
Batching 4EVABatching 4EVA

Matthias M WlokaMatthias M Wloka
NVIDIA CorporationNVIDIA Corporation



Review: Batch, Batch, BatchReview: Batch, Batch, Batch

•• Batch: state changes & Draw() callBatch: state changes & Draw() call

•• Lots of batches make youLots of batches make you
–– Completely, Completely, 
–– Utterly Utterly 
–– CPU limited!CPU limited!

•• Overhead caused by Overhead caused by 
–– ~80% driver ~80% driver 
–– ~10% runtime~10% runtime



Measured Batches per SecondMeasured Batches per Second

0

25

50

75

100

125

150

175

200

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

Th
ou

sa
nd

s

triangles/batch

ba
tc

he
s/

s

Athlon XP 2.7+; NVIDIA GeForceFX 5800 Ultra
Athlon XP 2.7+; NVIDIA GeForce4 Ti 4600
Athlon XP 2.7+; NVIDIA GeForce3 Ti 500
Athlon XP 2.7+; NVIDIA GeForce4 MX 440
Athlon XP 2.7+; NVIDIA GeForce2 MX/MX 400
1GHz Pentium 3; NVIDIA GeForceFX 5800 Ultra
1GHz Pentium 3; NVIDIA GeForce4 Ti 4600
1GHz Pentium 3; NVIDIA GeForce3 Ti 500
1GHz Pentium 3; NVIDIA GeForce4 MX 440
1GHz Pentium 3; NVIDIA GeForce2 MX/MX 400
1GHz Pentium 3; Radeon 9700/9500 SERIES

~170k batches/s~170k batches/s

~60k batches/s~60k batches/s

x ~2.7x ~2.7



Please Hang over Your BedPlease Hang over Your Bed

25k batches/s @ 100% 25k batches/s @ 100% 
1GHz CPU1GHz CPU



Review: Son of a BatchReview: Son of a Batch

•• All state changes roughly equally badAll state changes roughly equally bad
–– Multiple state changes worse thanMultiple state changes worse than

changing single statechanging single state

•• Sort by state? OverSort by state? Over--constrained problemconstrained problem
–– And only an optimizationAnd only an optimization

•• Solution: collapse statesSolution: collapse states



Use Texture AtlasesUse Texture Atlases

•• Removes Removes SetTextureSetTexture()()

•• Texture Atlas Tools:Texture Atlas Tools:
–– ““Improved Batching via Improved Batching via 

Texture Atlases,Texture Atlases,”” in in 
Shader XShader X33, Charles River , Charles River 
Media 2004.Media 2004.



Use InstancingUse Instancing

•• Previous sessionPrevious session

•• ““Inside Geometry Inside Geometry 
Instancing,Instancing,”” Francesco Francesco 
CarucciCarucci, , LionheadLionhead
Studios, GPU Gems 2Studios, GPU Gems 2

Instancing Method Comparison
(Note: % is relative to HW instancing in each group)

[28 poly mesh]

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

2800 28000 140000 280000 560000

# Polys

FP
S

(r
el

at
iv

e 
to

 H
W

 In
st

an
ci

ng
)

Single Draw Calls
Dynamic 2 Stream Instancing
Static 2 Stream Instancing
VS Constant Instancing
Hardware Instancing
Static Pretransformed VB



Most Important: Plan for Batching!Most Important: Plan for Batching!

•• Oh Oh shsh!%$, our game uses 2000 !%$, our game uses 2000 
batches/framebatches/frame
–– Painful to impossible to fix late in Painful to impossible to fix late in 

developmentdevelopment

•• Have a batch budgetHave a batch budget
–– For terrain, characters, etc.For terrain, characters, etc.
–– Educate and give feedback to your art staffEducate and give feedback to your art staff
–– Stick to the planStick to the plan



Be Aggressive in Moving Stuff to GPUBe Aggressive in Moving Stuff to GPU

•• All particle systems: 1 Draw() call?! All particle systems: 1 Draw() call?! 

•• Need to alpha blend them? Need to alpha blend them? 
–– Sort on the GPU! Sort on the GPU! 



This Is All Very ComplicatedThis Is All Very Complicated……

•• Can I just wait until you guys fix this? Can I just wait until you guys fix this? 

