GameDevelopers <
MVIDIA.

Conference

Batching 4EVA

Matthias M Wloka
NVIDIA Corporation

GameDevelopers <

Conference =

RVIDIA.

Review: Batch, Batch, Batch

e Batch: state changes & Draw() call

e Lots of batches make you
— Completely,
— Utterly
— CPU limited!

e Overhead caused by
— ~80% driver
— ~10% runtime

GameDevelopers

Conference

RVIDIA.

batches/s

Thousands

200
175

150

125 -

100
75
50

25

Measured Batches per Second

%
| N2 0 v
e > e 0) o — e VARE), =< i .- :
/(_ﬁKN:L y \ v v v \ 0 J %
T Mthlor%(P 2.7+; NVIDIA GeEorceEX 588?3 Ultra
== Athlon XP 2.7+; NVIDIA GeForce4 Ti 4600
== Athlon XP 2.7+; NVIDIA GeForce3 Ti 500
== Athlon XP 2.7+; NVIDIA GeForce4 MX 440
B Athlon XP 2.7+; NVIDIA GeForce2 MX/MX 400
| = 1GHz Pentium 3; NVIDIA GeForceFX 5800 Ultra
D = 1GHz Pentium 3; NVIDIA GeForce4 Ti 4600
- = 1GHz Pentium 3; NVIDIA GeForce3 Ti 500
= 1GHz Pentium 3; NVIDIA GeForce4 MX 440
] 1GHz Pentium 3; NVIDIA GeForce2 MX/MX 400
B 1GHz Pentium 3; Radeon 9700/9500 SERIES
§ — — — —
| | | | | | | | | | | | | | | | | |
O O O O O O O O O O O 0O O o o o o o o o
4 AN M < IO O N 0 O O 4 N M) << IO O~ 0 OO O
— I A A A A A A —

triangles/batch

~170k batches/s

X ~2.7

~60k batches/s

GameDevelopers <
RVIDIA.

Conference

Please Hang over Your Bed

25k batches/s @ 100%
1GHz CPU

&

GameDevelopers <
RVIDIA.

Conference

Review: Son of a Batch

e All state changes roughly equally bad

— Multiple state changes worse than
changing single state

e Sort by state? Over-constrained problem
— And only an optimization

e Solution: collapse states

GameDevelopers &2
MVIDIA.

Conference

Use Texture Atlases

53 <= Removes SetTexture()

e Texture Atlas Tools:

— “Improved Batching via
Texture Atlases,” In
Shader X3, Charles River
Media 2004.

GameDevelopers <
Conference T

Use Instancing

e Previous session

e “Inside Geometry
Instancing,” Francesco
Carucci, Lionhead
Studios, GPU Gems 2

Instancing Method Comparison
(Note: % is relative to HW instancing in each group)

[28 poly mesh]

140.00%
120.00% M
100.00% - @ Single Draw Calls
m Dynamic 2 Stream Instancing
80.00% 1 O Static 2 Stream Instancing

O VS Constant Instancing
| Hardware Instancing
40.00% o Static Pretransformed VB

60.00% -

FPS(relative to HW Instancing)

20.00%

0.00% - T T
2800 28000 140000 280000 560000

#Polys

GameDevelopers <
Conference NVIDIA.

Most Important: Plan for Batching!

e Oh sh!%$, our game uses 2000
batches/frame

— Painful to impossible to fix late in
development

e Have a batch budget
— For terrain, characters, etc.
— Educate and give feedback to your art staff &
— Stick to the plan

GameDevelopers <
MVIDIA.

Conference

Be Aggressive in Moving Stuff to GPU

e All particle systems: 1 Draw() call?!

e Need to alpha blend them?
— Sort on the GPU!

GameDevelopers <

RVIDIA.

Conference

This Is All Very Complicated...
e Can | just wait until you guys fix this?

e And new cool tech coming out that
solves all these problems, right?
— Dual-core CPUs
— Longhorn
— WGF 2.0

GameDevelopers &2
AVIDIA.

Conference

GPUs Getting Faster More Quickly

40
30
i —&— NVIDIA NV30,35,40
E] —®— Pentium 4
O —
: 20 :
&} 7
10
5 - .
_ - 4___,_.———-.7
0—— T T I — T T
Aug Jan May Aug Nov Jan Jun Mar
2001 2002 2003 2004

GFLOPS (multiplies per second)

Courtesy lan Buck,
Stanford University

GameDevelopers <
RVIDIA.

