
GPGPU: GeneralGPGPU: General--Purpose Purpose
Computation on GPUsComputation on GPUs

Mark HarrisMark Harris
NVIDIA CorporationNVIDIA Corporation

GPU Gems 2GPU Gems 2
Programming Techniques for HighProgramming Techniques for High--Performance Performance
Graphics and GeneralGraphics and General--Purpose ComputationPurpose Computation

•• 880 full880 full--color pages, 330 figures, hard covercolor pages, 330 figures, hard cover
•• $59.99$59.99
•• Experts from universities and industryExperts from universities and industry

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”
—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment

18 GPGPU Chapters!

Why GPGPU?Why GPGPU?

•• The GPU has evolved into an extremely The GPU has evolved into an extremely
flexible and powerful processorflexible and powerful processor
–– ProgrammabilityProgrammability
–– PrecisionPrecision
–– PerformancePerformance

•• This talk addresses the basics of This talk addresses the basics of
harnessing the GPU for generalharnessing the GPU for general--
purpose computationpurpose computation

Motivation: Computational PowerMotivation: Computational Power

•• GPUs are fastGPUs are fast……
–– 3 GHz Pentium 4 3 GHz Pentium 4 theoreticaltheoretical: 12 GFLOPS: 12 GFLOPS

•• 5.96 GB/sec peak memory bandwidth5.96 GB/sec peak memory bandwidth
–– GeForce FX 5900 GeForce FX 5900 observedobserved**: 40 : 40 GFLOPsGFLOPs

•• 25.6 GB/sec peak memory bandwidth25.6 GB/sec peak memory bandwidth
–– GeForce 6800 Ultra GeForce 6800 Ultra observedobserved**: 53 : 53 GFLOPsGFLOPs

•• 35.2 GB/sec peak memory bandwidth35.2 GB/sec peak memory bandwidth

**Observed on a synthetic benchmark: Observed on a synthetic benchmark:
•• A long pixel shader of nothing but MAD A long pixel shader of nothing but MAD

instructionsinstructions

GPU: high performance growthGPU: high performance growth

•• CPUCPU
–– Annual growth Annual growth ~~1.51.5×× decade growth ~decade growth ~ 6060××
–– MooreMoore’’s laws law

•• GPUGPU
–– Annual growth Annual growth > > 2.02.0×× decade growth decade growth > > 10001000××
–– Much faster than MooreMuch faster than Moore’’s laws law

Why are GPUs getting faster so fast?Why are GPUs getting faster so fast?

•• Computational intensity Computational intensity
–– Specialized nature of GPUs makes it Specialized nature of GPUs makes it

easier to use additional transistors for easier to use additional transistors for
computation not cachecomputation not cache

•• EconomicsEconomics
–– MultiMulti--billion dollar video game market is a billion dollar video game market is a

pressure cooker that drives innovationpressure cooker that drives innovation

Motivation: Flexible and preciseMotivation: Flexible and precise

•• Modern GPUs are programmableModern GPUs are programmable
–– Programmable pixel and vertex enginesProgrammable pixel and vertex engines
–– HighHigh--level language supportlevel language support

•• Modern GPUs support high precisionModern GPUs support high precision
–– 3232--bit floating point throughout the bit floating point throughout the

pipelinepipeline
–– High enough for many (not all) High enough for many (not all)

applicationsapplications

Motivation: The Potential of GPGPUMotivation: The Potential of GPGPU

•• The performance and flexibility of GPUs The performance and flexibility of GPUs
makes them an attractive platform for makes them an attractive platform for
generalgeneral--purpose computationpurpose computation