•• And new cool tech coming out that And new cool tech coming out that 
solves all these problems, right? solves all these problems, right? 
–– DualDual--core CPUscore CPUs
–– LonghornLonghorn
–– WGF 2.0WGF 2.0



GPUs Getting Faster More QuicklyGPUs Getting Faster More Quickly

CourtesyCourtesy Ian Buck, Ian Buck, 
Stanford UniversityStanford University



MultiMulti--Core CPUs to the Rescue!Core CPUs to the Rescue!

•• Sorry, noSorry, no……

•• Requires thread programmingRequires thread programming
–– Is your game multiIs your game multi--threaded?threaded?
–– Batch overhead is in driver!Batch overhead is in driver!
–– Batch processing {Batch processing {SetStateSetState; Draw; repeat}; Draw; repeat}

and thus driver inherently serialand thus driver inherently serial

•• MultiMulti--core core GPUGPUs already available:s already available:
–– ItIt’’s called SLIs called SLI



Longhorn to the Rescue!Longhorn to the Rescue!

•• Sorry, noSorry, no……

•• More efficient runtime and driverMore efficient runtime and driver
–– Design Goal: 10x improvementDesign Goal: 10x improvement

(WinHEC(WinHEC’’04 WGF Slides)04 WGF Slides)

•• Does not help your Does not help your WinXPWinXP user baseuser base

•• Longhorn available: 2006Longhorn available: 2006
–– Long time in GPU yearsLong time in GPU years



WGF 2.0 to the Rescue!WGF 2.0 to the Rescue!

•• You are on to something, but sorry, noYou are on to something, but sorry, no……

•• Features designed to mend batches, i.e.Features designed to mend batches, i.e.

•• Another Another ‘‘simplersimpler’’ way to not sayway to not say
–– Change stateChange state
–– Draw triangleDraw triangle



Later Today: Later Today: ““WGF 2.0WGF 2.0””

David Blythe, MicrosoftDavid Blythe, Microsoft

5:15pm5:15pm



We Are StuckWe Are Stuck

1000 batches/frame 1000 batches/frame 
4EVA!4EVA!

Assuming 50% 3GHz CPU @ 33fpsAssuming 50% 3GHz CPU @ 33fps



Graphics in the Future?Graphics in the Future?

•• Best engine is the one that achievesBest engine is the one that achieves
–– Most complexMost complex
–– Most engagingMost engaging
–– Most immersiveMost immersive
–– ……

•• In 1000 batches/frame or less!In 1000 batches/frame or less!

•• Make GPU work, so CPU does NOTMake GPU work, so CPU does NOT



To Make Things WorseTo Make Things Worse……



Get a Couple of Flashlights!Get a Couple of Flashlights!

•• First rule of optimization: First rule of optimization: 
Profile!   Know your bottleneck!Profile!   Know your bottleneck!

•• PIXPIX

•• NVIDIA Performance Analysis ToolsNVIDIA Performance Analysis Tools

•• AMDAMD’’s s CodeAnalystCodeAnalyst



Performance StalagmitesPerformance Stalagmites

•• Difficult to hitDifficult to hit
thesethese

•• Help available:Help available:
–– GPU Programming GuideGPU Programming Guide
–– ToolsTools
–– Your local IHV Your local IHV devtechdevtech representativerepresentative



GPU Performance AdviceGPU Performance Advice

•• Memory allocationMemory allocation

•• Vertex shader optimizationsVertex shader optimizations

•• Pixel shader optimizationsPixel shader optimizations

•• TextureTexture



Memory Allocation: DonMemory Allocation: Don’’tsts

•• Calling Create() midCalling Create() mid--frameframe
–– Guaranteed a frameGuaranteed a frame--rate hitchrate hitch
–– SubSub--optimal resource placementoptimal resource placement
–– Expect the call to fail!Expect the call to fail!

