
HighHigh--Precision ShadingPrecision Shading
and Geometryand Geometry

Kevin BjorkeKevin Bjorke
NVIDIA CorporationNVIDIA Corporation

CPU Power Drives GPU ToolsCPU Power Drives GPU Tools

•• Showing Today: Two NVIDIA ToolsShowing Today: Two NVIDIA Tools
•• MelodyMelody

–– Simplify Complex GeometrySimplify Complex Geometry
–– Calculate UVCalculate UV--coordcoord chartscharts
–– Generate highGenerate high--resres Normal Maps for LowNormal Maps for Low--

ResRes modelsmodels
•• FX ComposerFX Composer

–– Create, debug, and tune GPU shadersCreate, debug, and tune GPU shaders
–– Generate static data and procedural Generate static data and procedural

textures on the CPUtextures on the CPU

MelodyMelody

•• MelodyMelody’’s function s function
is to replace is to replace
complex complex
geometric geometric
complexity with complexity with
fast, efficient fast, efficient
texturingtexturing

•• Three production Three production
challenges:challenges:
–– SimplificationSimplification
–– MappingMapping
–– TexturingTexturing

Geometric SimplificationGeometric Simplification

•• Many times, models Many times, models
are simplified by are simplified by
hand. Orhand. Or……

•• Melody provides Melody provides
automatically automatically
simplified geometrysimplified geometry

•• ““Dial a poly countDial a poly count””
•• Complete with Complete with

monotonic monotonic UVsUVs if if
not available in the not available in the
modelmodel

Simplification is a Memory HogSimplification is a Memory Hog

•• For complex models, 2GB is often not For complex models, 2GB is often not
enough!enough!

•• Each vertex, and each edge, carries a Each vertex, and each edge, carries a
suite of connectivity, prioritization, and suite of connectivity, prioritization, and
texturetexture--mapping infomapping info

•• HighHigh--complexity reference models complexity reference models
already sometimes fail to allocate already sometimes fail to allocate
adequate memory blocksadequate memory blocks

•• 6464--bit computing breaks this bottleneckbit computing breaks this bottleneck

Normal Map GenerationNormal Map Generation

•• Using the highUsing the high--resres
geometry as a geometry as a
reference, Melody reference, Melody
generates a normal generates a normal
map for use on lowmap for use on low--
poly modelspoly models

•• New:New: Now Now
compatible with compatible with
EpicEpic’’s Unreal s Unreal
EngineEngine

Huge Worlds Need Huge DataHuge Worlds Need Huge Data

•• The trend in tools is toward high The trend in tools is toward high
production complexityproduction complexity

•• 6464--bit computing has impact:bit computing has impact:
–– How much you can doHow much you can do
–– How fast you can do itHow fast you can do it
–– Without large memory blocks, data flow Without large memory blocks, data flow

slows as large chunks of data are broken slows as large chunks of data are broken
upup

•• Full 64Full 64--bit Melody version available bit Melody version available
soon on http://soon on http://developer.nvidia.comdeveloper.nvidia.com//

Rich Media use Rich Media use AllAll ResourcesResources

•• Intensive Tools for ProductionIntensive Tools for Production
–– Geometric simplification (Melody)Geometric simplification (Melody)
–– Global illumination Global illumination lightmaplightmap generationgeneration
–– VolumeVolume--texture model creationtexture model creation
–– Compare the complexity of a sound studio Compare the complexity of a sound studio

mixing board to a car stereomixing board to a car stereo
•• Growing Audience Appetite for Growing Audience Appetite for

ComplexityComplexity
–– Developers need tools to help them Developers need tools to help them

maximize runmaximize run--time synergy between CPU time synergy between CPU
and GPU capabilitiesand GPU capabilities

FX ComposerFX Composer

•• IDE for DirectX IDE for DirectX
shaders with shaders with
integrated integrated
performance performance
analysis and analysis and
previewpreview
–– CREATECREATE
–– DEBUGDEBUG
–– TUNE

Everquest 2 character © Sony Computer Entertainment

TUNE

HLSL for both Artists and ProgrammersHLSL for both Artists and Programmers

•• Examples of what you can do in FX Examples of what you can do in FX
ComposerComposer
–– Code details in these slides, available at Code details in these slides, available at

http://developer.nvidia.comhttp://developer.nvidia.com along with along with
complete source codecomplete source code

•• Your Models, Your Game EngineYour Models, Your Game Engine……
•• Using FX Composer with DCC toolsUsing FX Composer with DCC tools

–– Alias MayaAlias Maya
–– 3DS Max 73DS Max 7
–– RTZenRTZen GinzaGinza

http://developer.nvidia.com/

Dozens of Effects ProjectsDozens of Effects Projects

Some SDK Projects

•• Your Models, Your Game EngineYour Models, Your Game Engine……
•• Using FX Composer with DCC toolsUsing FX Composer with DCC tools

–– Alias MayaAlias Maya
–– 3DS Max 73DS Max 7
–– RTZenRTZen GinzaGinza

•• WhatWhat’’s in there: more than we can s in there: more than we can
show in the next few minutes!show in the next few minutes!