•• Example applications (from Example applications (from GPGPU.orgGPGPU.org))
–– Advanced Rendering: Global Illumination, ImageAdvanced Rendering: Global Illumination, Image--based Modeling based Modeling
–– Computational GeometryComputational Geometry
–– Computer VisionComputer Vision
–– Image And Volume ProcessingImage And Volume Processing
–– Scientific Computing: physicallyScientific Computing: physically--based simulation, linear system based simulation, linear system

solution, PDEssolution, PDEs
–– Database queriesDatabase queries
–– Monte Carlo MethodsMonte Carlo Methods

The Problem: Difficult To UseThe Problem: Difficult To Use

•• GPUs are designed for and driven by graphicsGPUs are designed for and driven by graphics
–– Programming model is unusual & tied to graphicsProgramming model is unusual & tied to graphics
–– Programming environment is tightly constrainedProgramming environment is tightly constrained

•• Underlying architectures are:Underlying architectures are:
–– Inherently parallelInherently parallel
–– Rapidly evolving (even in basic feature set!)Rapidly evolving (even in basic feature set!)
–– Largely secretLargely secret

•• CanCan’’t simply t simply ““portport”” code written for the CPU!code written for the CPU!

Mapping Computation to GPUsMapping Computation to GPUs

•• Remainder of the Talk:Remainder of the Talk:

•• Data Parallelism and Stream ProcessingData Parallelism and Stream Processing
•• GPGPU BasicsGPGPU Basics
•• Example: NExample: N--body simulationbody simulation
•• Flow Control TechniquesFlow Control Techniques
•• More Examples and Future DirectionsMore Examples and Future Directions

Importance of Data ParallelismImportance of Data Parallelism

•• GPUs are designed for graphicsGPUs are designed for graphics
–– Highly parallel tasksHighly parallel tasks

•• Process Process independentindependent vertsverts & fragments& fragments
–– No shared or static dataNo shared or static data
–– No readNo read--modifymodify--write bufferswrite buffers

•• DataData--parallel processingparallel processing
–– GPU architecture is ALUGPU architecture is ALU--heavyheavy
–– Performance depends on Performance depends on arithmetic intensityarithmetic intensity

•• Computation / Bandwidth ratioComputation / Bandwidth ratio
–– Hide memory latency with more computationHide memory latency with more computation

Data Streams & KernelsData Streams & Kernels

•• StreamsStreams
–– Collection of records requiring similar Collection of records requiring similar

computationcomputation
•• Vertex positions, Voxels, FEM cells, etc.Vertex positions, Voxels, FEM cells, etc.

–– Provide data parallelismProvide data parallelism
•• KernelsKernels

–– Functions applied to each element in Functions applied to each element in
streamstream

•• transforms, PDE, transforms, PDE, ……
–– Few dependencies between stream Few dependencies between stream

elements encourage high Arithmetic elements encourage high Arithmetic
IntensityIntensity

Example: Simulation GridExample: Simulation Grid

•• Common GPGPU computation styleCommon GPGPU computation style
–– Textures represent computational grids = Textures represent computational grids =

streamsstreams
•• Many computations map to gridsMany computations map to grids

–– Matrix algebraMatrix algebra
–– Image & Volume processingImage & Volume processing
–– Physical simulationPhysical simulation
–– Global IlluminationGlobal Illumination

•• ray tracing, photon mapping, ray tracing, photon mapping,
radiosityradiosity

•• NonNon--grid streams can be grid streams can be
mapped to gridsmapped to grids

Stream ComputationStream Computation

•• Grid Simulation algorithmGrid Simulation algorithm
–– Made up of stepsMade up of steps
–– Each step updates entire gridEach step updates entire grid
–– Must complete before next step can Must complete before next step can

beginbegin

•• Grid is a stream, steps are kernelsGrid is a stream, steps are kernels
–– Kernel applied to each stream Kernel applied to each stream

elementelement

The Basics: GPGPU AnalogiesThe Basics: GPGPU Analogies

•• Textures = Arrays = Data StreamsTextures = Arrays = Data Streams
•• Fragment Programs = KernelsFragment Programs = Kernels

