
Image Processing Tricks in Image Processing Tricks in
OpenGLOpenGL

Simon GreenSimon Green
NVIDIA CorporationNVIDIA Corporation

OverviewOverview

•• Image Processing in GamesImage Processing in Games
•• HistogramsHistograms
•• Recursive filtersRecursive filters
•• JPEG Discrete Cosine TransformJPEG Discrete Cosine Transform

Image Processing in GamesImage Processing in Games

•• Image processing is increasingly Image processing is increasingly
important in video gamesimportant in video games

•• Games are becoming more like moviesGames are becoming more like movies
–– a large part of the final look is determined a large part of the final look is determined

in in ““postpost””
–– color correction, blurs, depth of field, color correction, blurs, depth of field,

motion blurmotion blur
•• Important for accelerating offline tools Important for accelerating offline tools

tootoo
–– prepre--processing (processing (lightmapslightmaps))
–– texture compressiontexture compression

Image HistogramsImage Histograms

•• Image histograms give frequency of Image histograms give frequency of
occurrence of each intensity level in occurrence of each intensity level in
imageimage
–– useful for image analysis, HDR tone useful for image analysis, HDR tone

mapping algorithmsmapping algorithms
•• OpenGL imaging subset has histogram OpenGL imaging subset has histogram

functionsfunctions
–– but this is not widely supportedbut this is not widely supported

•• Solution Solution -- calculate histograms using calculate histograms using
multiple passes and occlusion querymultiple passes and occlusion query

Histograms using Occlusion QueryHistograms using Occlusion Query

•• Render scene to textureRender scene to texture
•• For each bucket in histogramFor each bucket in histogram

–– Begin occlusion queryBegin occlusion query
–– Draw quad with scene textureDraw quad with scene texture

•• Use fragment program that discards fragments Use fragment program that discards fragments
outside appropriate luminance rangeoutside appropriate luminance range

–– End occlusion queryEnd occlusion query
–– Get number of fragments that passed, store Get number of fragments that passed, store

in histogram arrayin histogram array
•• Process histogramProcess histogram
•• Requires n passes for n bucketsRequires n passes for n buckets

Histogram Fragment ProgramHistogram Fragment Program

float4 main(in float4 float4 main(in float4 wposwpos : WPOS,: WPOS,
uniform uniform samplerRECTsamplerRECT textex,,
uniform float min,uniform float min,
uniform float max,uniform float max,
uniform float3 channelsuniform float3 channels
) : COLOR) : COLOR

{{
// fetch color from texture// fetch color from texture
float4 c = float4 c = texRECT(textexRECT(tex, , wpos.xywpos.xy););

// calculate luminance or select channel// calculate luminance or select channel
float float lumlum = dot(channels, = dot(channels, c.rgbc.rgb););

// discard pixel if not inside range// discard pixel if not inside range
if (if (lumlum < min || < min || lumlum >= max)>= max)

discard;discard;

return c;return c;
}}

Histogram DemoHistogram Demo

PerformancePerformance

•• Depends on image size, number of Depends on image size, number of
passespasses

•• 40fps for 32 bucket histogram on 512 x 40fps for 32 bucket histogram on 512 x
512 image, GeForce 5900512 image, GeForce 5900

•• For large histograms, may be faster to For large histograms, may be faster to
readback and compute on CPUreadback and compute on CPU

Recursive (IIR) Image FiltersRecursive (IIR) Image Filters

•• Most existing blur implementations use Most existing blur implementations use
standard convolution standard convolution –– filter output is filter output is
only function of surrounding pixelsonly function of surrounding pixels

•• If we scan through the image, can we If we scan through the image, can we
make use of the previous filter outputs?make use of the previous filter outputs?

•• Output of a recursive filter is function Output of a recursive filter is function
of previous inputs of previous inputs andand previous outputsprevious outputs
–– feedback!feedback!

•• Simple recursive filterSimple recursive filter
y[n] = a*y[ny[n] = a*y[n--1] + (11] + (1--a)*x[n]a)*x[n]

Recursive Image FiltersRecursive Image Filters

•• Require fewer samples for given Require fewer samples for given
frequency responsefrequency response

•• Can produce arbitrarily wide blurs for Can produce arbitrarily wide blurs for
constant costconstant cost
–– this is why Gaussian blurs in Photoshop this is why Gaussian blurs in Photoshop

take same amount of time regardless of take same amount of time regardless of
widthwidth

•• But difficult to analyze and controlBut difficult to analyze and control
–– like a control system, trying to follow its like a control system, trying to follow its

inputinput
–– mathematics is very complicated!mathematics is very complicated!

