B

GameDevelopers <

Conference

RVIDIA.

GPGPU: General-Purpose
Computation on GPUs

Mark Harris
NVIDIA Corporation

GPU Gems 2 @?%}Gems =

Programming Techniques for High-Performance
Graphics and General-Purpose Computation GRS Purges Comprtatios

e 880 full-color pages, 330 figures, hard cover
e $59.99
e EXperts from universities and industry

AT fy Matt Phier
Foreword by I'Ir'1_u.1hrlﬂ I:|:|I Garie

18 GPGPU Chapters! 7 R R s

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”

—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment

GameDevelopers <
RVIDIA.

Conference

Why GPGPU?

e The GPU has evolved into an extremely
flexible and powerful processor
— Programmability
— Precision
— Performance

e This talk addresses the basics of
harnessing the GPU for general-
purpose computation

GameDevelopers <
RVIDIA.

Conference

Motivation: Computational Power

e GPUs are fast...

— 3 GHz Pentium 4 theoretical: 12 GFLOPS
» 5.96 GB/sec peak memory bandwidth

— GeForce FX 5900 observed: 40 GFLOPs
» 25.6 GB/sec peak memory bandwidth

— GeForce 6800 Ultra observed : 53 GFLOPs
» 35.2 GB/sec peak memory bandwidth

"Observed on a synthetic benchmark:

A long pixel shader of nothing but MAD
Instructions

GameDevelopers <
Conference NVIDIA.

GPU: high performance growth

e CPU

—Annual growth —1.5x - decade growth ~ 60x
—Moore’s law

e GPU
—Annual growth > 2.0x - decade growth > 1000x
—Much faster than Moore’s law

GameDevelopers <

RVIDIA.

Conference

Why are GPUs getting faster so fast?

e Computational intensity

— Specialized nature of GPUs makes it
easier to use additional transistors for
computation not cache

e Economics

— Multi-billion dollar video game market is a
pressure cooker that drives innovation

GameDevelopers

Conference

Motivation: Flexible and precise

e Modern GPUs are programmable
— Programmable pixel and vertex engines
— High-level language support

e Modern GPUs support high precision
— 32-bit floating point throughout the
pipeline
— High enough for many (not all)
applications

@’-’:"‘ %

RVIDIA.

GameDevelopers <

i
Conference

RVIDIA.

Motivation: The Potential of GPGPU

e The performance and flexibility of GPUs
makes them an attractive platform for
general-purpose computation

e Example applications (from GPGPU.org)

Advanced Rendering: Global lllumination, Image-based Modeling
— Computational Geometry
— Computer Vision
— Image And Volume Processing

— Scientific Computing: physically-based simulation, linear system
solution, PDEs

— Database queries
— Monte Carlo Methods

GameDevelopers <
Conference BVIDIA.

The Problem: Difficult To Use

e GPUs are designed for and driven by graphics
— Programming model is unusual & tied to graphics
— Programming environment is tightly constrained

e Underlying architectures are:
— Inherently parallel
— Rapidly evolving (even in basic feature set!)
— Largely secret

e Can’t simply “port™ code written for the CP(&ff——“““

/8

v e
wﬂ

GameDevelopers <

Conference

Mapping Computation to GPUs

e Remainder of the Talk:

e Data Parallelism and Stream Processing
e GPGPU Basics

e Example: N-body simulation

e Flow Control Techniques

e More Examples and Future Directions

GameDevelopers <
Conference BVIDIA.

Importance of Data Parallelism

e GPUs are designed for graphics
— Highly parallel tasks

e Process independent verts & fragments
— No shared or static data
— No read-modify-write buffers

e Data-parallel processing

— GPU architecture is ALU-heavy

— Performance depends on arithmetic intensity i
« Computation / Bandwidth ratio

e
_

— Hide memory latency with more computationl!

GameDevelopers <
RVIDIA.

Conference

Data Streams & Kernels

e Streams

— Collection of records requiring similar
computation
» Vertex positions, Voxels, FEM cells, etc.

— Provide data parallelism

e Kernels

— Functions applied to each element in
stream
e transforms, PDE, ...