–– Inner loops over arraysInner loops over arrays
•• Render to Texture = FeedbackRender to Texture = Feedback
•• Rasterization = Kernel InvocationRasterization = Kernel Invocation
•• Texture Coordinates = Computational Texture Coordinates = Computational

DomainDomain
•• Vertex Coordinates = Computational Vertex Coordinates = Computational

RangeRange

Standard Standard ““GridGrid”” ComputationComputation

•• Initialize Initialize ““viewview”” (pixels:texels::1:1)(pixels:texels::1:1)
glMatrixMode(GL_MODELVIEWglMatrixMode(GL_MODELVIEW););
glLoadIdentityglLoadIdentity();();
glMatrixMode(GL_PROJECTIONglMatrixMode(GL_PROJECTION););
glLoadIdentityglLoadIdentity();();
glOrtho(0, 1, 0, 1, 0, 1);glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0, 0, glViewport(0, 0, gridResXgridResX, , gridResYgridResY););

•• For each algorithm step:For each algorithm step:
–– Activate renderActivate render--toto--texturetexture
–– Setup input textures, fragment programSetup input textures, fragment program
–– Draw a fullDraw a full--screen quad (1 unit x 1 unit)screen quad (1 unit x 1 unit)

Example: NExample: N--Body SimulationBody Simulation

•• Brute force Brute force
•• N = 8192 bodiesN = 8192 bodies
•• NN2 2 gravity computationsgravity computations

•• 64M force comps. / frame64M force comps. / frame
•• ~25 flops per force~25 flops per force
•• 7.5 fps 7.5 fps

•• 12.5+ 12.5+ GFLOPsGFLOPs sustainedsustained
–– GeForce 6800 UltraGeForce 6800 UltraNyland et al., GP2 poster

Computing Gravitational ForcesComputing Gravitational Forces

•• Each particle attracts all other particlesEach particle attracts all other particles
–– NN particles, so particles, so N N 22 forcesforces

•• Draw into an Draw into an NNxxNN bufferbuffer
–– Fragment (Fragment (ii,,jj) computes force between) computes force between

particles particles ii and and jj
–– Very simple fragment programVery simple fragment program

•• More than 2048 particles makes it trickierMore than 2048 particles makes it trickier
•• Limited by max Limited by max pbufferpbuffer sizesize……
•• ““Left as an exercise for the readerLeft as an exercise for the reader””

Computing Gravitational ForcesComputing Gravitational Forces

N-body force Texture

force(i,j)

Ni

N

0

j

i

j

Body Position Texture

F(i,j) = gMiMj / r(i,j)2,

r(i,j) = |pos(i) - pos(j)|

Force is proportional to the inverse square
of the distance between bodies

Computing Gravitational ForcesComputing Gravitational Forces

float4 force(float2 ij : WPOS,

uniform sampler2D pos) : COLOR0

{

// Pos texture is 2D, not 1D, so we need to

// convert body index into 2D coords for pos tex

float4 iCoords = getBodyCoords(ij);

float4 iPosMass = texture2D(pos, iCoords.xy);

float4 jPosMass = texture2D(pos, iCoords.zw);

float3 dir = iPos.xyz - jPos.xyz;

float r2 = dot(dir, dir);

return dir * g * iPosMass.w * jPosMass.w / r2;

}

force(i,j)

N-body force Texture

Ni

N

0

Computing Total ForceComputing Total Force

•• Have: array of (i,j) forcesHave: array of (i,j) forces
•• Need: total force on each Need: total force on each

particle iparticle i
–– Sum of each column of the Sum of each column of the

force arrayforce array

•• Can do all N columns in Can do all N columns in
parallelparallel

This is called a This is called a Parallel ReductionParallel Reduction

Parallel ReductionsParallel Reductions

•• 1D parallel reduction: 1D parallel reduction:
–– sum N columns or rows in parallelsum N columns or rows in parallel
–– add two halves of texture togetheradd two halves of texture together
–– repeatedly...repeatedly...
–– Until weUntil we’’re left with a single row of texelsre left with a single row of texels