•• Projects show shaders setProjects show shaders set--up, and up, and
sometimes show shaders interactingsometimes show shaders interacting

Programmers: HLSL Beyond the ManualProgrammers: HLSL Beyond the Manual

•• This talk will include examples that show how This talk will include examples that show how
to:to:
–– Use the CPU to generate textures etcUse the CPU to generate textures etc
–– Use DirectX/Use DirectX/XNAXNA’’ss CPUCPU--side DXSAS scriptingside DXSAS scripting
–– Write shaders for use in both DCC apps and FX Write shaders for use in both DCC apps and FX

ComposerComposer
–– Call on macros and functions from the NVIDIA Call on macros and functions from the NVIDIA

#include files (.#include files (.fxhfxh) with FX Composer:) with FX Composer:
•• Quad.fxhQuad.fxh, , shadowMaps.fxhshadowMaps.fxh, Noise_3d.fxh, , Noise_3d.fxh,
noise_2d.fxh, noise_2d.fxh, Spot_tex.fxhSpot_tex.fxh, , nvMatrix.fxhnvMatrix.fxh

•• Get at new NV4x FeaturesGet at new NV4x Features

DXSAS ScriptingDXSAS Scripting

•• These examples include techniques for:These examples include techniques for:
–– MRTsMRTs
–– Loops of PassesLoops of Passes
–– Looping on BooleansLooping on Booleans
–– FXCOMPOSER_RESETFXCOMPOSER_RESET
–– ReRe--Using Texture SamplersUsing Texture Samplers
–– Using the GPU for Texture CreationUsing the GPU for Texture Creation

Example Shader: Example Shader: scene_lineDraw.fxscene_lineDraw.fx

•• Uses #includeUses #include
•• Uses MRTUses MRT
•• Uses Uses ““halfhalf””

datadata
•• Uses DXSAS Uses DXSAS

scene scene
commandscommands

•• Uses static dataUses static data

Sample from scene_lineDraw.fx

Edge Detect Based on NormalsEdge Detect Based on Normals

•• Potential, but Has ArtifactsPotential, but Has Artifacts

Worldspace Normals Edges

Edge Detect Based on DepthEdge Detect Based on Depth

•• Has Different ArtifactsHas Different Artifacts

Depth Edges

Combining ResultsCombining Results

•• Much Smoother, Much Smoother,
Artifacts tend to Artifacts tend to
cancel even in cancel even in
bad casesbad cases

Intersection of (Poor) Edges

Artist-tweaked

Parameters We Will NeedParameters We Will Need

•• The parameters we borrow from the The parameters we borrow from the
original shaders:original shaders:
–– Two edgeTwo edge--detect detect threshholdsthreshholds
–– Hither/Far values for depth imageHither/Far values for depth image

•• For scene commands:For scene commands:
–– Color for screenColor for screen--clearclear
–– Value for depthValue for depth--clear (hidden)clear (hidden)

lineDrawlineDraw -- beginningbeginning

•• We include We include ““Quad.fxhQuad.fxh”” for macros, types, and shader for macros, types, and shader
functionsfunctions

•• QUAD_REAL defaults to QUAD_REAL defaults to ““halfhalf””
–– We can override it by #defining QUAD_FLOAT before #including We can override it by #defining QUAD_FLOAT before #including

Quad.fxhQuad.fxh
•• We will use We will use Quad.fxhQuad.fxh RenderRender--toto--Texture Declaration MacrosTexture Declaration Macros
•• Quad.fxhQuad.fxh also provides vertex and pixel shader functions for also provides vertex and pixel shader functions for

simplest screensimplest screen--alignedaligned--quad cases: writing quad cases: writing ““straightstraight””
textures.textures.

#include "Quad.fxh"

lineDrawlineDraw –– starting DXSASstarting DXSAS

•• This shader is a This shader is a ““scenescene”” effecteffect
•• We provide We provide mutliplemutliple techniques, for different techniques, for different

HW profilesHW profiles
•• Two extra techniques for artist tuningTwo extra techniques for artist tuning

float Script : STANDARDSGLOBAL <

string UIWidget = "none";

string ScriptClass = "scene";

string ScriptOrder = "standard";

string ScriptOutput = "color";

string Script =
"Technique=Technique?NV3X:NV4X:NormsOnly:DepthOnly;";

> = 0.8; // version #

Dedicated “Artist” Techniques

ScriptClass

lineDrawlineDraw ““untweakablesuntweakables””

•• Tracked automatically by app Tracked automatically by app –– no user overrideno user override
•• UIWidgetUIWidget = = ““nonenone”” improves performanceimproves performance

float4x4 WorldITXf : WorldInverseTranspose <

string UIWidget="None"; >;

float4x4 WorldViewProjectionXf : WorldViewProjection <

string UIWidget="None"; >;

float4x4 WorldViewXf : WorldView <

string UIWidget="None"; >;

float4x4 WorldXf : World <

string UIWidget="None"; >;

float4x4 ViewIXf : ViewInverse <

string UIWidget="None"; >;

No Widget Display

lineDrawlineDraw static parametersstatic parameters

•• Static values are Static values are ““invisibleinvisible”” to the UIto the UI
•• Calculated by the CPUCalculated by the CPU
•• Can call most HLSL functions, intrinsic or userCan call most HLSL functions, intrinsic or user--defineddefined
•• QUAD_REAL type declared by QUAD_REAL type declared by Quad.fxhQuad.fxh
•• QuadTexOffsetQuadTexOffset and and QuadScreenSizeQuadScreenSize are hidden parameters are hidden parameters

declared by declared by Quad.fxhQuad.fxh

static float EdgeT2 = (Threshhold * Threshhold);

static float DeepT2 = (ThreshholdD * ThreshholdD);

static QUAD_REAL2 TexelCornerOffset =

QUAD_REAL2(QuadTexOffset/(QuadScreenSize.x),

QuadTexOffset/(QuadScreenSize.y));

static

lineDrawlineDraw Texture DeclarationsTexture Declarations

•• Macros from Macros from ““Quad.fxhQuad.fxh”” for common RTT for common RTT
texturingtexturing

•• Standard declarations (like these) match Standard declarations (like these) match
screen size exactly (so resizing the window screen size exactly (so resizing the window
will rewill re--allocate them)allocate them)

DECLARE_QUAD_TEX(NormTexture,NormSampler,"X8R8G8B8")

DECLARE_QUAD_TEX(DeepTexture,DeepSampler,"X8R8G8B8")