— Few dependencies between stream
elements encourage high Arithmetic
Intensity

GameDevelopers <
Conference NVIDIA.

Example: Simulation Grid

e Common GPGPU computation style
—Textures represent computational grids =
streams
e Many computations map to grids
—Matrix algebra
—Image & Volume processing
—Physical simulation

—Global lllumination

 ray tracing, photon mapping,
radiosity

. e Non-grid streams can be
"aic mapped to grids

—
-
L

GameDevelopers <

Conference ﬂVFDIA.
Stream Computation
e Grid Simulation algorithm Algorithm
— Made up of steps advect
— Each step updates entire grid accelerate
— Mus_t complete before next step can e
begin .
divergence
jacobi
o jacobi
e Grid Is a stream, steps are kernels Jacob
|
— Kernel applied to each stream Jac; -
element _® -
jacobi :
u-grad(p) i

U

GameDevelopers <
RVIDIA.

Conference

The Basics: GPGPU Analogies

e Textures = Arrays = Data Streams

e Fragment Programs = Kernels
— Inner loops over arrays

e Render to Texture = Feedback
e Rasterization = Kernel Invocation

e Texture Coordinates = Computational
Domain

e Vertex Coordinates = Computational
Range

GameDevelopers

Conference

Standard “Grid” Computation

e |nitialize “view” (pixels:texels::1:1)
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
glOrtho(0, 1, 0, 1, 0, 1);
glViewport(0O, O, gridResX, gridResY);

e For each algorithm step:
— Activate render-to-texture
— Setup input textures, fragment program
— Draw a full-screen quad (1 unit x 1 unit)

<

RVIDIA.

GameDevelopers

Conference

<

RVIDIA.

Example: N-Body Simulation

Nyland et al., GP2 poster

Brute force ®
N = 8192 bodies
N2 gravity computations

64M force comps. / frame
~25 flops per force
7.5 fps

e, B
12.5+ GFLOPs sustaine

— GeForce 6800 Ultra l!
/

GameDevelopers <
RVIDIA.

Conference

Computing Gravitational Forces

e Each particle attracts all other particles
— N particles, so N 2 forces

e Draw Into an NxN buffer

— Fragment (i,)) computes force between
particles i and |

— Very simple fragment program
 More than 2048 particles makes it trickier

e Limited by max pbuffer size...
o “Left as an exercise for the reader”

GameDevelopers <
RVIDIA.

Conference

Computing Gravitational Forces

N-body force Texture Body Position Texture

F(1,)) = aM;M; [r(i,j)?,

Force is proportional to the inverse square
of the distance between bodies

GameDevelopers <

Conference =

=

RVIDIA.

Computing Gravitational Forces

float4 force(float2 1j : WPOS,
uniform sampler2D pos) : COLORO

// Pos texture i1s 2D, not 1D, so we need to
// convert body index into 2D coords for pos tex
float4 1Coords = getBodyCoords(ij);

float4 i1PosMass = texture2D(pos, 1Coords.xy);
float4 jPosMass = texture2D(pos, 1Coords.zw);
float3 dir = 1Pos.xyz - JPos.Xxyz;

float r2 = dot(dir, dir);

return dir * g * 1PosMass.w * jPosMass.w 7/ r2;

GameDevelopers <
Conference NVIDIA.

Computing Total Force
N-body force Texture

e Have: array of (i,)) forces

e Need: total force on each
particle |

— Sum of each column of the
force array

e Can do all N columns In
parallel

This Is called a Parallel Reduction

GameDevelopers <
MVIDIA.

Conference

Parallel Reductions

e 1D parallel reduction:
— sum N columns or rows in parallel
— add two h ther
— repeatedly

— Until we'r
NXN

w of texels

NX(N/2)
NXISN/4)
x1

+

‘ Requires log,N steps ‘

GameDevelopers <
Conference BVIDIA.

Update Positions and Velocities

e Now we have an array of total forces
— One per body

e Update Velocity
— u(i, t+4dt) = u(i, t) + F,,., (1) * dt
— Simple pixel shader reads previous velocity
tex and force tex, creates new velocity tex

e Update Position
— X(1, t+dt) = x(i, t) + u(i, t) * dt .
— Simple pixel shader reads previous position
and velocity tex, creates new position tex ,}]

GameDevelopers <
RVIDIA.