+
NxN

Nx(N/2)
Nx(N/4)

Nx1

Requires logRequires log22NN stepssteps

Update Positions and VelocitiesUpdate Positions and Velocities

•• Now we have an array of total forcesNow we have an array of total forces
–– One per bodyOne per body

•• Update VelocityUpdate Velocity
–– u(u(ii, , tt++dtdt) =) = u(iu(i, t) + , t) + FFtotaltotal((ii) *) * dtdt
–– Simple pixel shader reads previous velocity Simple pixel shader reads previous velocity

textex and force and force textex, creates new velocity , creates new velocity textex
•• Update PositionUpdate Position

–– x(ix(i, , t+dtt+dt) =) = x(ix(i, t) + , t) + u(iu(i, t) * , t) * dtdt
–– Simple pixel shader reads previous position Simple pixel shader reads previous position

and velocity and velocity textex, creates new position , creates new position textex

GPGPU Flow Control StrategiesGPGPU Flow Control Strategies

Branching and LoopingBranching and Looping

PerPer--Fragment Flow ControlFragment Flow Control

•• No true branching on GeForce FXNo true branching on GeForce FX
–– Simulated with conditional writes: every Simulated with conditional writes: every

instruction is executed, even in branches instruction is executed, even in branches
not takennot taken

•• GeForce 6 Series has SIMD branchingGeForce 6 Series has SIMD branching
–– Lots of deep pixel pipelines Lots of deep pixel pipelines many pixels many pixels

in flightin flight
–– Coherent branching = good performanceCoherent branching = good performance
–– Incoherent branching = likely performance Incoherent branching = likely performance

lossloss

Fragment Flow Control TechniquesFragment Flow Control Techniques

•• Replace simple branches with mathReplace simple branches with math
–– x = (t == 0) ? a : b;x = (t == 0) ? a : b; x = lerp(t = {0,1}, a, b);x = lerp(t = {0,1}, a, b);
–– select()select() dot product with permutations of dot product with permutations of

(1,0,0,0)(1,0,0,0)

•• Try to move decisions up the pipelineTry to move decisions up the pipeline
–– Occlusion QueryOcclusion Query
–– Static Branch ResolutionStatic Branch Resolution
–– ZZ--cullcull
–– PrePre--computationcomputation

Branching with Occlusion QueryBranching with Occlusion Query

•• OQ counts the number of fragments writtenOQ counts the number of fragments written
–– Use it for iteration terminationUse it for iteration termination

DoDo { // outer loop on CPU{ // outer loop on CPU
BeginOcclusionQueryBeginOcclusionQuery {{

// Render with fragment program// Render with fragment program
// that discards fragments that// that discards fragments that
// satisfy termination criteria// satisfy termination criteria

} } EndQueryEndQuery
} } While query returns > 0While query returns > 0

–– Can be used for subdivision techniquesCan be used for subdivision techniques

Example: OQExample: OQ--based Subdivisionbased Subdivision

Used in Used in CoombeCoombe et al., et al., ““Radiosity on Graphics HardwareRadiosity on Graphics Hardware””

Static Branch ResolutionStatic Branch Resolution

•• Avoid branches where outcome is fixedAvoid branches where outcome is fixed
–– One region is always true, another falseOne region is always true, another false
–– Separate FP for each region, no branchesSeparate FP for each region, no branches

•• Example: Example:
boundariesboundaries

ZZ--CullCull

•• In early pass, modify depth bufferIn early pass, modify depth buffer
–– Clear Z to 1, enable depth test (GL_LESS)Clear Z to 1, enable depth test (GL_LESS)
–– Draw quad at Z=0Draw quad at Z=0
–– Discard pixels that should be modified in later Discard pixels that should be modified in later

passespasses
•• Subsequent passesSubsequent passes

–– Disable depth writeDisable depth write
–– Draw fullDraw full--screen quad at z=0.5screen quad at z=0.5
–– Only pixels with previous depth=1 will be Only pixels with previous depth=1 will be

processedprocessed

PrePre--computationcomputation

•• PrePre--compute anything that will not compute anything that will not
change every iteration!change every iteration!