DECLARE_QUAD_DEPTH_BUFFER(DepthBuffer, "D24S8")

lineDrawlineDraw TemplateTemplate

•• QUAD_REAL dataQUAD_REAL data
•• We perform both edge detects and multiply We perform both edge detects and multiply

the resultsthe results
•• :COLOR semantic on function itself:COLOR semantic on function itself

Function Output Semantic

QUAD_REAL4 edgeDetect2PS(EdgeVertexOutput IN) : COLOR {

QUAD_REAL n = edgeDetectGray(IN,NormSampler,EdgeT2);

QUAD_REAL d = edgeDetectR(IN,DeepSampler,DeepT2);

QUAD_REAL line = 1 - (n*d);

return line.xxxx;

}

Complete TechniqueComplete Technique

•• Looks Complex but Just 4 (or 3) Chunks:Looks Complex but Just 4 (or 3) Chunks:
–– Script; Normal, Depth, & Edge PassesScript; Normal, Depth, & Edge Passes

technique NV3X <

string Script = "Pass=Norms;”

"Pass=Depth;"

"Pass=ImageProc;";

> {

pass Norms <

string Script = "RenderColorTarget0=NormTexture;"

"RenderDepthStencilTarget=DepthBuffer;"

"ClearSetColor=BlackColor;"

"ClearSetDepth=ClearDepth;"

"Clear=Color;"

"Clear=Depth;"

"Draw=Geometry;";

> {

VertexShader = compile vs_2_0 simpleVS();

ZEnable = true;

ZWriteEnable = true;

CullMode = None;

AlphaBlendEnable = false;

PixelShader = compile ps_2_a normPS();

}

pass Depth <

string Script = "RenderColorTarget0=DeepTexture;"

"RenderDepthStencilTarget=DepthBuffer;"

"ClearSetColor=BlackColor;"

"ClearSetDepth=ClearDepth;"

"Clear=Color;"

"Clear=Depth;"

"Draw=Geometry;";

> {

VertexShader = compile vs_2_0 simpleVS();

ZEnable = true;

ZWriteEnable = true;

CullMode = None;

AlphaBlendEnable = false;

PixelShader = compile ps_2_a deepPS();

}

pass ImageProc <

string Script = "RenderColorTarget0=;" // re-use

"RenderDepthStencilTarget=;"

"Draw=Buffer;";

> {

cullmode = none;

ZEnable = false;

ZWriteEnable = false;

AlphaBlendEnable = false;

VertexShader = compile vs_1_1 edgeVS();

PixelShader = compile ps_2_0 edgeDetect2PS();

}

}

Technique: Chunk 1 of 4Technique: Chunk 1 of 4

•• DXSAS scripts at each stepDXSAS scripts at each step
•• The The ““TechniqueTechnique”” script is optional for script is optional for

this case (one pass after another)this case (one pass after another)

technique NV3X <

string Script = "Pass=Norms;"

"Pass=Depth;"

"Pass=ImageProc;";

> {

// . . .

Technique: Chunk 2 of 4Technique: Chunk 2 of 4

•• We redirect color output to We redirect color output to ““NormTextureNormTexture”” & &
Draw the Model GeometryDraw the Model Geometry

pass Norms <

string Script = "RenderColorTarget0=NormTexture;"
"RenderDepthStencilTarget=DepthBuffer;"

"ClearSetColor=BlackColor;"
"ClearSetDepth=ClearDepth;"

"Clear=Color;"

"Clear=Depth;"

"Draw=Geometry;";

> {

VertexShader = compile vs_2_0 simpleVS();

ZEnable = true;

ZWriteEnable = true;

CullMode = None;

AlphaBlendEnable = false;

PixelShader = compile ps_2_a normPS();

}

Render to Texture

All Current Models

Offscreen Depth Buffer

Technique: Chunk 3 of 4Technique: Chunk 3 of 4

•• Redirect Color Output to Redirect Color Output to
““DeepTextureDeepTexture”” & Draw Model Again& Draw Model Again

pass Depth <

string Script = "RenderColorTarget0=DeepTexture;"

"RenderDepthStencilTarget=DepthBuffer;"

"ClearSetColor=BlackColor;"

"ClearSetDepth=ClearDepth;"

"Clear=Color;"

"Clear=Depth;"

"Draw=Geometry;";

> {

VertexShader = compile vs_2_0 simpleVS();

ZEnable = true;

ZWriteEnable = true;

CullMode = None;

AlphaBlendEnable = false;

PixelShader = compile ps_2_a deepPS();

}

New Render Target

All Current Models

Re-use Depth Buffer

Technique: Chunk 4 of 4Technique: Chunk 4 of 4

•• Combine, Edge Detect, write result to Combine, Edge Detect, write result to
Frame BufferFrame Buffer

•• Ignore scene geometryIgnore scene geometry
pass ImageProc <

string Script = "RenderColorTarget0=;"

"RenderDepthStencilTarget=;"

"Draw=Buffer;";

> {

cullmode = none;

ZEnable = false;

ZWriteEnable = false;

AlphaBlendEnable = false;

VertexShader = compile vs_1_1 edgeVS();

PixelShader = compile ps_2_0 edgeDetect2PS();

}

Screen-Aligned Quad

Reset Render Target

Reset Depth Target

lineDrawlineDraw MRT TechniqueMRT Technique

•• We can collapse the first two passesWe can collapse the first two passes
•• Remember to reset Remember to reset allall outputs!outputs!

pass NormsAndDepth <

string Script = "RenderColorTarget0=NormTexture;"

"RenderColorTarget1=DeepTexture;"

"RenderDepthStencilTarget=DepthBuffer;"

"ClearSetColor=BlackColor;"

"ClearSetDepth=ClearDepth;"

"Clear=Color;"

"Clear=Depth;"

"Draw=Geometry;";

> {

VertexShader = compile vs_2_0 simpleVS();

ZEnable = true;

ZWriteEnable = true;

CullMode = None;

AlphaBlendEnable = false;