Conference

Multi-Core CPUs to the Rescuel

e S0rry, no...

e Requires thread programming
— |Is your game multi-threaded?
— Batch overhead is in driver!

— Batch processing {SetState; Draw; repeat}
and thus driver inherently serial

e Multi-core GPUs already available:
— It’s called SLI

GameDevelopers <
RVIDIA.

Conference

Longhorn to the Rescue!

e S0rry, no...

e More efficient runtime and driver

— Design Goal: 10x improvement
(WIinHEC’'04 WGF Slides)

e Does not help your WinXP user base

e Longhorn available: 2006
— Long time in GPU years

GameDevelopers <

RVIDIA.

Conference

WGF 2.0 to the Rescue!

e You are on to something, but sorry, no...
e Features designed to mend batches, I.e.

e Another ‘simpler’ way to not say
— Change state
— Draw triangle

GameDevelopers &2
MVIDIA.

Conference

Later Today: “WGF 2.0

David Blythe, Microsoft

9:15pm

GameDevelopers <
RVIDIA.

Conference

We Are Stuck

1000 batches/frame
4EVA!

Assuming 50% 3GHz CPU @ 33fps

&

GameDevelopers <

Conference

Graphics in the Future?

e Best engine Is the one that achieves
— Most complex
— Most engaging
— Most immersive

e |n 1000 batches/frame or less!

e Make GPU work, so CPU does NOT

GameDevelopers <
RVIDIA.

Conference

To Make Things Worse...

GameDevelopers <
AVIDIA.

Conference

Get a Couple of Flashlights!

e First rule of optimization:
Profile! Know your bottleneck!

e PIX
e NVIDIA Performance Analysis Tools

e AMD’s CodeAnalyst

GameDevelopers <
RVIDIA.

Conference

Performance Stalagmites

e Difficult to hit
these

e Help available:
— GPU Programming Guide
— Tools
— Your local IHV devtech representative

GameDevelopers <
RVIDIA.

Conference

GPU Performance Advice

e Memory allocation
e Vertex shader optimizations
e Pixel shader optimizations

e Texture

GameDevelopers <
RVIDIA.

Conference

Memory Allocation: Don’ts

e Calling Create() mid-frame
— Guaranteed a frame-rate hitch
— Sub-optimal resource placement
— Expect the call to fail!

e Calling Release() mid-frame
— Potentially does nothing

e Do your own resource management
Instead

GameDevelopers <

Conference ==

RVIDIA.

Allocation Order — Rendering Performance

e Allocate POOL_DEFAULT resources first
— Render-targets first, sort by pitch
— Vertex and pixel shaders
— Textures
— Vertex and index buffers

e Then POOL_MANAGED
— If any

GameDevelopers

Conference

Vertex Shader Optimizations

e VS 3 0 dynamic flow control
— Go nuts, save batches
— Not penalty for divergence (MIMD)
— Driver optimizes short branches

e VS 3 0 vertex texture fetch (VTF)
— 20-30 instructions latency
— Hide other instructions in latency
— Dynamically branch over VTFs
— Pack data into single texture

@’-’:“J

RVIDIA.

GameDevelopers <
Conference NVIDIA.

Great Results with Vertex Texture

Image used with permission from

Pacific Fighters.

© 2004 Developed by 1C:Maddox Games.
All rights reserved. © 2004 Ubi Soft
Entertainment.

“GPU Gems 2 Showcase™ |
Room 2016 7 G/
Wednesday, 5:15 - 6:15pm |

Arul Asirvatham & Hugues Hoppe

Terrain Rendering Using |
GPU-Based Geometry Clipmaps

GameDevelopers <

RVIDIA.

Conference

Pixel Shader Optimizations

e Move computations out
— Remove operations via algebra
— Pre-compute: use texture as look-up table
— Into vertex shader: constant, interpolations

e Dynamic branching

_ o Instruction Cost (Cycles)
- [E)rl\ller optimizes if / endif 4
- marvout if / else / endif 6
— Batch materials
call 2
ret 2
loop / endloop 4

GameDevelopers

Conference

Dynamic Branching: Coherency

e ~1000 pixels, i.e., 30x30 blocks

(ON©)
e
@O
@O0
ce
(ON©)

(ON©)
(ON©)
(ON©)
ON©)
(ON©)
ON©)

O
O
@O
ON@)
e
@O

O ONONO)
LN X N J
| JOX NO)
L X X O
ONONON
| _NONONO)

O
O
@O
ON@)
e
@O

Incoherent

ON@)
ON@)
ON@)
ON@)
ON@)
ON@)

cCee
cCee
cCee
cCee
cCee
cOCcee

Coherent

(ON@)
e
@O
e
(ON@)
@O

RVIDIA.