•• Example: arbitrary boundariesExample: arbitrary boundaries
–– When user draws boundaries, compute When user draws boundaries, compute

texture containing boundary info for cellstexture containing boundary info for cells
•• e.g. Offsets for applying PDE boundary e.g. Offsets for applying PDE boundary

conditionsconditions
–– Reuse that texture until boundaries Reuse that texture until boundaries

modifiedmodified
–– GeForce 6 Series: combine with ZGeForce 6 Series: combine with Z--cull for cull for

higher performance!higher performance!

Current GPGPU LimitationsCurrent GPGPU Limitations

•• Programming is difficultProgramming is difficult
–– Limited memory interfaceLimited memory interface
–– Usually Usually ““invertinvert”” algorithms (Scatter algorithms (Scatter Gather)Gather)
–– Not to mention that you have to use a Not to mention that you have to use a

graphics APIgraphics API……

Brook for GPUs (Stanford)Brook for GPUs (Stanford)

•• C with stream processing extensionsC with stream processing extensions
–– Cross compiler compiles to shading languageCross compiler compiles to shading language
–– GPU becomes a streaming coprocessorGPU becomes a streaming coprocessor

•• A step in the right directionA step in the right direction
–– Moving away from graphics APIsMoving away from graphics APIs

•• Stream programming modelStream programming model
–– enforce data parallel computing: streamsenforce data parallel computing: streams
–– encourage arithmetic intensity: kernelsencourage arithmetic intensity: kernels

•• See SIGGRAPH 2004 Paper andSee SIGGRAPH 2004 Paper and
–– http://http://graphics.stanford.edugraphics.stanford.edu/projects/brook/projects/brook
–– http://http://www.sourceforge.netwww.sourceforge.net/projects/brook/projects/brook

More ExamplesMore Examples

Demo: Demo: ““DiseaseDisease””: Reaction: Reaction--DiffusionDiffusion

Available in NVIDIA SDK: Available in NVIDIA SDK: http://developer.nvidia.comhttp://developer.nvidia.com

““PhysicallyPhysically--based visual simulation on the GPUbased visual simulation on the GPU””,,
Harris et al., Graphics Hardware 2002Harris et al., Graphics Hardware 2002

Example: Fluid SimulationExample: Fluid Simulation

•• NavierNavier--Stokes fluid simulation on the GPUStokes fluid simulation on the GPU
–– Based on Based on StamStam’’ss ““Stable FluidsStable Fluids””
–– Vorticity Confinement stepVorticity Confinement step

•• [[FedkiwFedkiw et al., 2001]et al., 2001]

•• Interior obstaclesInterior obstacles
–– Without branchingWithout branching
–– ZcullZcull optimizationoptimization

•• Fast on latest GPUsFast on latest GPUs
–– ~120 fps at 256x256 on ~120 fps at 256x256 on

GeForce 6800 UltraGeForce 6800 Ultra

•• Available in NVIDIA SDK 8.5Available in NVIDIA SDK 8.5
“Fast Fluid Dynamics Simulation on the

GPU”, Mark Harris. In GPU Gems.

