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Overview

e Image Processing in Games

e Histograms

e Recursive filters

e JPEG Discrete Cosine Transform
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Image Processing in Games

e Image processing is increasingly
Important in video games
e Games are becoming more like movies
— alarge part of the final look is determined
In “post”
— color correction, blurs, depth of field,
motion blur
e Important for accelerating offline tools
too
— pre-processing (lightmaps)
— texture compression
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Image Histograms

e |mage histograms give frequency of
occurrence of each intensity level in
Image
— useful for image analysis, HDR tone

mapping algorithms

e OpenGL imaging subset has histogram
functions
— but this is not widely supported

e Solution - calculate histograms using
multiple passes and occlusion query

<
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Histograms using Occlusion Query

e Render scene to texture

e For each bucket in histogram
— Begin occlusion query

— Draw gquad with scene texture

 Use fragment program that discards fragments
outside appropriate luminance range

— End occlusion query

— Get number of fragments that passed, store
In histogram array

e Process histogram
Requires n passes for n buckets
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Histogram Fragment Program

float4 main(in float4 wpos : WPOS,
uniform samplerRECT tex,
uniform float min,
uniform float max,
uniform float3 channels
) : COLOR

// fetch color from texture
float4 c = texRECT(tex, wpos.xy);

// calculate luminance or select channel
float lum = dot(channels, c.rgb);

// discard pixel i1f not inside range
iIT (lum < min |] lum >= max)
discard;

return c;
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Histogram Demo
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Performance

e Depends on image size, number of
passes

e 40fps for 32 bucket histogram on 512 x
512 image, GeForce 5900

e For large histograms, may be faster to
readback and compute on CPU
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Recursive (lIR) Image Filters

e Most existing blur implementations use
standard convolution - filter output is
only function of surrounding pixels

e |f we scan through the image, can we
make use of the previous filter outputs?

e Qutput of a recursive filter is function
of previous inputs and previous outputs

— feedback!

e Simple recursive filter
y[n] = a*y[n-1] + (1-a)*x[n]
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Recursive Image Filters

e Require fewer samples for given
frequency response

e Can produce arbitrarily wide blurs for
constant cost

— this Is why Gaussian blurs in Photoshop
take same amount of time regardless of
width

e But difficult to analyze and control
— like a control system, trying to follow its
Input
— mathematics is very complicated!
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FIR vs. |lIR

e Impulse response of filter is how it
responds to unit impulse (discrete delta
function):

— also known as point spread function

e Finite Impulse Response (FIR)

— response to impulse stops outside filter
footprint

— stable
e |Infinite Impulse Response (IIR)
— response to impulse can go on forever

— can be unstable
— widely used in digital signal processing
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Review: Building Summed Area
Tables using Graphics Hardware

e Presented at GDC 2003

e Each texel in SAT iIs the sum of all texels
below and to the left of it

e Implemented by rendering lines using
render-to-texture
— Sum columns first, and then rows
— Each row or column is rendered as a line
primitive
— Fragment program adds value of current
texel with texel to the left or below
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Building Summed Area Table

1 |1 |1 |1 1 (2 (|3 |4 4 (8 |12|116|1
1 |1 |1 |1 1 (2 (|3 |4 3 |16 |9 |12
—_— >
1 |1 (1 |1 1 (2 (|3 |4 2 |4 |6 |8
1 |1 |1 |1 1 (2 (|3 |4 1 |2 |3 |4
Original image Sum columns Sum rows

e FOr n Xx m image, requires rendering
2 X n X m pixels, each of which
performs two texture lookups
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Problems With This Technique

e Texturing from same buffer you are
rendering to can produce undefined
results

— e.g. Texture cache changed from NV3x to
NV4x — broke SAT demo

— Don’t rely on undefined behaviour!

e Line primitives do not make very
efficient use of rasterizer or shader
hardware

— Most modern graphics hardware processes
groups of pixels in parallel
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Solutions

e Use two buffers, ping-pong between
them

— Copy changes back from destination buffer
to source each pass

— Buffer switching is fast with framebuffer
object extension
e Can also unroll loop so that we render 2
X n quads Instead of lines