PixelShader = compile ps_2_a geomMRT_PS();

}

Offscreen Depth Buffer

Target 1

Target 0

All Current Models

lineDrawlineDraw MRT shaderMRT shader

•• Use Use ““outout”” to specify multiple return valuesto specify multiple return values
•• FuncFunc can be can be ““voidvoid”” or return a value via or return a value via

function semanticfunction semantic

QUAD_REAL4 vecColorN(QUAD_REAL3 V) {

QUAD_REAL3 Nc = 0.5*(normalize(V)+((1.0).xxx));

return QUAD_REAL4(Nc,1);

}

void geomMRT_PS(

vertexOutput IN,

out QUAD_REAL4 normColor : COLOR0,

out QUAD_REAL4 deepColor : COLOR1

) {

normColor = vecColorN(IN.WorldNormal);

QUAD_REAL d = (IN.EyePos.z-Near)/(Far-Near);

deepColor = QUAD_REAL4(d.xxx,1);

}

Target 1

Target 0

MRT shader alternative formMRT shader alternative form

•• Shader function can be Shader function can be ““voidvoid”” or return or return
a value via function semantica value via function semantic

•• :COLOR0 is the same as :COLOR:COLOR0 is the same as :COLOR
Function Output Semantic

QUAD_REAL4 geomMRT_PS(

vertexOutput IN,

out QUAD_REAL4 deepColor : COLOR1) : COLOR0

{

QUAD_REAL d = (IN.EyePos.z-Near)/(Far-Near);

deepColor = QUAD_REAL4(d.xxx,1);

return vecColorN(IN.WorldNormal);

}

lineDrawlineDraw Tuning Technique 1Tuning Technique 1

•• Provide a visualization for artists to Provide a visualization for artists to
tune tune paramsparams for for edgeNormsedgeNorms

technique NormsOnly {

pass Norms <

// . . .

Tuned Normals Edges

lineDrawlineDraw Tuning Technique 2Tuning Technique 2

•• Likewise for Depth and edge parametersLikewise for Depth and edge parameters

technique DepthOnly {

pass Depth <

// . . .

Tuned Depth EdgesLive Texture Display
in FX Composer

Example Shader: Example Shader: SeeSpaces.fxSeeSpaces.fx

•• Artist Artist
VisualizationVisualization

•• Uses texture Uses texture
generation and generation and
texture texture
derivatives on derivatives on
CPU for fast AACPU for fast AA

•• Debugging

Sample from “DebugCab.fxproj”

Debugging

Checks, Stripes, AntialiasingChecks, Stripes, Antialiasing

•• Using CPU preUsing CPU pre--calculation calculation
results in higher quality results in higher quality
and faster performance and faster performance
than math in the pixel than math in the pixel
shadershader

•• In shading, any number can In shading, any number can
potentially be a texturepotentially be a texture

•• Likewise many functions Likewise many functions
(like some (like some BRDFsBRDFs) can be) can be
represented by one or represented by one or
more textures

“Durer” shader from NVIDIA SDK

more textures

HLSL Procedural TexturesHLSL Procedural Textures

•• :COLOR :COLOR sematicsematic like a pixel shaderlike a pixel shader
•• :PSIZE input semantic gives texel size as function is called for:PSIZE input semantic gives texel size as function is called for

eacheach MIP levelMIP level
•• This is theThis is the onlyonly way to get at the HLSL noise() intrinsicway to get at the HLSL noise() intrinsic

float4 MakeStripe(float2 Pos : POSITION,float ps : PSIZE) : COLOR
{

float v = 0;
float nx = Pos.x+ps; // keep the last column full-on, always
v = nx > Pos.y;
return float4(v.xxxx);

}

#define TEX_SIZE 128
texture stripeTex <

string function = "MakeStripe";
string UIWidget = "None";
float2 Dimensions = { TEX_SIZE, TEX_SIZE };

>;
sampler2D StripeSampler = sampler_state {

Texture = <stripeTex>;
MinFilter = LINEAR; MagFilter = LINEAR; MipFilter = LINEAR;
AddressU = WRAP;
AddressV = CLAMP;

};

Output Semantic

Call generator function

Input Semantic

No user interface needed

Be sure to set
address modes
appropriate for
individual texture
and algorithm

Example Shader: Example Shader: uvDetectiveuvDetective

•• Visualization Visualization
for Artists for Artists
Tuning ModelsTuning Models

•• Black Black ––
texture should texture should
be around be around
512x512 for 512x512 for
closeclose--toto--texeltexel--
sized pixelssized pixels

Black areas for 512x512 texture

Can be set to any sizeCan be set to any size

•• Now black is Now black is
for 256 resfor 256 res

•• Blue shows Blue shows
area where a area where a
higherhigher--res res
texture texture could could
be usefulbe useful

Black areas for 256x256 texture

Show Related Visualizations TooShow Related Visualizations Too

•• Direct Derivatives and (CPUDirect Derivatives and (CPU--generated) generated)
false MIP coloringfalse MIP coloring

“False Color MIP Texture” Display
(texture generated by uvDetective.fx)Direct Visualization of Texture Derivatives

(Amount of texture stretching)

Example Shader: shadowSpot2.fxExample Shader: shadowSpot2.fx

•• Special shadow formatSpecial shadow format
•• DXSAS:DXSAS:

–– ““sceneorobjectsceneorobject””
ScriptClassScriptClass

–– Script/No ScriptScript/No Script
•• Uses Uses RenderPortRenderPort
•• Uses CPU Uses CPU intrinsicsintrinsics
•• Include files:Include files:

–– shadowMap.fxhshadowMap.fxh
–– spot_tex.fxh

HW shadow mapping

spot_tex.fxh

shadowSpot2 shadowSpot2 –– shadow textureshadow texture

•• Shadow texture formatShadow texture format
•• We throw away color portionWe throw away color portion
•• Vertex shader declared for usVertex shader declared for us
#include “shadowMap.fxh”