Parthenon RendererParthenon Renderer

•• ““HighHigh--Quality Global Illumination Using Quality Global Illumination Using
RasterizationRasterization””, GPU Gems 2, GPU Gems 2
–– Toshiya Hachisuka, U. of TokyoToshiya Hachisuka, U. of Tokyo

•• Visibility and Final Gathering on the GPUVisibility and Final Gathering on the GPU
–– Final gathering using parallel ray casting + Final gathering using parallel ray casting +

depth peelingdepth peeling

The FutureThe Future

•• Increasing flexibilityIncreasing flexibility
–– Always adding new featuresAlways adding new features
–– Improved vertex, fragment languagesImproved vertex, fragment languages

•• Easier programmingEasier programming
–– NonNon--graphics APIs and languages?graphics APIs and languages?
–– Brook for GPUs Brook for GPUs

•• http://http://graphics.stanford.edu/projects/brookgpugraphics.stanford.edu/projects/brookgpu

The FutureThe Future

•• Increasing performanceIncreasing performance
–– More vertex & fragment processorsMore vertex & fragment processors
–– More flexible with better branchingMore flexible with better branching

•• GFLOPsGFLOPs, , GFLOPsGFLOPs, , GFLOPsGFLOPs!!
–– Fast approaching Fast approaching TFLOPsTFLOPs!!
–– Supercomputer on a chip Supercomputer on a chip

•• Start planning ways to use it!Start planning ways to use it!

More InformationMore Information

•• GPGPU news, research links and forumsGPGPU news, research links and forums
–– www.GPGPU.orgwww.GPGPU.org

•• developer.nvidia.orgdeveloper.nvidia.org

•• Questions?Questions?
–– mharris@nvidia.commharris@nvidia.com

http://www.gpgpu.org/

GPU Gems 2GPU Gems 2
Programming Techniques for HighProgramming Techniques for High--Performance Performance
Graphics and GeneralGraphics and General--Purpose ComputationPurpose Computation

•• 880 full880 full--color pages, 330 figures, hard covercolor pages, 330 figures, hard cover
•• $59.99$59.99
•• Experts from universities and industryExperts from universities and industry

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”
—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment

18 GPGPU Chapters!

Arithmetic IntensityArithmetic Intensity

•• Arithmetic intensity = ops / bandwidthArithmetic intensity = ops / bandwidth

•• ““ClassicClassic”” Graphics pipelineGraphics pipeline
–– VertexVertex

•• BW: 1 triangle = 32 bytes BW: 1 triangle = 32 bytes
•• OP: 100OP: 100--500 f32500 f32--ops / triangleops / triangle

–– Fragment Fragment
•• BW: 1 fragment = 10 bytesBW: 1 fragment = 10 bytes
•• OP: 300OP: 300--1000 i81000 i8--ops/fragmentops/fragment

Courtesy of Pat Hanrahan

CPUCPU--GPU AnalogiesGPU Analogies

CPUCPU GPUGPU

Stream / Data Array = TextureStream / Data Array = Texture
Memory Read = Texture Memory Read = Texture

SampleSample

ReactionReaction--DiffusionDiffusion

•• GrayGray--Scott reactionScott reaction--diffusion model diffusion model
[Pearson 1993][Pearson 1993]

•• Streams = two scalar chemical Streams = two scalar chemical
concentrationsconcentrations

•• Kernel: just Kernel: just DiffusionDiffusion and and ReactionReaction opsops

∂U
∂t

= Du∇
2U − UV 2 + F (1− U),

∂V
∂t

= Dv∇
2V + UV 2 − (F + k)V

U, V are chemical concentrations,
F, k, Du, Dv are constants

CPUCPU--GPU AnalogiesGPU Analogies

Loop body / kernel / algorithm step = Fragment ProgramLoop body / kernel / algorithm step = Fragment Program

CPU GPU

FeedbackFeedback

•• Each algorithm step depends on Each algorithm step depends on
the results of previous stepsthe results of previous steps

•• Each time step depends on the Each time step depends on the
results of the previous time stepresults of the previous time step

CPUCPU--GPU AnalogiesGPU Analogies

..

..
..

Grid[i][j]= x;Grid[i][j]= x;
..
..
..

