GameDevelopers <
RVIDIA.

Conference

Image Processing Tricks In
OpenGL

Simon Green
NVIDIA Corporation

GameDevelopers <

Conference e

RVIDIA.

Overview

e Image Processing in Games

e Histograms

e Recursive filters

e JPEG Discrete Cosine Transform

GameDevelopers <
RVIDIA.

Conference

Image Processing in Games

e Image processing is increasingly
Important in video games
e Games are becoming more like movies
— alarge part of the final look is determined
In “post”
— color correction, blurs, depth of field,
motion blur
e Important for accelerating offline tools
too
— pre-processing (lightmaps)
— texture compression

GameDevelopers

Conference

Image Histograms

e |mage histograms give frequency of
occurrence of each intensity level in
Image
— useful for image analysis, HDR tone

mapping algorithms

e OpenGL imaging subset has histogram
functions
— but this is not widely supported

e Solution - calculate histograms using
multiple passes and occlusion query

<

RVIDIA.

GameDevelopers <
Conference BVIDIA.

Histograms using Occlusion Query

e Render scene to texture

e For each bucket in histogram
— Begin occlusion query

— Draw gquad with scene texture

 Use fragment program that discards fragments
outside appropriate luminance range

— End occlusion query

— Get number of fragments that passed, store
In histogram array

e Process histogram
Requires n passes for n buckets

GameDevelopers

Conference

Histogram Fragment Program

float4 main(in float4 wpos : WPOS,
uniform samplerRECT tex,
uniform float min,
uniform float max,
uniform float3 channels
) : COLOR

// fetch color from texture
float4 c = texRECT(tex, wpos.xy);

// calculate luminance or select channel
float lum = dot(channels, c.rgb);

// discard pixel i1f not inside range
iIT (lum < min |] lum >= max)
discard;

return c;

<

RVIDIA.

GameDevelopers <
RVIDIA.

Conference

Histogram Demo

GameDevelopers <
RVIDIA.

Conference

Performance

e Depends on image size, number of
passes

e 40fps for 32 bucket histogram on 512 x
512 image, GeForce 5900

e For large histograms, may be faster to
readback and compute on CPU

—

GameDevelopers <

Conference

RVIDIA.

GameDevelopers <
RVIDIA.

Conference

Recursive (lIR) Image Filters

e Most existing blur implementations use
standard convolution - filter output is
only function of surrounding pixels

e |f we scan through the image, can we
make use of the previous filter outputs?

e Qutput of a recursive filter is function
of previous inputs and previous outputs

— feedback!

e Simple recursive filter
y[n] = a*y[n-1] + (1-a)*x[n]

GameDevelopers

Conference

Recursive Image Filters

e Require fewer samples for given
frequency response

e Can produce arbitrarily wide blurs for
constant cost

— this Is why Gaussian blurs in Photoshop
take same amount of time regardless of
width

e But difficult to analyze and control
— like a control system, trying to follow its
Input
— mathematics is very complicated!

<

RVIDIA.

GameDevelopers <
RVIDIA.

Conference

FIR vs. |lIR

e Impulse response of filter is how it
responds to unit impulse (discrete delta
function):

— also known as point spread function

e Finite Impulse Response (FIR)

— response to impulse stops outside filter
footprint

— stable
e |Infinite Impulse Response (IIR)
— response to impulse can go on forever

— can be unstable
— widely used in digital signal processing

GameDevelopers <
Conference R T

Review: Building Summed Area
Tables using Graphics Hardware

e Presented at GDC 2003

e Each texel in SAT iIs the sum of all texels
below and to the left of it

e Implemented by rendering lines using
render-to-texture
— Sum columns first, and then rows
— Each row or column is rendered as a line
primitive
— Fragment program adds value of current
texel with texel to the left or below

GameDevelopers <
MVIDIA.

Conference

Building Summed Area Table

1 |1 |1 |1 1 (2 (|3 |4 4 (8 |12|116|1
1 |1 |1 |1 1 (2 (|3 |4 3 |16 |9 |12
—_— >
1 |1 (1 |1 1 (2 (|3 |4 2 |4 |6 |8
1 |1 |1 |1 1 (2 (|3 |4 1 |2 |3 |4
Original image Sum columns Sum rows

e FOr n Xx m image, requires rendering
2 X n X m pixels, each of which
performs two texture lookups

GameDevelopers <
RVIDIA.