DECLARE_SHADOW_XFORMS("light0",LampViewXf,

LampProjXf,ShadowViewProjXf)

DECLARE_SHADOW_BIAS

DECLARE_SHADOW_MAPS(ColorShadMap,ColorShadSampler,

ShadDepthTarget,ShadDepthSampler)

Found in …\MEDIA\HLSL\

Inside Inside shadowMap.fxhshadowMap.fxh -- MapsMaps

•• DECLARE_SHADOW_MAPS will set up two DECLARE_SHADOW_MAPS will set up two
map and sampler pairsmap and sampler pairs

•• Default Size is 512Default Size is 512
•• We can override by preWe can override by pre--#defining #defining

SHADOW_SIZESHADOW_SIZE
•• Uses format "D24S8_SHADOWMAPUses format "D24S8_SHADOWMAP““

which will provide HWwhich will provide HW--accelerated accelerated
multisamplemultisample PCF filteringPCF filtering
DECLARE_SHADOW_MAPS(ColorShadMap,ColorShadSampler,

ShadDepthTarget,ShadDepthSampler)

Inside Inside shadowMap.fxhshadowMap.fxh -- TransformsTransforms

•• DECLARE_SHADOW_XFORMS declares DECLARE_SHADOW_XFORMS declares
attachable transforms using special attachable transforms using special
““frustumfrustum”” annotation and an additional annotation and an additional
““staticstatic”” declaration:declaration:

// DECLARE_SHADOW_XFORMS("light0",LampViewXf,
// LampProjXf,ShadowViewProjXf)
// expands to:

float4x4 LampViewXf : View < string frustum = “light0”; >;
float4x4 LampProjXf : Projection < string frustum = “light0”; >;
static float4x4 ShadowViewProj = mul(LampViewXf,LampProjXf);

“frustum” annotation

“static” declaration
executes HLSL
code on CPU each
frame

Inside Inside shadowMap.fxhshadowMap.fxh -- BiasBias

•• DECLARE_SHADOW_BIAS will set up a DECLARE_SHADOW_BIAS will set up a
user parameter user parameter ““ShadBiasShadBias””

•• We can override range for small or large We can override range for small or large
models by premodels by pre--#defining #defining
MAX_SHADOW_BIASMAX_SHADOW_BIAS

DECLARE_SHADOW_BIAS

Inside Inside shadowMap.fxhshadowMap.fxh -- ShadersShaders

•• Vertex shader for creating shadow Vertex shader for creating shadow
maps: maps: ““shadCamVSshadCamVS””

•• No pixel shader needed for shadowNo pixel shader needed for shadow--
creation passescreation passes

•• Vertex shader for using shadow maps: Vertex shader for using shadow maps:
““shadowUseVSshadowUseVS””
–– Shadow projection Shadow projection TexCoordsTexCoords ((UVsUVs))

passed in passed in ““LProjLProj””
•• Code sample in .Code sample in .fxhfxh for usage in Pixel for usage in Pixel

shadersshaders

shadowSpot2 shadowSpot2 –– spotlight patternspotlight pattern

•• ““SpotSampSpotSamp”” sampler will be declared sampler will be declared
for you and filled by CPUfor you and filled by CPU

•• CompileCompile--time shaping optionstime shaping options

#include “spot_tex.fxh”
Default “spot_tex” texture

•• Call Call ““SpotSampSpotSamp”” using light projection using light projection UVsUVs
like so:like so:

float cone = tex2Dproj(SpotSamp,IN.LProj);

shadowSpot2 shadowSpot2 –– pixel shaderpixel shader

•• Just shadow portionJust shadow portion
•• ““LProjLProj”” provided by vertex shader provided by vertex shader

““shadowUseVSshadowUseVS””
float4 useShadowPS(ShadowingVertexOutput IN) : COLOR
{

float3 litPart, ambiPart;
lightingCalc(IN,litPart,ambiPart);
float4 shadowed = tex2Dproj(ShadDepthSampler,IN.LProj);
return float4((shadowed.x*litPart)+ambiPart,1);

}

shadowSpot2 shadowSpot2 –– pixel shaderpixel shader

•• Compare to a completely Compare to a completely unshadowedunshadowed
version:version:
–– We supply an We supply an unshadowedunshadowed version for apps version for apps

with limited DXSAS scripting, like 3DStudio with limited DXSAS scripting, like 3DStudio
MaxMax

•• And declare And declare ScriptClassScriptClass = "= "sceneorobjectsceneorobject";";

float4 unshadowedPS(ShadowingVertexOutput IN) : COLOR
{

float3 litPart, ambiPart;
lightingCalc(IN,litPart,ambiPart);
return float4(litPart+ambiPart,1);

}

shadowSpot2 shadowSpot2 –– shadow techniqueshadow technique

•• Vertex shader from .Vertex shader from .fxhfxh file:file:
•• Note assign of Note assign of ““RenderPortRenderPort””
technique Shadowed <

string Script = "Pass=MakeShadow;”
“Pass=UseShadow;";

> {
pass MakeShadow <

string Script = "RenderColorTarget0=ColorShadMap;"
"RenderDepthStencilTarget=ShadDepthTarget;"
"RenderPort=light0;"
"ClearSetColor=ShadowClearColor;"
"ClearSetDepth=ClearDepth;"
"Clear=Color;"
"Clear=Depth;"
"Draw=geometry;";

> {
VertexShader = compile vs_2_0 shadowGenVS(WorldXf,WorldITXf,ShadowViewProjXf);
ZEnable = true;
ZWriteEnable = true;
ZFunc = LessEqual;
CullMode = None;
// no pixel shader!

}
// . . . Continued . . .