Conference

GPGPU Flow Control Strategies

Branching and Looping

GameDevelopers <
Conference BVIDIA.

Per-Fragment Flow Control

e No true branching on GeForce FX

— Simulated with conditional writes: every
Instruction Is executed, even in branches
not taken

e GeForce 6 Series has SIMD branching

— Lots of deep pixel pipelines = many pixels
In flight
— Coherent branching = good performance xr
/
/

(1
ol

i
B

— Incoherent branching = likely performance
loss

GameDevelopers <
RVIDIA.

Conference

Fragment Flow Control Techniques

e Replace simple branches with math
—-xXx=({t==0)?a:b;=2>x=lerp(t={0,1}, a, b);

— select() = dot product with permutations of
(1,0,0,0)

e Try to move decisions up the pipeline
— Occlusion Query
— Static Branch Resolution
— Z-cull
Pre-computation

GameDevelopers <
Conference R T

Branching with Occlusion Query

e OQ counts the number of fragments written
— Use it for iteration termination

Do { // outer loop on CPU
BeginOcclusionQuery {
// Render with fragment program
// that discards fragments that
// satisty termination criteria
} EndQuery
} While query returns > 0

Can be used for subdivision techniques

GameDevelopers <
RVIDIA.

Conference

Example: OQ-based Subdivision

GameDevelopers &2
Conference NVIDIA.

Static Branch Resolution

e Avolid branches where outcome is fixed
— One region is always true, another false
— Separate FP for each region, no branches

e Example:
boundaries

Interior: A Quad Primitive l

Boundaries: Line Primitive

BN 0 O O O o g o gd
0 O O Oo|jo o o 4d

B0 O 0O O|jO0 o o a4
il 0 O O OO0 O O 0O

B 0 O O OO0 O O O

O
O
O
O
0
O
O
O

0 = Location of Pixels J

GameDevelopers <
Conference T

Z-Cull

e |n early pass, modify depth buffer
— Clear Zto 1, enable depth test (GL_LESS)
— Draw quad at Z=0

— Discard pixels that should be modified in later
passes

e Subsequent passes
— Disable depth write

— Only pixels with previous depth=1 will be

— Draw full-screen quad at z=0.5 i-r_:
processed I;
/

GameDevelopers <
RVIDIA.

Conference

Pre-computation

e Pre-compute anything that will not
change every iteration!

e Example: arbitrary boundaries

— When user draws boundaries, compute
texture containing boundary info for cells
» e.g. Offsets for applying PDE boundary
conditions
— Reuse that texture until boundaries
modified

— GeForce 6 Series: combine with Z-cull for
higher performance!

GameDevelopers <

Conference —

RVIDIA.
Current GPGPU Limitations

e Programming is difficult
— Limited memory interface
— Usually “invert” algorithms (Scatter - Gather)

— Not to mention that you have to use a
graphics API...

GameDevelopers <
Conference T

Brook for GPUs (Stanford)

e C with stream processing extensions
— Cross compiler compiles to shading language
— GPU becomes a streaming coprocessor

e A step In the right direction
— Moving away from graphics APIs

e Stream programming model
— enforce data parallel computing: streams
— encourage arithmetic intensity: kernels

e See SIGGRAPH 2004 Paper and

— http://graphics.stanford.edu/projects/brook
— http://lwww.sourceforge.net/projects/brook

GameDevelopers & ™

Conference

RVIDIA.

More Examples

GameDevelopers <

Conference

Demo: “Disease’: Reaction-Diffusion

=101 *I

“Physically-based visual simulation on the GPU",
Harris et al., Graphics Hardware 2002

GameDevelopers <

Conference

Example: Fluid Simulation

e Navier-Stokes fluid simulation on the GPU
— Based on Stam'’s “Stable Fluids”
— Vorticity Confinement step
 [Fedkiw et al., 2001]
e Interior obstacles
— Without branching
— Zcull optimization

e Fast on latest GPUs

— ~120 fps at 256x256 on
GeForce 6800 Ultra

ailable in NVIDIA SDK 8.5 TR
“Fast Fluid Dynamics Simulation'o’n "e

GPU”, Mark Harris. In GPU Gems. h*”ﬂ

GameDevelopers <
MVIDIA.