FIR vs. IIRFIR vs. IIR

•• Impulse response of filter is how it Impulse response of filter is how it
responds to unit impulse (discrete delta responds to unit impulse (discrete delta
function):function):
–– also known as point spread functionalso known as point spread function

•• Finite Impulse Response (FIR)Finite Impulse Response (FIR)
–– response to impulse stops outside filter response to impulse stops outside filter

footprintfootprint
–– stablestable

•• Infinite Impulse Response (IIR)Infinite Impulse Response (IIR)
–– response to impulse can go on foreverresponse to impulse can go on forever
–– can be unstablecan be unstable
–– widely used in digital signal processingwidely used in digital signal processing

Review: Building Summed Area Review: Building Summed Area
Tables using Graphics HardwareTables using Graphics Hardware

•• Presented at GDC 2003Presented at GDC 2003
•• Each texel in SAT is the sum of all texels Each texel in SAT is the sum of all texels

below and to the left of itbelow and to the left of it
•• Implemented by rendering lines using Implemented by rendering lines using

renderrender--toto--texturetexture
–– Sum columns first, and then rowsSum columns first, and then rows
–– Each row or column is rendered as a line Each row or column is rendered as a line

primitiveprimitive
–– Fragment program adds value of current Fragment program adds value of current

texel with texel to the left or belowtexel with texel to the left or below

Building Summed Area TableBuilding Summed Area Table

11 11 11 11

11 11 11 11

11 11 11 11

11 11 11 11

11 22 33 44

11 22 33 44

11 22 33 44

11 22 33 44

44 88 1212 1616

33 66 99 1212

22 44 66 88

11 22 33 44

Sum columnsOriginal image Sum rows

• For n x m image, requires rendering
2 x n x m pixels, each of which
performs two texture lookups

Problems With This TechniqueProblems With This Technique

•• Texturing from same buffer you are Texturing from same buffer you are
rendering to can produce undefined rendering to can produce undefined
resultsresults
–– e.g. Texture cache changed from NV3x to e.g. Texture cache changed from NV3x to

NV4x NV4x –– broke SAT demobroke SAT demo
–– DonDon’’t rely on undefined t rely on undefined behaviourbehaviour!!

•• Line primitives do not make very Line primitives do not make very
efficient use of rasterizer or shader efficient use of rasterizer or shader
hardwarehardware
–– Most modern graphics hardware processes Most modern graphics hardware processes

groups of pixels in parallelgroups of pixels in parallel

Solutions Solutions

•• Use two buffers, pingUse two buffers, ping--pong between pong between
themthem
–– Copy changes back from destination buffer Copy changes back from destination buffer

to source each passto source each pass
–– Buffer switching is fast with framebuffer Buffer switching is fast with framebuffer

object extensionobject extension
•• Can also unroll loop so that we render 2 Can also unroll loop so that we render 2

x n quads instead of linesx n quads instead of lines
–– Unroll fragment program so that it does Unroll fragment program so that it does

computations for two fragmentscomputations for two fragments
–– Use perUse per--vertex color to determine if wevertex color to determine if we’’re re

rendering odd or even row/columnrendering odd or even row/column

Implementing IIR Image FiltersImplementing IIR Image Filters

•• Can implement recursive (IIR) image Can implement recursive (IIR) image
filters using same technique as summed filters using same technique as summed
area tablearea table

•• Scan through image, rendering line or Scan through image, rendering line or
quad primitivesquad primitives

•• Fragment program reads from previous Fragment program reads from previous
output buffer and previous input buffer, output buffer and previous input buffer,
writes to third bufferwrites to third buffer

•• Process rows, then columnsProcess rows, then columns

Simple IIR FilterSimple IIR Filter

float4 main(vf30 In,float4 main(vf30 In,
uniform uniform samplerRECTsamplerRECT y, // outy, // out
uniform uniform samplerRECTsamplerRECT x, // inx, // in
uniform float4 delta,uniform float4 delta,
uniform float4 a, // filter coefficientsuniform float4 a, // filter coefficients
) : COLOR) : COLOR

{{
float2 n = float2 n = In.WPOS.xyIn.WPOS.xy); // current); // current
float2 nm1 = n + float2 nm1 = n + delta.xydelta.xy; // previous; // previous

return return lerp(texRECT(ylerp(texRECT(y, nm1), , nm1), texRECT(xtexRECT(x, n), a[0]);, n), a[0]);
}}