“RenderPort”
sets clipping etc

correctly for
this viw

Provided by
shadowMap.fxh

shadowSpot2 shadowSpot2 –– technique (conttechnique (cont’’d)d)

•• Vertex Shader provided from .Vertex Shader provided from .fxhfxh
•• Remember, Reset Remember, Reset ““RenderPortRenderPort””

// . . .
pass UseShadow <
string Script = "RenderColorTarget0=;"

"RenderDepthStencilTarget=;"
"RenderPort=;"
"ClearSetColor=ClearColor;"
"ClearSetDepth=ClearDepth;"
"Clear=Color;"
"Clear=Depth;"
"Draw=geometry;";

> {
VertexShader = compile vs_2_0 shadowUseVS(WorldXf,WorldITXf,

WorldViewProjXf,ShadowViewProjXf,
ViewIXf,ShadBiasXf, SpotLightPos);

ZEnable = true;
ZWriteEnable = true;
ZFunc = LessEqual;
CullMode = None;
PixelShader = compile ps_2_a useShadowPS();
}

}

Provided by
shadowMap.fxh

Reset Renderport
to scene camera

shadowSpot2 shadowSpot2 –– unshadowedunshadowed techniquetechnique

•• Provided for apps like 3DS MaxProvided for apps like 3DS Max
•• Just one pass, shared codeJust one pass, shared code
•• DXSAS Script optionalDXSAS Script optional
•• Declare Declare ScriptClassScriptClass ““sceneorobjectsceneorobject”

Scene w/o shadow

”
technique Unshadowed {

pass NoShadow {
VertexShader = compile vs_2_0 shadowUseVS(WorldXf, WorldITXf, WorldViewProjXf,

ShadowViewProjXf, ViewIXf,
ShadBiasXf, SpotLightPos);

ZEnable = true;
ZWriteEnable = true;
ZFunc = LessEqual;
CullMode = None;
PixelShader = compile ps_2_a unshadowedPS();

}
}

Provided by
shadowMap.fxh

•• Most flexibleMost flexible
•• AA calculated in AA calculated in

shader, so anything is shader, so anything is
possiblepossible

•• Can be mixed with Can be mixed with
RGB in one textureRGB in one texture

•• Fast, good qualityFast, good quality
•• Antialiased on NVIDIA Antialiased on NVIDIA

hardwarehardware
•• sharp edgessharp edges
•• Trivial to useTrivial to use

Floating PointD24S8 Shadow Maps

Differing Shadow Formats & AlgorithmsDiffering Shadow Formats & Algorithms

Example Shader: Example Shader: paint_blurpaint_blur

•• Uses FP16 Uses FP16
BlendingBlending

•• Uses DXSAS Uses DXSAS
accumulation accumulation
loopsloops

•• Uses Uses ““bool loopsbool loops””
•• Uses CPU Uses CPU funcsfuncs

and static and static varsvars
for mouse for mouse
trackingtracking

Painted Accumulation-Buffer Motion Blur

Paint_blurPaint_blur –– Three key Three key paramsparams

•• Loop counter & limitLoop counter & limit
•• RESET pulse RESET pulse booleanboolean

–– Can also be toggled manuallyCan also be toggled manually

float passnumber <string UIWidget = "none";>;
float npasses <

float UIStep = 1.0;
string UIName = “# of blur passes";

> = 8.0f;
bool bReset : FXCOMPOSER_RESETPULSE
<

string UIName="Clear Canvas?";
>;

Dedicated
Semantic

Hidden loop
counter

Declaring Floating Point TexturesDeclaring Floating Point Textures

•• Just like any other textureJust like any other texture
•• Our paint strokes are added using Alpha Our paint strokes are added using Alpha

Blending Blending –– works fine on FP16 formatsworks fine on FP16 formats
•• Caution: FXC will still compile if a format is not Caution: FXC will still compile if a format is not

available available –– it will switch to 8bit it will switch to 8bit intint

DECLARE_QUAD_TEX(PaintTex,PaintSamp,"A16B16G16R16F")DECLARE_QUAD_TEX(PaintTex,PaintSamp,"A16B16G16R16F")

A sample “live”
displacement texture

Paint_blurPaint_blur –– DXSAS loopingDXSAS looping

•• Loop value from parameter in technique Loop value from parameter in technique
scriptscript
–– Change value to change blur qualityChange value to change blur quality
string Script =

// Clear Accum Buffer
"RenderColorTarget0=AccumBuffer;"
"ClearSetColor=ClearColor;"
"Clear=Color;"
// paint into blur-dir buffer...
"Pass=paint;"
// accumulate
"LoopByCount=npasses;"

"LoopGetIndex=passnumber;"
"Pass=Accumulate;"

"LoopEnd;"
// draw accum buffer to framebuffer
"Pass=FinalPass;";

User-defined loop limit

Script counter assignment

Effects of Changing Pass CountEffects of Changing Pass Count

•• Tune for Quality versus PerformanceTune for Quality versus Performance
8 passes (default)

24 passes

4 passes

Paint_blurPaint_blur –– DXSAS DXSAS ““boolbool”” loopinglooping

•• Loop value from RESET, inside script for Loop value from RESET, inside script for
““PaintPaint”” passpass
–– Painting clears itself as neededPainting clears itself as needed
–– Otherwise Otherwise ““PaintTexPaintTex”” persists from frame to framepersists from frame to frame

string Script =
"RenderColorTarget0=PaintTex;"
"RenderDepthStencilTarget=;"
"LoopByCount=bReset;"

"ClearSetColor=ClearColor;"
"Clear=Color0;"
"LoopEnd=;"

"Draw=Buffer;";

“PaintTex” display

With “bool” value, acts like “if()”