Conference

Parthenon Renderer

e “High-Quality Global lllumination Using
Rasterization”, GPU Gems 2

— Toshiya Hachisuka, U. of Tokyo

e Visibility and Final Gathering on the GPU

— Final gathering using parallel ray casting +
depth peeling

GameDevelopers <
RVIDIA.

Conference

The Future

e Increasing flexibility
— Always adding new features
— Improved vertex, fragment languages

e Easier programming
— Non-graphics APIs and languages?

— Brook for GPUs
» http://graphics.stanford.edu/projects/brookgpu

GameDevelopers <
RVIDIA.

Conference

The Future

e |Increasing performance
— More vertex & fragment processors
— More flexible with better branching

e GFLOPs, GFLOPs, GFLOPs!

— Fast approaching TFLOPS!
— Supercomputer on a chip

e Start planning ways to use it!

GameDevelopers <
AVIDIA.

Conference

More Information

e GPGPU news, research links and forums
- www.GPGPU.org

e developer.nvidia.org

e Questions?
— mharris@nvidia.com

http://www.gpgpu.org/

GPU Programmmg

developer.nvidia.com

Latest News

Developer Events Calendar
Technical Documentation
Conference Presentations

* GPU Programming Guide

e Powerful Tools, SDKs and more ...

Join our FREE registered developer program for early
access to NVIDIA drivers, cuttmg edge tg@!ﬁne

support forums, an --1,‘
- -
developer.nvidia.com
S2004 NVIDIA Corporation. NVIDIA, and the NVIDIA logo are trademarks andfor registered trademarks of
NVIDIA Corporation. Nalu is 2004 NVIDIA Corporation. All rights raserved,

GPU Gems 2 @?%}Gems =

Programming Techniques for High-Performance
Graphics and General-Purpose Computation GRS Purges Comprtatios

e 880 full-color pages, 330 figures, hard cover
e $59.99
e EXperts from universities and industry

AT fy Matt Phier
Foreword by I'Ir'1_u.1hrlﬂ I:|:|I Garie

18 GPGPU Chapters! 7 R R s

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”

—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment

GameDevelopers <
RVIDIA.

Conference

Arithmetic Intensity

e Arithmetic intensity = ops / bandwidth

e “Classic™ Graphics pipeline
— Vertex
« BW: 1triangle = 32 bytes
e OP: 100-500 f32-ops / triangle
— Fragment

« BW: 1 fragment = 10 bytes
 OP: 300-1000 i18-ops/fragment

Courtesy of Pat Hanrahan

GameDevelopers < -
BVIDIA.

Conference

CPU-GPU Analogies

CPU GPU

Stream / Data Array = Texture

! Memory Read = Texture
X)) Sample

GameDevelopers <
RVIDIA.

Conference

Reaction-Diffusion

e Gray-Scott reaction-diffusion model
[Pearson 1993]

e Streams = two scalar chemical
concentrations

e Kernel: just and ops

%—T—ID vzuuuv +F(1- U)|

oV | l '
l I
— =D VWV #UV?—(F +k)V |
Y |
ot
U, V are chemical concentrations,
F, k, D, D, are constants

GameDevelopers

Conference

<

RVIDIA.

CPU-GPU Analogies

advect

GPU

for

{

for

{
// get velocity at this cell

int J = 1; j < heicht - 1; ++3)

(int i = 1; i < width - 1; ++1i)

}
}

Vec2f v = grid &, y) ;

// trace backwards along velocity field
float x (i - .x * timestep / dx)) ;
float y G - @.y * timestep / dy)) ;

grid x,y) = grid bilerp &, y) ;

C++

{

}

void advect (float2 uv : WPOS,
out float4 xNew : COLOR,
uniform float dt, // timestep
uniform float dx, // grid scale
uniform samp lerRECT u, // velocity
uniform samp lerRECT x) // state

// trace backwards along velocity field

float2 pos = ub - dt * f2texRECT u, uv) / dx;

xNew = f4texRECTbilerp (x, pos) ;

Cg

Loop body / kernel / algorithm step =

Fragment Program I!