Simple IIR Filter (Before)Simple IIR Filter (Before)

Simple IIR Filter (After)Simple IIR Filter (After)

Symmetric Recursive FilteringSymmetric Recursive Filtering

•• Recursive filters are directionalRecursive filters are directional
•• Causes phase shift of dataCauses phase shift of data
•• Not a problem for time series (e.g. Not a problem for time series (e.g.

audio), but very obvious with imagesaudio), but very obvious with images
•• Can combine multiple recursive filters Can combine multiple recursive filters

to construct zeroto construct zero--phase shift filterphase shift filter
•• Run filter in positive direction (left to Run filter in positive direction (left to

right) first, and then in negative right) first, and then in negative
direction (right to left)direction (right to left)
–– Phase shifts cancel outPhase shifts cancel out

Original ImageOriginal Image

Result after Filter in Positive X & YResult after Filter in Positive X & Y

Result after Filter in Negative X & YResult after Filter in Negative X & Y

Resonant Image FiltersResonant Image Filters

•• Second order IIR filters can produce Second order IIR filters can produce
more interesting effects:more interesting effects:

y[n] = b0*x[n] + b1*x[ny[n] = b0*x[n] + b1*x[n--1] + b2*x[n1] + b2*x[n--2] 2] ––
a1*y[na1*y[n--1] 1] –– a2*y[na2*y[n--2]2]

•• Close model of analog electronic filters Close model of analog electronic filters
in real world (resistor / capacitor) in real world (resistor / capacitor)
–– Act like damped oscillatorsAct like damped oscillators

•• Can produce interesting nonCan produce interesting non--
photorealistic looks in image domainphotorealistic looks in image domain

Second Order IIR FilterSecond Order IIR Filter

float4 main(vf30 In,float4 main(vf30 In,
uniform uniform samplerRECTsamplerRECT y, // outy, // out
uniform uniform samplerRECTsamplerRECT x, // inx, // in
uniform float4 delta,uniform float4 delta,
uniform float4 a, // filter coefficientsuniform float4 a, // filter coefficients
uniform float4 buniform float4 b
) : COLOR) : COLOR

{{
float2 n = float2 n = In.WPOS.xyIn.WPOS.xy); // current); // current
float2 nm1 = n + float2 nm1 = n + delta.xydelta.xy; // previous; // previous
float2 nm2 = n + float2 nm2 = n + delta.zwdelta.zw;;

// second order IIR// second order IIR
return b[0]*return b[0]*texRECT(xtexRECT(x, n) + b[1]*, n) + b[1]*texRECT(xtexRECT(x, nm1) + b[2]*, nm1) + b[2]*texRECT(xtexRECT(x, nm2) , nm2) --

a[1]*a[1]*texRECT(ytexRECT(y, nm1) , nm1) -- a[2]* a[2]* texRECT(ytexRECT(y, nm2);, nm2);
}}

Resonant Image FiltersResonant Image Filters

Resonant Image FiltersResonant Image Filters

Resonant Image FiltersResonant Image Filters

Discrete Cosine TransformDiscrete Cosine Transform

•• DCT is similar to discrete Fourier DCT is similar to discrete Fourier
transformtransform
–– Transforms image from spatial domain to Transforms image from spatial domain to

frequency domain (and back)frequency domain (and back)
–– Used in JPEG and MPEG compressionUsed in JPEG and MPEG compression

DCT Basis ImagesDCT Basis Images

Performing The DCT in ShaderPerforming The DCT in Shader

•• Shader implementation based on work Shader implementation based on work
of the Independent JPEG Groupof the Independent JPEG Group
–– monochrome (currently)monochrome (currently)
–– floating pointfloating point

•• Could be used as part of a GPUCould be used as part of a GPU--
accelerated compressor/accelerated compressor/decompressordecompressor
–– File decoding, Huffman compression would File decoding, Huffman compression would

still need to be done on CPUstill need to be done on CPU
•• Game applicationsGame applications

–– None!None!