Example shader: Example shader: paint_sculptpaint_sculpt

•• Uses FP Uses FP
blendingblending

•• Converts to Converts to
FP32FP32

•• Uses FP32 VTFUses FP32 VTF

Live texture sculpting on static plane

Paint_sculptPaint_sculpt –– mixing datamixing data

•• FP16 blending for paint, as beforeFP16 blending for paint, as before
•• Extra copy pass for VTF FP32Extra copy pass for VTF FP32
•• Use Use Quad.fxhQuad.fxh utility shadersutility shaders

pass boost <
string Script = "RenderColorTarget0=DisplaceMap;"

"Draw=Buffer;";
> {

VertexShader = compile vs_3_0 ScreenQuadVS();
ZEnable = false;
ZWriteEnable = false;
CullMode = None;
PixelShader = compile ps_3_0 TexQuadPS(PaintStrokeSampler);

}

Provided by Quad.fxh

Provided by Quad.fxh

Example Example shader(sshader(s):): post_holgapost_holga & friends& friends

•• Uses noise_2d, Uses noise_2d,
spot_texspot_tex, ,
Quad.fxhQuad.fxh,,

•• FP16 if you FP16 if you
have ithave it

•• DXSAS Effect DXSAS Effect
stackingstacking

Dusk’s 1935 Debut

Post_holgaPost_holga –– noise texturesnoise textures

•• Textures are still the fastest way to get noise in pixel shadingTextures are still the fastest way to get noise in pixel shading
–– This noise, at low scales, will also be pretty continuous at a vThis noise, at low scales, will also be pretty continuous at a variety of ariety of

visible sizesvisible sizes
•• Emulate Optical Distortion by Emulate Optical Distortion by OffsetingOffseting screen U,V with 2D Noisescreen U,V with 2D Noise
•• Default NOISE2D_SCALE was 500 Default NOISE2D_SCALE was 500 –– we want we want muchmuch smoother noise for smoother noise for

this applicationthis application

#define NOISE2D_SCALE 1
#define NOISE2D_FORMAT "A16B16G16R16F"
#include "noise_2d.fxh"

2D Noise

Post_holgaPost_holga –– spot_texspot_tex

•• Using this texture for a different purpose Using this texture for a different purpose –– to isolate to isolate
distortion to the edges of the frame, and to control the distortion to the edges of the frame, and to control the
vignettingvignetting effecteffect

•• Change a couple of defaults to get a different shapeChange a couple of defaults to get a different shape

#define SPOT_TEX_SIZE 128
#define SPOT_TEX_INSIDE 0.2
#include "spot_tex.fxh"

Tweaked spot_tex image

Post_holgaPost_holga –– buffering the scenebuffering the scene

•• Post_holgaPost_holga (and other (and other postprocesspostprocess effects) are declared effects) are declared
ScriptOrderScriptOrder==““postprocesspostprocess””

•• We use We use ““ScriptExternalScriptExternal==”” to handto hand--off scene rendering to off scene rendering to
FX Composer, while using our own texture (FX Composer, while using our own texture (““SceneMapSceneMap””))
as the scene render target, rather than the framebufferas the scene render target, rather than the framebuffer

string Script = "ClearSetDepth=ClearDepth;"
"RenderColorTarget=SceneMap;"
"RenderDepthStencilTarget=DepthMap;"
"ClearSetColor=ClearColor;“
"ClearSetDepth=ClearDepth;"

"Clear=Color;"
"Clear=Depth;"
"ScriptSignature=color;"
"ScriptExternal=;"
"Pass=DownSample;"
"Pass=GlowH;"
"Pass=GlowV;"
// . . .

What do I output?

Render all “below” me

Adding More Shaders to the SceneAdding More Shaders to the Scene

•• Use the Use the
ScriptExecuteScriptExecute
Sorter, found in Sorter, found in
the menu of the the menu of the
Materials PaneMaterials Pane

•• Build up the look Build up the look
you likeyou like

•• Maybe reduce to Maybe reduce to
one shader later one shader later
(maybe not)(maybe not)

The ScriptExecute Sorter

Fast Exploration of AlgorithmsFast Exploration of Algorithms

•• Shading Algorithms Shading Algorithms
can be quickly can be quickly
explored without explored without
having to rewrite having to rewrite
your game engine your game engine
just to try things outjust to try things out

Relief Mapping Shaders
By Fabio Policarpo

CPUCPU--guided Performance Analysisguided Performance Analysis

•• ““Shader Shader PerfPerf””
panel can panel can
analyze analyze
performance for performance for
chips you donchips you don’’t t
even have!even have!
–– This sample This sample

image of NV40 image of NV40
pixel shader pixel shader
analysis from my analysis from my
nv36M laptopnv36M laptop

FX Composer &FX Composer &
MayaMaya

•• Microsoft DX9 Microsoft DX9
ViewerViewer
–– Newest in Newest in

February 2005 February 2005
DirectX SDK DirectX SDK
UpdateUpdate

–– Special subSpecial sub--
dialog from dialog from
Attribute EditorAttribute Editor

–– Maya 6 or Maya 5Maya 6 or Maya 5
–– DirectX in Maya DirectX in Maya

window or window or
““floaterfloater””

–– Integrates .X Integrates .X
exporter

Maya 6.0.1 Model showing “uvDetective”

exporter

FX Composer &FX Composer &
3DS Max 73DS Max 7

•• 3DStudio Max support 3DStudio Max support
for DX9 builtfor DX9 built--inin
–– Define shaders in Max Define shaders in Max

Materials PaneMaterials Pane
–– Limited DXSAS support Limited DXSAS support

so farso far
–– Which is why we make Which is why we make

shadow scripts shadow scripts ““smartsmart””
–– New NVB exporter from New NVB exporter from

3DS Max will carry all FX 3DS Max will carry all FX
Composer attributes Composer attributes
too.too.