— Unroll fragment program so that it does
computations for two fragments

— Use per-vertex color to determine if we're
rendering odd or even row/column
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Implementing IIR Image Filters

e Can implement recursive (lIR) image
filters using same technique as summed
area table

e Scan through image, rendering line or
guad primitives
e Fragment program reads from previous

output buffer and previous input buffer,
writes to third buffer

e Process rows, then columns
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Simple |IR Filter

float4 main(vf30 In,
uniform samplerRECT vy, // out

uniform samplerRECT Xx, // in
uniform float4 delta,
uniform float4 a, // fTilter coefficients
) : COLOR
{
float2 n = In.WPOS.xy); // current

float2 nml = n + delta.xy; // previous

return lerp(texRECT(y, nml), texRECT(x, n), a[0]);
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Simple |IR Filter (Before)

I Summed area tables / IR filter |:”EHZ|
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Simple IR Filter (After)

I Summed area tables / IR filter |:”EHZ|
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Symmetric Recursive Filtering

e Recursive filters are directional
e Causes phase shift of data

e Not a problem for time series (e.g.
audio), but very obvious with images

e Can combine multiple recursive filters
to construct zero-phase shift filter

e Run filter in positive direction (left to
right) first, and then in negative
direction (right to left)

— Phase shifts cancel out
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Original Image

I Summed area tables / IR filter |:”EHZ|
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Result after Filter in Positive X & Y

I Summed area tables / IR filter |:”EHZ|
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Result after Filter in Negative X & Y

I Summed area tables / IR filter |:”EHZ|
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Resonant Image Filters

e Second order IIR filters can produce
more interesting effects:

y[n] = b0*X[n] + b1*X[n-1] + b2*X|n-2] -
al*y[n-1] — a2*y[n-2]
e Close model of analog electronic filters
In real world (resistor / capacitor)

— Act like damped oscillators

e Can produce interesting non-
photorealistic looks in image domain
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Second Order IIR Filter

float4 main(vf30 In,

uniform samplerRECT vy, // out
uniform samplerRECT Xx, // 1n
uniform float4 delta,
uniform float4 a, // fTilter coefficients
uniform float4 b
) : COLOR
{
float2 n = In.WPOS.xy); // current

float2 nml1 = n + delta.xy; // previous
float2 nm2 = n + delta.zw;

// second order 1IR
return b[0]*texRECT(xX, n) + b[1]*texRECT(x, nml) + b[2]*texRECT(x, nm2) -
a[1]*texRECT(y, nml) - a[2]* texRECT(y, nm2);
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Resonant Image Filters

Summed area tables / IIR filter |:”EHX|

Freg
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Resonant Image Filters

Summed area tables / IIR filter |:”EHX|

LRy |
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Resonant Image Filters

Summed area tables / IIR filter |:”EHX|
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Discrete Cosine Transform

e DCT i1s similar to discrete Fourier
transform

— Transforms image from spatial domain to
frequency domain (and back)

— Used in JPEG and MPEG compression

Fu.v) = %C(H)C(l«’) [Z Zﬂxa}*‘) * cos —axté)m cos QJ’J{;)W‘]

x=0 y=0

where: C(u). C(v) = 1/V2 for uv=0;:
C(u), C(v) = 1 otherwise.

<
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DCT Basis Images
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Performing The DCT in Shader

e Shader implementation based on work
of the Independent JPEG Group

— monochrome (currently)
— floating point

e Could be used as part of a GPU-
accelerated compressor/decompressor

— File decoding, Huffman compression would
still need to be done on CPU

e Game applications
— None!
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DCT Operation

e DCT used in JPEG operates on 8x8 pixel
blocks

— Trade-off between

e 2D DCT is separable into 1D DCT on
rows, followed by 1D DCT on columns

e Arai, Agui, and Nakajima's algorithm
— 5 multiplies and 29 adds for 8 pixels

— Other multiplies are simple scales of output #a:
values o

e
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Partitioning the DCT

e Problem:

— 1D DCT is a function of 8 inputs, produces
8 outputs

e Shader likes n inputs, 1 output per pixel
— don’t want to duplicate effort across pixels

e Solution:
— Render quad 1/8™" width or height
— Shader reads 8 neighboring texels L

— Writes 8 outputs to RGBA components of r
two render targets using MRT I! _

— Data is unpacked on subsequent passes J,
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Partitioning the DCT (Rows)
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FDCT Shader Code

// based on 1JG jfdctflt.c

void DCT(Ffloat d[8], out float4 outputO,
out float4 outputl)

{

float tmpO, tmpl, tmp2, tmp3, tmp4, tmp5,
tmp6, tmp7;

float tmpl0, tmpll, tmpl2, tmpl3;

float z1, z2, z3, z4, z5, z11, z13;

tmp0 = d[0]
tmp7 = d[0]
tmpl = d[1]
tmp6 = d[1]
tmp2 = d[2]
tmp5 = d[2]
tmp3 = d[3]
tmp4 = d[3]

+

+ 1

+ 1

d[7]1;
d[7];
d[el;
d[el;
d[5];
d[5];
d[4];
d[4]1;

/* Even part */

tmpl0 = tmpO
tmpl3 = tmpO
tmpll = tmpl
tmpl2 = tmpl
outputO[0] =
outputO[1] =

z1l = (tmpl2 + tmpl3)

outputOo[2]
outputO[3]

+ tmp3; /* phase 2 */
- tmp3;
+ tmp2;
- tmp2;

tmpl0 + tmpll; /* phase 3 */

tmpl0 - tmpll;

tmpl3 + z1;
tmpl3 - z1;

* 0.707106781; /* c4 */

/* phase 5 */

/* 0dd part */

tmpl0 = tmp4
tmpll = tmp5
tmpl2 = tmp6

+ tmp5; /* phase 2 */
+ tmp6;
+ tmp7;

/* The rotator is modified from fig 4-8 to avoid extra
negations. */

z5
z2
z4
z3

tmpll *

z11
z13

tmp7 +
tmp7

outputl[O]
outputl[1l]
outputl[2]
outputl[3]

(tmpl0 - tmpl2) * 0.382683433; /* c6 */
0.541196100 * tmpl0 + z5; /* c2-c6 */
1.306562965 * tmpl2 + z5; /* c2+c6 */

0.707106781; /* c4 */

z3; /* phase 5 */
z3;

z13 + z2; /* phase 6 */
z13 - z2;

z11 + z4;

z11 - z4;
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Unpacking Code

float4 DCT _unpack rows PS(float2 texcoord : TEXCOORDO,
uniform samplerRECT image,
uniform samplerRECT image2
) : COLOR

float2 uv = texcoord * float2(1.0/8.0, 1.0);
float4 c = texRECT(image, uv);
float4 c2 = texRECT(image2, uv);

// rearrange data into correct order

// Xy zw

// c 0426

// c25317

int 1 = frac(texcoord.x/8.0) * 8.0;
float4 sel0 = (1 == float4(0, 4, 2, 6));
float4 sell = (1 == float4(5, 3, 1, 7));
return dot(c, sel0) + dot(c2, sell);

RVIDIA.
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Original Image

B gpgpu_dct
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After FDCT (DCT coefficients)

B =pzpu_dct
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After IDCT

B gpgpu_dct
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Performance

e Around 160fps for FDCT followed by
IDCT on 512 x 512 monochrome image
on GeForce 6800 Ultra

e Still a lot of room for optimization
— make better use of vector math

— could process two channels simultaneously
(4 MRTS)

e JPEGSs are usually stored as luminance
and 2 chrominance channels
— Chroma is at lower resolution

— Could also do resampling and color space
conversion on GPU
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References

e |Infinite Impulse Response Filters on
Wikipedia
e “The JPEG Still Picture Compression

Standard’, Wallace G, Communications
of the ACM Volume 34, Issue 4

e Discrete Cosine Transform on Wikipedia
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