DCT OperationDCT Operation

•• DCT used in JPEG operates on 8x8 pixel DCT used in JPEG operates on 8x8 pixel
blocksblocks
–– TradeTrade--off between off between

•• 2D DCT is separable into 1D DCT on 2D DCT is separable into 1D DCT on
rows, followed by 1D DCT on columnsrows, followed by 1D DCT on columns

•• Arai, Arai, AguiAgui, and Nakajima's algorithm, and Nakajima's algorithm
–– 5 multiplies and 29 adds for 8 pixels5 multiplies and 29 adds for 8 pixels
–– Other multiplies are simple scales of output Other multiplies are simple scales of output

valuesvalues

Partitioning the DCTPartitioning the DCT

•• Problem:Problem:
–– 1D DCT is a function of 8 inputs, produces 1D DCT is a function of 8 inputs, produces

8 outputs8 outputs
•• Shader likes n inputs, 1 output per pixelShader likes n inputs, 1 output per pixel

–– dondon’’t want to duplicate effort across pixelst want to duplicate effort across pixels
•• Solution:Solution:

–– Render quad 1/8Render quad 1/8thth width or heightwidth or height
–– Shader reads 8 neighboring texelsShader reads 8 neighboring texels
–– Writes 8 outputs to RGBA components of Writes 8 outputs to RGBA components of

two render targets using MRTtwo render targets using MRT
–– Data is unpacked on subsequent passesData is unpacked on subsequent passes

Partitioning the DCT (Rows)Partitioning the DCT (Rows)
n n/8

n

00 11 22 33 44 55 66 77 00 11 22 33
00 11 22 33

inputs outputs

n

shader

FDCT Shader CodeFDCT Shader Code
// based on IJG // based on IJG jfdctflt.cjfdctflt.c
void DCT(float d[8], out float4 output0,void DCT(float d[8], out float4 output0,

out float4 output1)out float4 output1)
{{

float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5,float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5,
tmp6, tmp7;tmp6, tmp7;

float tmp10, tmp11, tmp12, tmp13;float tmp10, tmp11, tmp12, tmp13;
float z1, z2, z3, z4, z5, z11, z13;float z1, z2, z3, z4, z5, z11, z13;

tmp0 = d[0] + d[7];tmp0 = d[0] + d[7];
tmp7 = d[0] tmp7 = d[0] -- d[7];d[7];
tmp1 = d[1] + d[6];tmp1 = d[1] + d[6];
tmp6 = d[1] tmp6 = d[1] -- d[6];d[6];
tmp2 = d[2] + d[5];tmp2 = d[2] + d[5];
tmp5 = d[2] tmp5 = d[2] -- d[5];d[5];
tmp3 = d[3] + d[4];tmp3 = d[3] + d[4];
tmp4 = d[3] tmp4 = d[3] -- d[4];d[4];

/* Even part *//* Even part */
tmp10 = tmp0 + tmp3;tmp10 = tmp0 + tmp3; /* phase 2 *//* phase 2 */
tmp13 = tmp0 tmp13 = tmp0 -- tmp3;tmp3;
tmp11 = tmp1 + tmp2;tmp11 = tmp1 + tmp2;
tmp12 = tmp1 tmp12 = tmp1 -- tmp2;tmp2;

output0[0] = tmp10 + tmp11; /* phase 3 */output0[0] = tmp10 + tmp11; /* phase 3 */
output0[1] = tmp10 output0[1] = tmp10 -- tmp11;tmp11;

z1 = (tmp12 + tmp13) * 0.707106781; /* c4 */z1 = (tmp12 + tmp13) * 0.707106781; /* c4 */
output0[2] = tmp13 + z1;output0[2] = tmp13 + z1; /* phase 5 *//* phase 5 */
output0[3] = tmp13 output0[3] = tmp13 -- z1;

/* Odd part *//* Odd part */
tmp10 = tmp4 + tmp5;tmp10 = tmp4 + tmp5; /* phase 2 *//* phase 2 */
tmp11 = tmp5 + tmp6;tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;tmp12 = tmp6 + tmp7;

/* The rotator is modified from fig 4/* The rotator is modified from fig 4--8 to avoid extra 8 to avoid extra
negations. */negations. */

z5 = (tmp10 z5 = (tmp10 -- tmp12) * 0.382683433; /* c6 */tmp12) * 0.382683433; /* c6 */
z2 = 0.541196100 * tmp10 + z5; /* c2z2 = 0.541196100 * tmp10 + z5; /* c2--c6 */c6 */
z4 = 1.306562965 * tmp12 + z5; /* c2+c6 */z4 = 1.306562965 * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * 0.707106781; /* c4 */z3 = tmp11 * 0.707106781; /* c4 */

z11 = tmp7 + z3;z11 = tmp7 + z3; /* phase 5 *//* phase 5 */
z13 = tmp7 z13 = tmp7 -- z3;z3;

output1[0] = z13 + z2;output1[0] = z13 + z2; /* phase 6 *//* phase 6 */
output1[1] = z13 output1[1] = z13 -- z2;z2;
output1[2] = z11 + z4;output1[2] = z11 + z4;
output1[3] = z11 output1[3] = z11 -- z4;z4;