Array Write Array Write = = Render Render
to Textureto Texture

CPU GPU

GeForce 6 Series BranchingGeForce 6 Series Branching

•• True, SIMD branchingTrue, SIMD branching
–– Incoherent branching can hurt performanceIncoherent branching can hurt performance
–– Should have coherent regions of Should have coherent regions of > 1000 pixels> 1000 pixels

•• That is only about 30x30 pixels, so still very useable!That is only about 30x30 pixels, so still very useable!

•• DonDon’’t ignore branch instruction overheadt ignore branch instruction overhead
–– Branching over a few instructions not worth itBranching over a few instructions not worth it

•• Use branching for early exit from shadersUse branching for early exit from shaders
•• GeForce 6 vertex branching is fully MIMDGeForce 6 vertex branching is fully MIMD

–– very small overhead and no penalty for divergent very small overhead and no penalty for divergent
branchingbranching

A Closing ThoughtA Closing Thought

•• ““The Wheel of ReincarnationThe Wheel of Reincarnation””

General computing power, whatever its purpose, should come from
the central resources of the system. If these resources should prove
inadequate, then it is the system, not the display, that needs more
computing power. This decision let us finally escape from the wheel
of reincarnation.

-T.H. Myer and I.E. Sutherland. “On the Design of Display Processors”,
Communications of the ACM, Vol. 11, no. 6, June 1968

My take on the wheelMy take on the wheel

•• Modern applications have a variety of Modern applications have a variety of
computational requirementscomputational requirements
–– DataData--SerialSerial
–– DataData--ParallelParallel
–– High Arithmetic IntensityHigh Arithmetic Intensity
–– High Memory IntensityHigh Memory Intensity

•• Computer systems must handle this Computer systems must handle this
varietyvariety

GPGPU and the wheelGPGPU and the wheel

•• GPUs are uniquely positioned to satisfy GPUs are uniquely positioned to satisfy
the datathe data--parallel needs of modern parallel needs of modern
computingcomputing

–– Built for highly data parallel computation Built for highly data parallel computation
•• Computer GraphicsComputer Graphics

–– Driven by largeDriven by large--scale economics of a stable scale economics of a stable
and growing industry and growing industry

•• Computer GamesComputer Games

	GPGPU: General-Purpose Computation on GPUs
	GPU Gems 2 Programming Techniques for High-Performance Graphics and General-Purpose Computation
	Why GPGPU?
	Motivation: Computational Power
	GPU: high performance growth
	Why are GPUs getting faster so fast?
	Motivation: Flexible and precise
	Motivation: The Potential of GPGPU
	The Problem: Difficult To Use
	Mapping Computation to GPUs
	Importance of Data Parallelism
	Data Streams & Kernels
	Example: Simulation Grid
	Stream Computation
	The Basics: GPGPU Analogies
	Standard “Grid” Computation
	Example: N-Body Simulation
	Computing Gravitational Forces
	Computing Gravitational Forces
	Computing Gravitational Forces
	Computing Total Force
	Parallel Reductions
	Update Positions and Velocities
	GPGPU Flow Control Strategies
	Per-Fragment Flow Control
	Fragment Flow Control Techniques
	Branching with Occlusion Query
	Example: OQ-based Subdivision
	Static Branch Resolution
	Z-Cull
	Pre-computation
	Current GPGPU Limitations
	Brook for GPUs (Stanford)
	More Examples
	Demo: “Disease”: Reaction-Diffusion
	Example: Fluid Simulation
	Parthenon Renderer
	The Future
	The Future
	More Information
	
	GPU Gems 2 Programming Techniques for High-Performance Graphics and General-Purpose Computation
	Arithmetic Intensity
	CPU-GPU Analogies
	Reaction-Diffusion
	CPU-GPU Analogies
	Feedback
	CPU-GPU Analogies
	GeForce 6 Series Branching
	A Closing Thought
	My take on the wheel
	GPGPU and the wheel