HLSL Shader in 3DS Max 7

C# ScriptingC# Scripting

•• Can use C# or Visual Basic, with full textCan use C# or Visual Basic, with full text--
edit edit intellisenseintellisense etcetc

–– Works off .NET Works off .NET ““CLRCLR”” so others could so others could
work toowork too

•• Setting Animation KeysSetting Animation Keys
–– From Programs or External FilesFrom Programs or External Files

•• Creating ObjectsCreating Objects
–– From Primitives or External FilesFrom Primitives or External Files
–– Can call C++ plugins or work directlyCan call C++ plugins or work directly

•• Cycling Through Shaders and ProjectsCycling Through Shaders and Projects
–– Preview examples like Preview examples like ““Scatter_scene.csScatter_scene.cs””

•• ExportingExporting
–– See example See example ““export_material_keys.csexport_material_keys.cs”” to to

access and export all properties of the access and export all properties of the
current scene to XMLcurrent scene to XML

•• Most FX Composer Internals Are ExposedMost FX Composer Internals Are Exposed
–– Use the OLE Viewer in Visual Studio, Use the OLE Viewer in Visual Studio,

expand library expand library ““nvsysnvsys””
•• Data types, structures, and methods are all Data types, structures, and methods are all

there

Sample Animated Display from “scatter_scene.cs”

there

Sample C# Script: Sample C# Script: ““rtzImport.csrtzImport.cs””

•• Translates appTranslates app--specific semantics from specific semantics from
RTZenRTZen GinzaGinza ((http://www.rtzen.com/http://www.rtzen.com/))
FX export files into forms mostFX export files into forms most--friendly friendly
to FX Composer.to FX Composer.

•• Creates a tweaked copy of your Creates a tweaked copy of your GinzaGinza
shader, then opens it.shader, then opens it.

•• Be sure to include the Be sure to include the RTZenRTZen path path
“…“…\\RTShaderGinzaRTShaderGinza\\mediamedia\\imagesimages\\”” in in
your FX Composer Settingsyour FX Composer Settings…… dialogdialog

http://www.rtzen.com/

Connecting Outside of FX ComposerConnecting Outside of FX Composer

•• UserUser--defined annotations defined annotations
and semantics: and semantics:
““......\\datadata\\fxmapping.xmlfxmapping.xml””

•• Geometry Importers & Geometry Importers &
C++ SDKC++ SDK

•• More!More!
–– But weBut we’’re out of timere out of time……
–– Details on the web siteDetails on the web site

•• Thanks!Thanks!
Sepia + Holga + lambSkin_shadow

GPU Gems 2GPU Gems 2
Programming Techniques for HighProgramming Techniques for High--Performance Graphics Performance Graphics
and Generaland General--Purpose ComputationPurpose Computation

•• 880 full880 full--color pages, 330 figures, hard covercolor pages, 330 figures, hard cover
•• $59.99$59.99
•• Experts from universities and industryExperts from universities and industry

“The topics covered in GPU Gems 2 are critical to the next generation of game
engines.”
— Gary McTaggart, Software Engineer at Valve, Creators of Half-Life and Counter-Strike

“GPU Gems 2 isn’t meant to simply adorn your bookshelf—it’s required reading for
anyone trying to keep pace with the rapid evolution of programmable graphics. If
you’re serious about graphics, this book will take you to the edge of what the GPU
can do.”
—Rémi Arnaud, Graphics Architect at Sony Computer Entertainment

	High-Precision Shadingand Geometry
	CPU Power Drives GPU Tools
	Melody
	Geometric Simplification
	Simplification is a Memory Hog
	Normal Map Generation
	Huge Worlds Need Huge Data
	Rich Media use All Resources
	FX Composer
	HLSL for both Artists and Programmers
	Dozens of Effects Projects
	Programmers: HLSL Beyond the Manual
	DXSAS Scripting
	Example Shader: scene_lineDraw.fx
	Edge Detect Based on Normals
	Edge Detect Based on Depth
	Combining Results
	Parameters We Will Need
	lineDraw - beginning
	lineDraw – starting DXSAS
	lineDraw “untweakables”
	lineDraw static parameters
	lineDraw Texture Declarations
	lineDraw Template
	Complete Technique
	Technique: Chunk 1 of 4
	Technique: Chunk 2 of 4
	Technique: Chunk 3 of 4
	Technique: Chunk 4 of 4
	lineDraw MRT Technique
	lineDraw MRT shader
	MRT shader alternative form
	lineDraw Tuning Technique 1
	lineDraw Tuning Technique 2
	Example Shader: SeeSpaces.fx
	Checks, Stripes, Antialiasing
	HLSL Procedural Textures
	Example Shader: uvDetective
	Can be set to any size
	Show Related Visualizations Too
	Example Shader: shadowSpot2.fx
	shadowSpot2 – shadow texture
	Inside shadowMap.fxh - Maps
	Inside shadowMap.fxh - Transforms
	Inside shadowMap.fxh - Bias
	Inside shadowMap.fxh - Shaders
	shadowSpot2 – spotlight pattern
	shadowSpot2 – pixel shader
	shadowSpot2 – pixel shader
	shadowSpot2 – shadow technique
	shadowSpot2 – technique (cont’d)
	shadowSpot2 – unshadowed technique
	Differing Shadow Formats & Algorithms
	Example Shader: paint_blur
	Paint_blur – Three key params
	Declaring Floating Point Textures
	Paint_blur – DXSAS looping
	Effects of Changing Pass Count
	Paint_blur – DXSAS “bool” looping
	Example shader: paint_sculpt
	Paint_sculpt – mixing data
	Example shader(s): post_holga & friends
	Post_holga – noise textures
	Post_holga – spot_tex
	Post_holga – buffering the scene
	Adding More Shaders to the Scene
	Fast Exploration of Algorithms
	CPU-guided Performance Analysis
	FX Composer &Maya
	FX Composer &3DS Max 7
	C# Scripting
	Sample C# Script: “rtzImport.cs”
	Connecting Outside of FX Composer
	
	GPU Gems 2 Programming Techniques for High-Performance Graphics and General-Purpose Computation