J,

7ig

GameDevelopers <

RVIDIA.

Conference

Feedback

Algorithm
advect e Each algorithm step depends on

the results of previous steps

accelerate

water/thermo e Each time step depends on the

results of the previous time step

divergence

jacobi
Jacobi
jacobi
Jacobi

jacobil

u-grad(p)

Y

it 4 4 o4

4t....

GameDevelopers

Conference

CPU-GPU Analogies

CPU

Grid[i1Li1= x:

Array Write
to Texture

GPU

Texture

unit

Fragment
Unit

Render

<

RVIDIA.

GameDevelopers

Conference

GeForce 6 Series Branching

e True, SIMD branching
— Incoherent branching can hurt performance

— Should have coherent regions of > 1000 pixels
 That is only about 30x30 pixels, so still very useable!

e Don’t ignore branch instruction overhead
— Branching over a few instructions not worth it
e Use branching for early exit from shaders

e GeForce 6 vertex branching is fully MIMD

— very small overhead and no penalty for divergent
branching

<

RVIDIA.

GameDevelopers <
Conference BVIDIA.

A Closing Thought

e “The Wheel of Reincarnation”

General computing power, whatever its purpose, should come from
the central resources of the system. If these resources should prove
Inadequate, then it is the system, not the display, that needs more
computing power. This decision let us finally escape from the wheel
of reincarnation.

-T.H. Myer and I|.E. Sutherland. “On the Design of Display Processors”,
Communications of the ACM, Vol. 11, no. 6, June 1968 Iﬂ N

e
_

GameDevelopers <
Conference R T

My take on the wheel

e Modern applications have a variety of
computational requirements
— Data-Serial
— Data-Parallel
— High Arithmetic Intensity
— High Memory Intensity

e Computer systems must handle this
variety

GameDevelopers <
RVIDIA.

Conference

GPGPU and the wheel

e GPUs are uniquely positioned to satisfy
the data-parallel needs of modern
computing

— Built for highly data parallel computation
« Computer Graphics

— Driven by large-scale economics of a stable
and growing industry
« Computer Games

	GPGPU: General-Purpose Computation on GPUs
	GPU Gems 2 Programming Techniques for High-Performance Graphics and General-Purpose Computation
	Why GPGPU?
	Motivation: Computational Power
	GPU: high performance growth
	Why are GPUs getting faster so fast?
	Motivation: Flexible and precise
	Motivation: The Potential of GPGPU
	The Problem: Difficult To Use
	Mapping Computation to GPUs
	Importance of Data Parallelism
	Data Streams & Kernels
	Example: Simulation Grid
	Stream Computation
	The Basics: GPGPU Analogies
	Standard “Grid” Computation
	Example: N-Body Simulation
	Computing Gravitational Forces
	Computing Gravitational Forces
	Computing Gravitational Forces
	Computing Total Force
	Parallel Reductions
	Update Positions and Velocities
	GPGPU Flow Control Strategies
	Per-Fragment Flow Control
	Fragment Flow Control Techniques
	Branching with Occlusion Query
	Example: OQ-based Subdivision
	Static Branch Resolution
	Z-Cull
	Pre-computation
	Current GPGPU Limitations
	Brook for GPUs (Stanford)
	More Examples
	Demo: “Disease”: Reaction-Diffusion
	Example: Fluid Simulation
	Parthenon Renderer
	The Future
	The Future
	More Information
	
	GPU Gems 2 Programming Techniques for High-Performance Graphics and General-Purpose Computation
	Arithmetic Intensity
	CPU-GPU Analogies
	Reaction-Diffusion
	CPU-GPU Analogies
	Feedback
	CPU-GPU Analogies
	GeForce 6 Series Branching
	A Closing Thought
	My take on the wheel
	GPGPU and the wheel