Conference

Problems With This Technique

e Texturing from same buffer you are
rendering to can produce undefined
results

— e.g. Texture cache changed from NV3x to
NV4x — broke SAT demo

— Don’t rely on undefined behaviour!

e Line primitives do not make very
efficient use of rasterizer or shader
hardware

— Most modern graphics hardware processes
groups of pixels in parallel

GameDevelopers <
RVIDIA.

Conference

Solutions

e Use two buffers, ping-pong between
them

— Copy changes back from destination buffer
to source each pass

— Buffer switching is fast with framebuffer
object extension
e Can also unroll loop so that we render 2
X n quads Instead of lines

— Unroll fragment program so that it does
computations for two fragments

— Use per-vertex color to determine if we're
rendering odd or even row/column

GameDevelopers <
RVIDIA.

Conference

Implementing IIR Image Filters

e Can implement recursive (lIR) image
filters using same technique as summed
area table

e Scan through image, rendering line or
guad primitives
e Fragment program reads from previous

output buffer and previous input buffer,
writes to third buffer

e Process rows, then columns

GameDevelopers <
MVIDIA.

Conference

Simple |IR Filter

float4 main(vf30 In,
uniform samplerRECT vy, // out

uniform samplerRECT Xx, // in
uniform float4 delta,
uniform float4 a, // fTilter coefficients
) : COLOR
{
float2 n = In.WPOS.xy); // current

float2 nml = n + delta.xy; // previous

return lerp(texRECT(y, nml), texRECT(x, n), a[0]);

1T

GameDevelopers <
Conference =

Simple |IR Filter (Before)

I Summed area tables / IR filter |:”EHZ|

GameDevelopers @-,

RVIDIA.

Conference

Simple IR Filter (After)

I Summed area tables / IR filter |:”EHZ|

GameDevelopers <
Conference T

Symmetric Recursive Filtering

e Recursive filters are directional
e Causes phase shift of data

e Not a problem for time series (e.g.
audio), but very obvious with images

e Can combine multiple recursive filters
to construct zero-phase shift filter

e Run filter in positive direction (left to
right) first, and then in negative
direction (right to left)

— Phase shifts cancel out

q

GameDevelopers <
Conference =

Original Image

I Summed area tables / IR filter |:”EHZ|

q

GameDevelopers <
Conference =

Result after Filter in Positive X & Y

I Summed area tables / IR filter |:”EHZ|

1T

GameDevelopers <
Conference =

Result after Filter in Negative X & Y

I Summed area tables / IR filter |:”EHZ|

GameDevelopers <
RVIDIA.

Conference

Resonant Image Filters

e Second order IIR filters can produce
more interesting effects:

y[n] = b0*X[n] + b1*X[n-1] + b2*X|n-2] -
al*y[n-1] — a2*y[n-2]
e Close model of analog electronic filters
In real world (resistor / capacitor)

— Act like damped oscillators

e Can produce interesting non-
photorealistic looks in image domain

GameDevelopers <
Conference AVIDIA.

Second Order IIR Filter

float4 main(vf30 In,

uniform samplerRECT vy, // out
uniform samplerRECT Xx, // 1n
uniform float4 delta,
uniform float4 a, // fTilter coefficients
uniform float4 b
) : COLOR
{
float2 n = In.WPOS.xy); // current

float2 nml1 = n + delta.xy; // previous
float2 nm2 = n + delta.zw;

// second order 1IR
return b[0]*texRECT(xX, n) + b[1]*texRECT(x, nml) + b[2]*texRECT(x, nm2) -
a[1]*texRECT(y, nml) - a[2]* texRECT(y, nm2);

-

GameDevelopers <
Conference RVIDIA.

Resonant Image Filters

Summed area tables / IIR filter |:”EHX|

Freg

B

GameDevelopers <
Conference NVIDIA.