}}

z1;

Unpacking CodeUnpacking Code

float4 DCT_unpack_rows_PS(float2 float4 DCT_unpack_rows_PS(float2 texcoordtexcoord : TEXCOORD0,: TEXCOORD0,
uniform uniform samplerRECTsamplerRECT image,image,
uniform uniform samplerRECTsamplerRECT image2image2
) : COLOR) : COLOR

{{
float2 float2 uvuv = = texcoordtexcoord * float2(1.0/8.0, 1.0);* float2(1.0/8.0, 1.0);
float4 c = float4 c = texRECT(imagetexRECT(image, , uvuv););
float4 c2 = texRECT(image2, float4 c2 = texRECT(image2, uvuv););

// rearrange data into correct order// rearrange data into correct order
// x y z w// x y z w
// c 0 4 2 6// c 0 4 2 6
// c2 5 3 1 7// c2 5 3 1 7
intint i = frac(texcoord.x/8.0) * 8.0;i = frac(texcoord.x/8.0) * 8.0;
float4 sel0 = (i == float4(0, 4, 2, 6));float4 sel0 = (i == float4(0, 4, 2, 6));
float4 sel1 = (i == float4(5, 3, 1, 7));float4 sel1 = (i == float4(5, 3, 1, 7));
return dot(c, sel0) + dot(c2, sel1);return dot(c, sel0) + dot(c2, sel1);

}}

Original ImageOriginal Image

After FDCT (DCT coefficients)After FDCT (DCT coefficients)

After IDCTAfter IDCT

PerformancePerformance

•• Around 160fps for FDCT followed by Around 160fps for FDCT followed by
IDCT on 512 x 512 monochrome image IDCT on 512 x 512 monochrome image
on GeForce 6800 Ultraon GeForce 6800 Ultra

•• Still a lot of room for optimizationStill a lot of room for optimization
–– make better use of vector mathmake better use of vector math
–– could process two channels simultaneously could process two channels simultaneously

(4 (4 MRTsMRTs))
•• JPEGs are usually stored as luminance JPEGs are usually stored as luminance

and 2 chrominance channelsand 2 chrominance channels
–– ChromaChroma is at lower resolutionis at lower resolution
–– Could also do Could also do resamplingresampling and color space and color space

conversion on GPUconversion on GPU

Questions?Questions?

ReferencesReferences

•• Infinite Impulse Response Filters on Infinite Impulse Response Filters on
WikipediaWikipedia

•• ““The JPEG Still Picture Compression The JPEG Still Picture Compression
StandardStandard””, Wallace G, Communications , Wallace G, Communications
of the ACM Volume 34, Issue 4of the ACM Volume 34, Issue 4

•• Discrete Cosine Transform on Discrete Cosine Transform on WikipediaWikipedia

http://en.wikipedia.org/wiki/Infinite_impulse_response
http://en.wikipedia.org/wiki/Infinite_impulse_response
http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf
http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf
http://white.stanford.edu/~brian/psy221/reader/Wallace.JPEG.pdf
http://en.wikipedia.org/wiki/Discrete_cosine_transform

	Image Processing Tricks in OpenGL
	Overview
	Image Processing in Games
	Image Histograms
	Histograms using Occlusion Query
	Histogram Fragment Program
	Histogram Demo
	Performance
	Recursive (IIR) Image Filters
	Recursive Image Filters
	FIR vs. IIR
	Review: Building Summed Area Tables using Graphics Hardware
	Building Summed Area Table
	Problems With This Technique
	Solutions
	Implementing IIR Image Filters
	Simple IIR Filter
	Simple IIR Filter (Before)
	Simple IIR Filter (After)
	Symmetric Recursive Filtering
	Original Image
	Result after Filter in Positive X & Y
	Result after Filter in Negative X & Y
	Resonant Image Filters
	Second Order IIR Filter
	Resonant Image Filters
	Resonant Image Filters
	Resonant Image Filters
	Discrete Cosine Transform
	DCT Basis Images
	Performing The DCT in Shader
	DCT Operation
	Partitioning the DCT
	Partitioning the DCT (Rows)
	FDCT Shader Code
	Unpacking Code
	Original Image
	After FDCT (DCT coefficients)
	After IDCT
	Performance
	Questions?
	References