GameDevelopers

Conference

Partial Precision Optimizations

e Compiler/Driver cannot help you here

e Reduces register pressure
— Critical for GeForce FX
— 100+ instruction shaders for GeForce 6

e Single cycle half3 normalize()
— Versus 3 cycle {dp3; rsq; mul}

<

RVIDIA.

GameDevelopers

Conference

Hardware Shadow Maps

e Support since GeForce 3

e Use:

— Render to depth format texture
(D3DFMT_D24X8, D3DFMT_D16)

— Use tex2Dproj to sample

— Automatic shadow map comparison &
percentage closer filtering (PCF)

— Explain PCF?!

<

RVIDIA.

GameDevelopers <
RVIDIA.

Conference

Hardware Shadow Map Fallback

e Generate depth in shader

e Write to single channel R32F or R16F
texture

e Sample texture, compare depths

— Multiple jittered samples for high quality /
soft edges

— Filter multiple sample via percentage closer

GameDevelopers <
Conference BVIDIA.

Shadow Map Performance

e HW shadow map comparison half speed
— No need to compare or filter in the shader
— PCF of 4 nearest texels if bilinear is on

e Single tap for performance
— Quality equivalent to 4-tap PCF R32F

(1
ol

e Multiple taps for higher quality oh 2
— 2-tap hw shadow map roughly same speed r
A
/

as 4-tap manual-PCF R32F

GameDevelopers <
RVIDIA.

Conference

Texture Instruction Performance

e Full speed:
— Regular mipmap, e.g., tex2D(s, t)
— Scalar bias mipmap, e.g., tex2Dbias(s, t)
— Explicit mipmap selection

e 1/10% speed:

— Gradient-based LOD selection, e.qg.,
{ ddx(x); ddy(y); tex2Dbias(s, t, ddx, ddy) }

— But when you need to use it,
you need to use it

GameDevelopers <
RVIDIA.

Conference

Common Sense Texture Performance

e Use mipmaps
— GPU fetches local neighbors for each texel

e Sharper/Crisper textures
— Use anisotropic filtering

— Use better mipmap generation
(use texture tools)

— Do NOT use LOD bias
— LOD bias is slower and lower quality

GameDevelopers <
Conference NVIDIA.

Floating Point Texture Performance

e Prefer 32bpp over 64bpp over 128bpp
— Applies to textures and render targets
— Bandwidth!

e More importantly: cache coherence
— Poor cache coherence destroys performance
— Fp1l16 textures 2x faster than fp32 if texture bound

e Efficient channel allocation
— Use R32F buffers for scalar data, not RGBA32F
— R16G16F for 2-vectors

GameDevelopers <
RVIDIA.

Conference

Conclusion

1000 batches/frame
4EVA!

GameDevelopers &2
MVIDIA.

Conference

Questions?

e mwloka@nvidia.com

e Slides availlable online

mailto:mwloka@nvidia.com

	Batching 4EVA
	Review: Batch, Batch, Batch
	Measured Batches per Second
	Please Hang over Your Bed
	Review: Son of a Batch
	Use Texture Atlases
	Use Instancing
	Most Important: Plan for Batching!
	Be Aggressive in Moving Stuff to GPU
	This Is All Very Complicated…
	GPUs Getting Faster More Quickly
	Multi-Core CPUs to the Rescue!
	Longhorn to the Rescue!
	WGF 2.0 to the Rescue!
	Later Today: “WGF 2.0”
	We Are Stuck
	Graphics in the Future?
	To Make Things Worse…
	Get a Couple of Flashlights!
	Performance Stalagmites
	GPU Performance Advice
	Memory Allocation: Don’ts
	Allocation Order Rendering Performance
	Vertex Shader Optimizations
	Great Results with Vertex Texture
	Pixel Shader Optimizations
	Dynamic Branching: Coherency
	Partial Precision Optimizations
	Hardware Shadow Maps
	Hardware Shadow Map Fallback
	Shadow Map Performance
	Texture Instruction Performance
	Common Sense Texture Performance
	Floating Point Texture Performance
	Conclusion
	Questions?