Resonant Image Filters

Summed area tables / IIR filter |:”EHX|

LRy |

GameDevelopers <
MVIDIA.

Conference

Resonant Image Filters

Summed area tables / IIR filter |:”EHX|

—

GameDevelopers <

Conference

RVIDIA.

GameDevelopers

Conference

Discrete Cosine Transform

e DCT i1s similar to discrete Fourier
transform

— Transforms image from spatial domain to
frequency domain (and back)

— Used in JPEG and MPEG compression

Fu.v) = %C(H)C(l«’) [Z Zﬂxa}*‘) * cos —axté)m cos QJ’J{;)W‘]

x=0 y=0

where: C(u). C(v) = 1/V2 for uv=0;:
C(u), C(v) = 1 otherwise.

<

2
RVIDIA.

GameDevelo

Conference

pers

RVIDIA.

DCT Basis Images

=—==E=EEEEE
SESEEEEE
==E=SEHSEEE
— i o e e
i S ORSNE
= w0 O 00 00 000 o
kAl
AN T TR Tane

&

GameDevelopers <
RVIDIA.

Conference

Performing The DCT in Shader

e Shader implementation based on work
of the Independent JPEG Group

— monochrome (currently)
— floating point

e Could be used as part of a GPU-
accelerated compressor/decompressor

— File decoding, Huffman compression would
still need to be done on CPU

e Game applications
— None!

GameDevelopers <
Conference BVIDIA.

DCT Operation

e DCT used in JPEG operates on 8x8 pixel
blocks

— Trade-off between

e 2D DCT is separable into 1D DCT on
rows, followed by 1D DCT on columns

e Arai, Agui, and Nakajima's algorithm
— 5 multiplies and 29 adds for 8 pixels

— Other multiplies are simple scales of output #a:
values o

e

GameDevelopers <
Conference BVIDIA.

Partitioning the DCT

e Problem:

— 1D DCT is a function of 8 inputs, produces
8 outputs

e Shader likes n inputs, 1 output per pixel
— don’t want to duplicate effort across pixels

e Solution:
— Render quad 1/8™" width or height
— Shader reads 8 neighboring texels L

— Writes 8 outputs to RGBA components of r
two render targets using MRT I! _

— Data is unpacked on subsequent passes J,

GameDevelopers &2
MVIDIA.

Conference

Partitioning the DCT (Rows)

'
'
[
'
/ N
' N
[S
~
1 AN
I' I ﬁ I l ~
1 N
' N
N
! ~
1 \ \ N
1 N \ S~
] N \ N
' N \ ~
1 N N RN
' AN N N
AY \ \\
[N \ N
' N \ N
' \ \ N
1 \ \ ~
[\ \ ~
’ \ \ S
[N \ N
N \ N
\

/inputs », outputs

O0/1(2|3|4|5|6|7

shader

GameDevelopers

Conference

FDCT Shader Code

// based on 1JG jfdctflt.c

void DCT(Ffloat d[8], out float4 outputO,
out float4 outputl)

{

float tmpO, tmpl, tmp2, tmp3, tmp4, tmp5,
tmp6, tmp7;

float tmpl0, tmpll, tmpl2, tmpl3;

float z1, z2, z3, z4, z5, z11, z13;

tmp0 = d[0]
tmp7 = d[0]
tmpl = d[1]
tmp6 = d[1]
tmp2 = d[2]
tmp5 = d[2]
tmp3 = d[3]
tmp4 = d[3]

+

+ 1

+ 1

d[7]1;
d[7];
d[el;
d[el;
d[5];
d[5];
d[4];
d[4]1;

/* Even part */

tmpl0 = tmpO
tmpl3 = tmpO
tmpll = tmpl
tmpl2 = tmpl
outputO[0] =
outputO[1] =

z1l = (tmpl2 + tmpl3)

outputOo[2]
outputO[3]

+ tmp3; /* phase 2 */
- tmp3;
+ tmp2;
- tmp2;

tmpl0 + tmpll; /* phase 3 */

tmpl0 - tmpll;

tmpl3 + z1;
tmpl3 - z1;