•• Calling Release() midCalling Release() mid--frame frame 
–– Potentially does nothingPotentially does nothing

•• Do your own resource management Do your own resource management 
insteadinstead



Allocation Order    Rendering PerformanceAllocation Order    Rendering Performance

•• Allocate POOL_DEFAULT resources firstAllocate POOL_DEFAULT resources first
–– RenderRender--targets first, sort by pitchtargets first, sort by pitch
–– Vertex and pixel shadersVertex and pixel shaders
–– TexturesTextures
–– Vertex and index buffers Vertex and index buffers 

•• Then POOL_MANAGEDThen POOL_MANAGED
–– If anyIf any



Vertex Shader OptimizationsVertex Shader Optimizations

•• VS_3_0 dynamic flow controlVS_3_0 dynamic flow control
–– Go nuts, save batchesGo nuts, save batches
–– Not penalty for divergence (MIMD)Not penalty for divergence (MIMD)
–– Driver optimizes short branchesDriver optimizes short branches

•• VS_3_0 vertex texture fetch (VTF)VS_3_0 vertex texture fetch (VTF)
–– 2020--30 instructions latency30 instructions latency
–– Hide other instructions in latencyHide other instructions in latency
–– Dynamically branch over Dynamically branch over VTFsVTFs
–– Pack data into single texturePack data into single texture



Great Results with Vertex TextureGreat Results with Vertex Texture

Image used with permission from Image used with permission from 
Pacific FightersPacific Fighters. . 
©© 2004 Developed by 1C:Maddox Games. 2004 Developed by 1C:Maddox Games. 
All rights reserved. All rights reserved. ©© 2004 2004 UbiUbi Soft Soft 
Entertainment. Entertainment. 

““GPU Gems 2 ShowcaseGPU Gems 2 Showcase””
Room 2016Room 2016

Wednesday, 5:15 Wednesday, 5:15 -- 6:15pm6:15pm

ArulArul AsirvathamAsirvatham & & HuguesHugues HoppeHoppe

Terrain Rendering Using Terrain Rendering Using 
GPUGPU--Based Geometry Based Geometry ClipmapsClipmaps



Pixel Shader OptimizationsPixel Shader Optimizations

•• Move computations out Move computations out 
–– Remove operations via algebraRemove operations via algebra
–– PrePre--compute: use texture as lookcompute: use texture as look--up tableup table
–– Into vertex shader: constant, interpolationsInto vertex shader: constant, interpolations

•• Dynamic branchingDynamic branching
–– Driver optimizesDriver optimizes
–– Early outEarly out
–– Batch materialsBatch materials

InstructionInstruction Cost (Cycles)Cost (Cycles)

if / endifif / endif 44

if / else / endifif / else / endif 66

callcall 22

retret 22

loop / endlooploop / endloop 44



Dynamic Branching: CoherencyDynamic Branching: Coherency

•• ~1000 pixels, i.e., 30x30 blocks~1000 pixels, i.e., 30x30 blocks

IncoherentIncoherent

CoherentCoherent



Partial Precision OptimizationsPartial Precision Optimizations

•• Compiler/Driver cannot help you hereCompiler/Driver cannot help you here

•• Reduces register pressureReduces register pressure
–– Critical for GeForce FXCritical for GeForce FX
–– 100+ instruction shaders for GeForce 6100+ instruction shaders for GeForce 6

•• Single cycle half3 normalize()Single cycle half3 normalize()
–– Versus 3 cycle {dp3; Versus 3 cycle {dp3; rsqrsq; ; mulmul}}



Hardware Shadow Maps Hardware Shadow Maps 

•• Support since GeForce 3Support since GeForce 3

•• Use:Use:
–– Render to depth format texture Render to depth format texture 

(D3DFMT_D24X8, D3DFMT_D16)(D3DFMT_D24X8, D3DFMT_D16)
–– Use tex2Dproj to sampleUse tex2Dproj to sample
–– Automatic shadow map comparison &Automatic shadow map comparison &

percentage closer filtering (PCF)percentage closer filtering (PCF)

–– Explain PCF?!Explain PCF?!



