

e Preprocess step embeds
shadow caster in double size
bounding box

e The processor is going to
output a 32x32x32 volume
of SH coefficient VECTORS
(not matrices)

— The demo used PCA
compression to reduce the
number of coefficients per

voxel to 16
— We’re effectively assuming the =
bottom rows of the matrix arefj=—

all Os. ,}!



GameDevelopers

Conference

SH Volume Transfer preprocess...

« Each voxel casts rays to
determine which
directions are occluded

— The results are projected
onto the SH basis

— This is like a much
simplified light transport
(PRT) step

« Except we don’t bother
with bounce light, the
cosine term (or any BRDF)

« And it’s over all of space,
not just the surface of the
mesh.




GameDevelopers

Conference

SH Volume Transfer preprocess...

« Example
voxel and the
result of the
SH
‘compression’
- a sort of

fuzzy
‘ occlusion map

&



GameDevelopers

Conference

SH Volume transfer at runtime...

o After the background has been lit and the
dynamic objects rendered...

— | happen to light the dynamic objects using the
standard SH PRT technique




GameDevelopers

Conference

...shadows are added...

e ...in a ‘deferred’ way

— By rendering a fullscreen quad over the
screen with a big pixel shader
* For each pixel, the shader computes the

occlusion of that object, and outputs a scalar
value to darken the screen.




GameDevelopers

Conference

SH Volume transfer runtime...
« The CPU computes the incident lighting
for the object at 2 candidate points

— Chosen at ends of object’s longest axis

* Improves locality of lighting

« This is a general technique applicable to all
lighting approximations that rely on an
assumption of ‘distant lighting’

L1

L2

L3




GameDevelopers

Conference

SH Volume transfer runtime...

« To compute the lighting at a point, the
pixel shader:

— Rotates the point to be shaded into the
object’s local space

— Interpolates the lighting environments
uploaded by the CPU, according to the
position along the longest axis

— Dots the lighting environment with the

L2




GameDevelopers

Conference

But it all fits in PS_2_0!

. float4 main(float2 t0: TEXCOORDO) : COLOR
. {

. float4 worldpos=tex2D (postex, t0) ;

. float id=worldpos.w;

. worldpos.w=1;

. worldpos=mul (worldpos,worldmat); // rotate world pos into local object
space

. float zlerp=saturate (worldpos.z+0.5);

. floatd4 a=abs (worldpos) ;

. float funkiest=max(l,max(a.x,max(a.y,a.z))):;

. worldpos=worldpos* (0.5f/funkiest) ;

. float4 aa=tex3D (shadowtex0,worldpos) ;

. float4 bb=tex3D (shadowtexl,worldpos) ;

. float4 cc=tex3D (shadowtex2,worldpos) ;

. float4 dd=tex3D (shadowtex3,worldpos) ;

. float outcoll = dot(float4 (dot(aa,lighting[0]) ,dot(bb,lighting[1]), g

. dot (cc,lighting[2]) ,dot(dd,lighting[3])),1);

. float outcol2 = dot(floatd (dot(aa,lighting2[0]) ,dot(bb,lighting2[1]),

: dot (cc,lighting2[2]) ,dot(dd,lighting2[3])),1) ;

return lerp(outcoll,outcol2, zlerp);



GameDevelopers

Conference

Help! I’ve been blinded by science!

« And who would want to make a renderer that can
only do cubes?

— © There is interesting stuff you can do by enabling trilinear
filtering, effectively creating a ‘signed distance function’...

e« There is *so* much headroom left on current cards
— Even using PS1.1 ... or PSO0!
— Restrictions in the game design are *great* for inspiring
novel (non-general) solutions.
e Exploring ‘whacky’ rendering approaches, or hybrids
of existing approaches

— Allows the engine to be more tightly tailored to the
aesthetics of the game/application

— And will lead to more variety and imagination (?) in the
visual style of games.




GameDevelopers
Conference

But...

o ‘Real Life Game Making’ militates against this

— But the march of time can only make things better

« As we collectively get more used to algorithms and
tools such as SH, we ‘internalise’ them and feel less
afraid to experiment.

« ‘Realtime Cinematic Rendering’ doesn’t just mean
great looking surfaces

— hopefully it will bring to games the same breadth of
visual styles that are evident today in film.

« “And with a little effort and careful design, a
lot is possible today.”

— Go Jerry! Go Jerry! Go Jerry!




GameDevelopers

Conference

References

« [Greger98] - Gene Greger, Peter Shirley, Philip M. Hubbard, and
Donald P. Greenberg, “The Irradiance Volume”, IEEE Computer
Graphics and Applications, 18(2):32--43, March 1998

e [Malzbender01] - Tom Malzbender, Dan Gelb, Hans Wolters
“Polynomial Texturemaps”, SIGGRAPH 2001

e [Sloan02] -Peter-Pike Sloan, Jan Kautz, and John Snyder,

, SIGGRAPH
2002,July, 2002

e [Bunnell04] - Mike Bunnell, “"Dynamic Ambient Occlusion and
Indirect Lighting”, Chapter 14 GPU Gems 2

o [Kewlers05] - Kewlers, “We Cell”,



http://research.microsoft.com/copyright/accept.asp?path=http://research.microsoft.com/~ppsloan/shillum_final23.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://research.microsoft.com/~ppsloan/shillum_final23.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://research.microsoft.com/~ppsloan/shillum_final23.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://research.microsoft.com/~ppsloan/shillum_final23.pdf&pub=ACM
http://kewlers.scene.org

GameDevelopers

Conference

Questions?

e Thanks:
— Mark Healey, Dave Smith @ LH

— Jason Mitchell, Mike Smith, Kevin Strange
& Richard Huddy @ ATI



mailto:aevans@lionhead.com
mailto:aevans@lionhead.com

	Making Pretty Pictures with D3D
	And Relax…
	I promise this rant will be quick!
	Lots can be done with very little!
	#1: DOF in 2.5D games
	2D DOF problems
	More with less cont…
	#2: Lighting in 2.5D Games
	Lots of different light dirs…
	Lighting continued…
	‘Circular Harmonics’
	Circular Harmonics Pictures
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	Rendering it on PS_1_1
	#3: ‘GI’ on the GPU (cube version)
	‘GI’ on the GPU (cube version)
	Demo!
	Path Tracing 101
	Doing it on the GPU
	GPU GI cont…
	GPU GI cont…
	Making it Practical
	Making it Practical 2
	But it all fits in PS_2_0!
	The down-sides…
	Dynamic object shadows in cube-world
	SH Volume Transfer
	SH Volume transfer
	SH Volume Transfer the ‘Wrong’ Way
	SH Volume Transfer preprocess…
	SH Volume Transfer preprocess…
	SH Volume transfer at runtime…
	…shadows are added…
	SH Volume transfer runtime…
	SH Volume transfer runtime…
	But it all fits in PS_2_0!
	Help! I’ve been blinded by science!
	But…
	References
	Questions?