* 0.707106781; /* c4 */

/* phase 5 */

/* 0dd part */

tmpl0 = tmp4
tmpll = tmp5
tmpl2 = tmp6

+ tmp5; /* phase 2 */
+ tmp6;
+ tmp7;

/* The rotator is modified from fig 4-8 to avoid extra
negations. */

z5
z2
z4
z3

tmpll *

z11
z13

tmp7 +
tmp7

outputl[O]
outputl[1l]
outputl[2]
outputl[3]

(tmpl0 - tmpl2) * 0.382683433; /* c6 */
0.541196100 * tmpl0 + z5; /* c2-c6 */
1.306562965 * tmpl2 + z5; /* c2+c6 */

0.707106781; /* c4 */

z3; /* phase 5 */
z3;

z13 + z2; /* phase 6 */
z13 - z2;

z11 + z4;

z11 - z4;

GameDevelopers

Conference

Unpacking Code

float4 DCT _unpack rows PS(float2 texcoord : TEXCOORDO,
uniform samplerRECT image,
uniform samplerRECT image2
) : COLOR

float2 uv = texcoord * float2(1.0/8.0, 1.0);
float4 c = texRECT(image, uv);
float4 c2 = texRECT(image2, uv);

// rearrange data into correct order

// Xy zw

// c 0426

// c25317

int 1 = frac(texcoord.x/8.0) * 8.0;
float4 sel0 = (1 == float4(0, 4, 2, 6));
float4 sell = (1 == float4(5, 3, 1, 7));
return dot(c, sel0) + dot(c2, sell);

RVIDIA.

Ml

GameDevelopers <
Conference
AVIDIA.

Original Image

B gpgpu_dct

GameDevelopers <

Conference

RVIDIA.

After FDCT (DCT coefficients)

B =pzpu_dct

Ml

GameDevelopers <
Conference
AVIDIA.

After IDCT

B gpgpu_dct

GameDevelopers <
RVIDIA.

Conference

Performance

e Around 160fps for FDCT followed by
IDCT on 512 x 512 monochrome image
on GeForce 6800 Ultra

e Still a lot of room for optimization
— make better use of vector math

— could process two channels simultaneously
(4 MRTS)

e JPEGSs are usually stored as luminance
and 2 chrominance channels
— Chroma is at lower resolution

— Could also do resampling and color space
conversion on GPU

GameDevelopers & ™

Conference

RVIDIA.

Questions?

GameDevelopers <

Conference —
RVIDIA.

References

e |Infinite Impulse Response Filters on
Wikipedia
e “The JPEG Still Picture Compression

Standard’, Wallace G, Communications
of the ACM Volume 34, Issue 4

e Discrete Cosine Transform on Wikipedia

http://en.wikipedia.org/wiki/Infinite_impulse_response
http://en.wikipedia.org/wiki/Infinite_impulse_response
http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf
http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf
http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf
http://en.wikipedia.org/wiki/Discrete_cosine_transform

	Image Processing Tricks in OpenGL
	Overview
	Image Processing in Games
	Image Histograms
	Histograms using Occlusion Query
	Histogram Fragment Program
	Histogram Demo
	Performance
	Recursive (IIR) Image Filters
	Recursive Image Filters
	FIR vs. IIR
	Review: Building Summed Area Tables using Graphics Hardware
	Building Summed Area Table
	Problems With This Technique
	Solutions
	Implementing IIR Image Filters
	Simple IIR Filter
	Simple IIR Filter (Before)
	Simple IIR Filter (After)
	Symmetric Recursive Filtering
	Original Image
	Result after Filter in Positive X & Y
	Result after Filter in Negative X & Y
	Resonant Image Filters
	Second Order IIR Filter
	Resonant Image Filters
	Resonant Image Filters
	Resonant Image Filters
	Discrete Cosine Transform
	DCT Basis Images
	Performing The DCT in Shader
	DCT Operation
	Partitioning the DCT
	Partitioning the DCT (Rows)
	FDCT Shader Code
	Unpacking Code
	Original Image
	After FDCT (DCT coefficients)
	After IDCT
	Performance
	Questions?
	References