Hardware Shadow Map FallbackHardware Shadow Map Fallback

•• Generate depth in shaderGenerate depth in shader

•• Write to single channel R32F or R16F Write to single channel R32F or R16F 
texturetexture

•• Sample texture, compare depthsSample texture, compare depths
–– Multiple jittered samples for high quality / Multiple jittered samples for high quality / 

soft edgessoft edges
–– Filter multiple sample via percentage closerFilter multiple sample via percentage closer



Shadow Map PerformanceShadow Map Performance

•• HW shadow map comparison half speedHW shadow map comparison half speed
–– No need to compare or filter in the shaderNo need to compare or filter in the shader
–– PCF of 4 nearest texels if bilinear is onPCF of 4 nearest texels if bilinear is on

•• Single tap for performanceSingle tap for performance
–– Quality equivalent to 4Quality equivalent to 4--tap PCF R32Ftap PCF R32F

•• Multiple taps for higher qualityMultiple taps for higher quality
–– 22--tap hw shadow map roughly same speedtap hw shadow map roughly same speed

as 4as 4--tap manualtap manual--PCF R32FPCF R32F



Texture Instruction PerformanceTexture Instruction Performance

•• Full speed:Full speed:
–– Regular mipmap, e.g., tex2D(s, t)Regular mipmap, e.g., tex2D(s, t)
–– Scalar bias mipmap, e.g., tex2Dbias(s, t)Scalar bias mipmap, e.g., tex2Dbias(s, t)
–– Explicit mipmap selectionExplicit mipmap selection

•• 1/101/10thth speed:speed:
–– GradientGradient--based LOD selection, e.g., based LOD selection, e.g., 

{ { ddx(xddx(x); ); ddy(yddy(y); tex2Dbias(s, t, ); tex2Dbias(s, t, ddxddx, , ddyddy) }) }
–– But when you need to use it, But when you need to use it, 

you need to use ityou need to use it



Common Sense Texture PerformanceCommon Sense Texture Performance

•• Use mipmapsUse mipmaps
–– GPU fetches local neighbors for each texelGPU fetches local neighbors for each texel

•• Sharper/Crisper texturesSharper/Crisper textures
–– Use anisotropic filteringUse anisotropic filtering
–– Use better mipmap generation Use better mipmap generation 

(use texture tools)(use texture tools)
–– Do NOT use LOD biasDo NOT use LOD bias
–– LOD bias is slower and lower qualityLOD bias is slower and lower quality



Floating Point Texture PerformanceFloating Point Texture Performance

•• Prefer 32bpp over 64bpp over 128bppPrefer 32bpp over 64bpp over 128bpp
–– Applies to textures and render targetsApplies to textures and render targets
–– Bandwidth!  Bandwidth!  

•• More importantly: cache coherenceMore importantly: cache coherence
–– Poor cache coherence destroys performancePoor cache coherence destroys performance
–– Fp16 textures 2x faster than fp32 if texture boundFp16 textures 2x faster than fp32 if texture bound

•• Efficient channel allocationEfficient channel allocation
–– Use R32F buffers for scalar data, not RGBA32FUse R32F buffers for scalar data, not RGBA32F
–– R16G16F for 2R16G16F for 2--vectorsvectors



ConclusionConclusion

1000 batches/frame 1000 batches/frame 
4EVA!4EVA!



Questions?Questions?

•• mwloka@nvidia.commwloka@nvidia.com

•• Slides available onlineSlides available online

mailto:mwloka@nvidia.com

	Batching 4EVA
	Review: Batch, Batch, Batch
	Measured Batches per Second
	Please Hang over Your Bed
	Review: Son of a Batch
	Use Texture Atlases
	Use Instancing
	Most Important: Plan for Batching!
	Be Aggressive in Moving Stuff to GPU
	This Is All Very Complicated…
	GPUs Getting Faster More Quickly
	Multi-Core CPUs to the Rescue!
	Longhorn to the Rescue!
	WGF 2.0 to the Rescue!
	Later Today: “WGF 2.0”
	We Are Stuck
	Graphics in the Future?
	To Make Things Worse…
	Get a Couple of Flashlights!
	Performance Stalagmites
	GPU Performance Advice
	Memory Allocation: Don’ts
	Allocation Order    Rendering Performance
	Vertex Shader Optimizations
	Great Results with Vertex Texture
	Pixel Shader Optimizations
	Dynamic Branching: Coherency
	Partial Precision Optimizations
	Hardware Shadow Maps
	Hardware Shadow Map Fallback
	Shadow Map Performance
	Texture Instruction Performance
	Common Sense Texture Performance
	Floating Point Texture Performance
	Conclusion
	Questions?

